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Abstract

We show how to efficiently simulate cryptographic prim-
itives during symbolic execution. This allows analysis of
security protocol implementations, and revealed several
flaws in implementations of WPA2’s 4-way handshake.

Traditional symbolic execution engines cannot handle
cryptographic primitives, because analyzing them results
in complex symbolic expressions that cannot be handled
by the SMT solver. We prevent this by simulating their
behaviour under the Dolev-Yao model. This enables ef-
ficient symbolic execution of security protocols imple-
mentations, making it possible to detect common pro-
gramming mistakes in them. We also show how to de-
tect misuse of cryptographic primitives. That is, we can
detect trivial timing side-channels, and we can identify
decryption oracles where unauthenticated decrypted data
influences the program’s behaviour. We apply our tech-
nique on three client-side implementations of WPA2’s
4-way handshake. This uncovered timing side-channels
when verifying authentication tags, a denial-of-service
attack, a stack-based buffer overflow, and also revealed a
non-trivial decryption oracle. We confirmed all vulnera-
bilities in practice, and discuss them in detail.

1 Introduction

Implementing security protocols is a tedious and error-
prone task. Unfortunately, history shows that any errors
or bugs in a security protocol implementation can lead to
devastating vulnerabilities. For example, an integer over-
flow in OpenSSH allowed an adversary to remotely ex-
ecute arbitrary code on affected servers [13, 40]. Older
versions of OpenSSH even had a vulnerability that al-
lowed code execution on both clients and servers [12].
As another example, the Heartbleed vulnerability in
OpenSSL allowed an adversary to compromise all Trans-
port Layer Security (TLS) connections made to a vulner-
able server [2, 23]. Comparable failures also occurred

in other implementations of the TLS protocol [41], and
in implementations of other security protocols such as
Wi-Fi Protected Access two (WPA2) [51], IPsec [17],
Bluetooth [14], RSA key generation algorithms [39], and
so on. In all these examples, implementation issues un-
dermined the security guarantees normally provided by
the protocol. Inspired by these observations, our goal is
to use symbolic execution, instead of traditional fuzzing,
to find bugs in security protocol implementations.

Traditional fuzzing is used by several previous works
to test security protocol implementations. Here, concrete
input is fed to an implementation, after which its be-
haviour is monitored for irregularities. This was used to
test protocols such as TLS, and revealed flaws in the state
machines of several libraries [5, 19], uncovered flawed
client-side X.509 certificate parsers [9, 16], and detected
various buffer boundary violations [44]. However, a ma-
jor downside of fuzzing is that it may not explore all code
paths, meaning certain vulnerabilities remain undetected.

In contrast to fuzzing, symbolic execution attempts to
exhaustively explore all code paths of a program. This
is done by running the program on symbolic inputs, in-
stead of on concrete ones. When a branch is encountered
that depends on symbolic input, execution is forked,
and all feasible paths are explored. This technique has
been used to test a DHCP server [11], to verify prop-
erties of distributed protocols [42], and to check proto-
col requirements of Zeroconf and DHCP implementa-
tions [45]. However, handling security protocols that use
cryptographic primitives, such as encryption and authen-
tication, remains challenging. The main obstacle is that
the cryptographic primitives in these protocols generate
complex symbolic expressions, which cannot be handled
by the SMT solver. We show how this problem can be
avoided by simulating the behaviour of cryptographic
primitives, instead of symbolically executing them.

Apart from using symbolic execution to detect com-
mon programming mistakes, we also present techniques
to discover misuse of cryptographic primitives. In partic-



ular, we can detect when authentication tags are not ver-
ified in constant-time. Moreover, we can also detect de-
cryption oracles, where an implementation’s behaviour
is influenced by decrypted but unauthenticated data.

To evaluate our techniques, we implement them on top
of the KLEE symbolic execution engine [10], and apply
our tool to three client-side implementations of WPA2’s
4-way handshake. Note that this handshake is used by
nearly all protected Wi-Fi networks, and provides both
mutual authentication and session key agreement. This
revealed several vulnerabilities. First, two clients verify
authentication tags using timing-unsafe memory com-
pares, resulting in trivial timing side-channels. Sec-
ond, Intel’s iwd daemon contains a denial-of-service vul-
nerability that can be triggered by a malicious Access
Point (AP). Third, MediaTek’s implementation contains
a stack-based buffer overflow in code that processes de-
crypted data, which can be exploited by a malicious AP.
Fourth, wpa supplicant contains an non-trivial decryp-
tion oracle that is caused by processing decrypted but
unauthenticated data. This decryption oracle can be ex-
ploited when the victim connects to a WPA2 network us-
ing the old TKIP encryption algorithm. It can be abused
to decrypt the group key transported in message 3 of
the 4-way handshake. Finally, when manually preparing
MediaTek’s code for symbolic execution, we also dis-
covered that it incorrectly implemented the AES unwrap
algorithm. We confirmed all vulnerabilities in practice,
and will explain them in detail.

To summarize, our main contributions are:

• We modify the KLEE symbolic execution engine to
efficiently handle cryptographic primitives, by sim-
ulating their behaviour under the Dolev-Yao model.

• We show how to detect timing side-channels and de-
cryption oracles that are caused by improper use of
(legacy) cryptographic primitives.

• We evaluate our technique against WPA2’s 4-way
handshake, and explain how all discovered vulnera-
bilities can be exploited in practice.

The remainder of this paper is structured as follows.
Section 2 introduces symbolic execution, and relevant as-
pects of the 802.11 standard. Section 3 explains how we
simulate cryptographic primitives, and in Section 4 we
apply our technique to the 4-way handshake of WPA2.
We discuss our results in Section 5, and go over related
work in Section 6 . Finally, we conclude in Section 7.

2 Background

In this section we introduce symbolic execution [34], go
over the main features of WPA2, and explain how the
4-way handshake works [31].

2.1 Symbolic Execution

Traditional fuzzing techniques, where random input is
generated and fed to a program, are unable to explore
all possible code paths within reasonable time. For ex-
ample, the conditional statement “if (x==137) then”
only has one in 232 chance of being fulfilled if x is a ran-
dom 32-bit input value. Symbolic execution overcomes
this problem by running the program not on random con-
crete inputs, but on symbolic inputs [34]. During such
a symbolic execution, the program memory and output
values are represented by symbolic expressions over the
symbolic input values. Additionally, when a conditional
statement is encountered, symbolic execution is forked
over all feasible branches. This assures that all code
paths (i.e. sequences of conditional branches) that the
program might execute are analyzed. For each code path,
a path constraint is maintained that defines the inputs for
which the program executes along this path. Put differ-
ently, the path constraint records all conditions the sym-
bolic input must satisfy for an execution to reach a par-
ticular location in the program. To determine whether a
conditional branch is feasible, and to generate concrete
inputs that follow certain code paths, a boolean satisfi-
ability problem (SAT) solver or a Satisfiability Modulo
Theories (SMT) solver is used. Several open and closed
source tools implement this technique, with examples be-
ing DART [26], KLEE [10], and SAGE [27].

Symbolic execution has two main limitations. First,
certain queries to the SMT solver can be slow to practi-
cally unsolvable. The second problem is a state explo-
sion when analysing large programs, where there are an
exponential number of code paths in the program. We
show how these limitations can be managed when sym-
bolically executing security protocols.

2.2 Wi-Fi Protected Access

A connection to a modern protected Wi-Fi network is
managed using a Robust Security Network (RSN) associ-
ation. The technical features and capabilities of an RSN
association are defined in the 802.11 standard [31, §12].
A subset of RSN is certified by the Wi-Fi Alliance un-
der the more well-known name Wi-Fi Protected Access
version two (WPA2). The first version, called WPA, was
based on a draft of the standard. This means that WPA
is almost identical to WPA2. Moreover, they both sup-
port the older (WPA-)TKIP encryption protocol, and the
more modern (AES-)CCMP protocol. An AP advertises
its supported encryption protocols in periodically broad-
casted beacons. When connecting to a network, the client
informs the AP which encryption protocol (i.e. cipher
suite) it wants to use, and then executes the 4-way hand-
shake to establish a secure connection.
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Figure 1: Simplified overview of the messages ex-
changed when executing the 4-way handshake between
a client (supplicant) and an AP (authenticator).

Figure 1 illustrates the messages exchanged during the
4-way handshake. During this handshake, the client is
called the supplicant, and the AP is called the authenti-
cator (we use these terms as synonyms). The AP starts
by sending message 1, which contains a random num-
ber called the ANonce. This message is the only one
that is not protected by a Message Integrity Code (MIC).
In response, the client replies with message 2, which
contains a random SNonce. Once both endpoints learn
each other’s nonces, they combine them with a shared se-
cret to derive a session key called the Pairwise Transient
Key (PTK). The third message is sent by the AP, and if
WPA2 is used, it will contain the group key (GTK) used
by the network. In case the older WPA protocol is used,
the GTK is transported to the client in a separate group
key handshake. Finally, the client replies with message 4,
and installs the session key (PTK).

All messages in the 4-way handshake are defined us-
ing EAPOL-Key frames. The structure of these frames is
shown in Figure 2. To symbolically execute implementa-
tions of the 4-way handshake, and to understand our dis-
covered attacks, we will briefly discuss the most impor-
tant fields. First, the 5-byte header defines the length of
the frame and its type. This header is followed by the key
information field. It contains a 3-bits key descriptor ver-
sion subfield, and eight one-bit flags that called the key
info flags. For us, only the MIC and encrypted flags are
important. If the MIC flag is set, the authenticity of the
frame is protected using a MIC. When the encrypted flag
is set, the key data field is encrypted. The key descriptor
field defines the cipher suite that is used for authentica-
tion and encryption. This is either AES with HMAC-
SHA1, or RC4 with HMAC-MD5. The choice between

Protocol Version
1 byte

Packet Type
1 byte

Body Length
2 bytes

Descriptor Type – 1 byte

Key Information
2 bytes

Key Length
2 bytes

Key Replay Counter – 8 bytes

Key Nonce – 32 bytes

EAPOL Key IV – 16 bytes

Key RSC – 8 bytes

Reserved – 8 bytes

Key MIC – variable

Key Data Length
2 bytes

Key Data
variable

Figure 2: Layout of EAPOL-Key frames [31, §11.6.2].

these cipher suites, and hence the value of the key de-
scriptor field, depends on the pairwise cipher selected
by the client. More precisely, if CCMP is chosen, AES
wrap [43] with HMAC-SHA1 is used for encryption and
authentication, respectively. Otherwise, RC4 encryption
with HMAC-MD5 is used. For example, when WPA2
is used, the group key is stored in the key data field of
message 3, meaning it is encrypted with the PTK using
either RC4 or AES wrap. The content of the key data
field is encoded using Information Elements (IEs), and
will be explained in more detail in Section 4.2. Finally,
the replay counter field is used to detect replayed frames.
The AP increments the replay counter after transmitting
a new frame. When the client receives a frame, it first
assures the replay counter is fresh, and it will then echo
the received replay counter in its response.

Note that in Figure 1 we used the notation

MsgN(r, Nonce; GTK)

to succinctly describe messages. It represents message N
of the 4-way handshake, having a replay counter of r, and
with the given nonce (if present). All parameters after the
semicolon are stored in the key data field, and hence are
encrypted using the PTK.

3 Handling Cryptographic Operations

In this Section we show how to efficiently simulate cryp-
tographic primitives during symbolic execution. Build-
ing on top of this, we also present a technique to detect
misuse of legacy cryptographic primitives.



3.1 Simulating Cryptographic Primitives
Our first goal is to efficiently perform symbolic execution
of security protocol implementation, in other words, of
protocols that use cryptographic primitives. Consider for
instance the following typical code snippet:

1 def handle_packet(session, packet):

2 # Verify authenticity and decrypt packet

3 data = aead_decrypt(session.key, packet)

4 if data == None: return

5

6 if data[0] == COMMAND: process_command(payload)

7 # Continue processing all payload types ...

Here the receiver first verifies and decrypts the incoming
packet. If successful, the packet’s payload is parsed and
processed. When using traditional symbolic execution to
analyse this code, and marking the packet as symbolic,
a complex symbolic expression will be assigned to the
decrypted data variable (in a sense this is what encryp-
tion is designed to do). A consequence of this is that any
evaluations on the decrypted payload result in complex
queries to the SMT solver. These queries are either slow,
or cannot be answered in reasonable time. For example,
when using KLEE to symbolically execute ChaCha20,
the resulting SMT queries took several seconds to com-
plete. Though this is not very slow, other encryption al-
gorithms, such as AES in either counter or CBC mode,
resulted in significantly slower queries. Moreover, when
symbolically executing RC4, it took too long to generate
the symbolic expression of the decrypted data variable.
All combined, this means that in practice the input pro-
cessing code will not be fully explored, or may not even
be reached at all. This is problematic, because many vul-
nerabilities are present precisely at locations where (de-
crypted) input is parsed and processed [36].

To enable efficient symbolic execution of code that
employs cryptographic primitives, we will simulate their
behaviour, and thereby avoid generating complex sym-
bolic symbolic expressions. In particular, we will sim-
ulate encryption, decryption, and hash functions under
the Dolev-Yao model [20]. That is, we assume crypto-
graphic primitives are perfect and unbreakable.

To simulate decryption, we treat the decrypted output
of a cryptographic primitive as a fresh (unconstrained)
symbolic variable. We also record the relationship be-
tween the symbolic input, and the new symbolic output.
This will allow us to determine the source of symbolic
variables representing decrypted data. More precisely,
after symbolic execution completed or was halted, the
recorded relationships can be used to manually construct
ciphertext that decrypts to the desired (concrete) plain-
text. Although automatically constructing such cipher-
texts should be possible, our tool does not support this
currently. More importantly, since the decrypted output
is a fresh symbolic variable, it can now easily be ana-

lyzed without resulting in complex queries to the SMT
solver. Encryption is simulated in an analogous manner.

We employ a similar approach to simulate hash func-
tions, by treating the output (i.e. the digest) as a fresh
symbolic variable. As a result, complex SMT queries are
avoided when the output of a hash function is compared
to another (concrete or symbolic) variable. Again we
record the relationship between the fresh symbolic vari-
able representing the output, and the inputs of the hash
function. Similarly, Hash-based Message Authentication
Codes (HMACs) can also be simulated by treating the
output as a fresh symbolic variable, and recording that
this new variable is the output of an HMAC primitive.

Primitives that combine authentication and encryption
(i.e. authenticated encryption) can be simulated in one
step, similar to how encryption and decryption is simu-
lated. For instance, the primitive aead decrypt in our
example code is simulated by treating data as a fresh
symbolic variable, and recording that the new symbolic
variable was the result of applying the authenticated de-
cryption primitive to the symbolic packet variable.

3.2 Detecting Misuse of Legacy Crypto

Several protocols still support older cryptographic prim-
itives for backwards compatibility. One common exam-
ple is that authentication and encryption is provided by
two different primitives. For example, encryption may
be done using RC4, and authentication using an HMAC.
If for some reason the implementation does not properly
combine these primitives, it may be vulnerable to attacks.

We show how to detect two common misuses of cryp-
tographic primitives. First, we can detect if an authenti-
cation tag (e.g. the output of an HMAC) is not securely
compared to its expected value. Second, we can detect
if there are code paths were data is decrypted but not au-
thenticated.

To detect if an authentication tag is not securely com-
pared to its expected value, we search for all code paths
where only a few bytes of the digest are in the path con-
straint. This indicates that either the digest was trun-
cated, or that it is being compared to its expected value
using a timing-unsafe memory comparison. Both cases
indicate the presence of a vulnerability, where the adver-
sary can abuse timing information to guess or determine
valid authentication tags.

To detect if data is decrypted but not authenticated,
we first isolate code paths where such decrypted data in-
fluences the behaviour of the implementation. This is
done by seeing if the output of an unauthenticated de-
cryption primitive occurs either in the path constraint, or
in the payload of a transmitted packet. In a sense, we
use the fresh symbolic variables created to simulate cryp-
tographic primitives as an information flow taint. Note



that, if for some reason the decrypted data is not pro-
cessed, there is no risk, since we assume the decryption
primitive itself does not leak any information. For ev-
ery individual code path and decrypted data, we check if
there is a corresponding call to an authentication primi-
tive (e.g. an HMAC). More precisely, it must hold that:

1. Either the full ciphertext, or the decrypted data, is
used as an input of an authentication primitive.

2. The output digest of the authentication primitive
must be fully present in the path constraint.

The first condition handles both encrypt-then-mac and
mac-then-encrypt constructions, and assures that all de-
crypted bytes are authenticated. The second condition
assures that the digest is correctly verified. If these con-
ditions are not met, we know that decrypted but unau-
thenticated data influences the behaviour of the program,
which in practice might lead to decryption oracles.

3.3 Implementation
We implemented our extensions on top of the KLEE
symbolic execution engine [10], and this code is avail-
able for download [1]. In particular, we first extended
KLEE with an operation to record relationships between
two (possibly symbolic) variables. Then we imple-
mented a library that can be used to simulate authenti-
cated and non-authenticated decryption, and that simu-
lates hash and HMAC functions. Decryption is simulated
by marking the output buffer as a fresh symbolic variable
using klee make symbolic, and recording the relation-
ship between the input and output as being the result of
an (authenticated) decryption primitive. Hashing primi-
tives are simulated similarly: the output is marked as a
fresh symbolic variable, and a relationship is recorded
between the input of the hash function and its output.

4 Analyzing the 4-way Handshake

In this Section we explain how we applied our modified
symbolic execution technique to three client-side imple-
mentations of the 4-way handshake.

4.1 Isolating the 4-way Handshake
Symbolically analyzing the 4-way handshake is a chal-
lenging use case because there are, to the best of our
knowledge, no implementations that isolate the hand-
shake code in a separate library. In contrast, other proto-
cols such as TLS are generally implemented in a stand-
alone library that isolates the protocol code from other
aspects of a program. This makes it harder to symboli-
cally execute implementations of the 4-way handshake,

since we cannot simply initialize a library, and then feed
it symbolic packets as input. Instead, we have to either
symbolically execute the full client implementation, in-
cluding its wireless stack, or manually isolate the 4-way
handshake code into a separate library.

The first 4-way handshake implementation we inves-
tigated is the one contained in Intel’s iwd deamon. This
is a fairly new wireless daemon, designed to run on em-
bedded devices [30]. Fortunately, symbolically execut-
ing the 4-way handshake in this case is straightforward.
We can base ourselves on unit tests that initialize relevant
parts of the client, and then tests the 4-way handshake as
if it was isolated in a separate library. That is, we take an
existing unit test, provide symbolic instead of concrete
inputs, and then replace all cryptographic primitives with
functions that symbolically simulate their behaviour.

The second client we studied is wpa supplicant, which
is the de facto Wi-Fi client on Linux and Android. Sym-
bolically executing its 4-way handshake code is non-
trivial. One option is to execute the full wpa supplicant
client under KLEE, however, this requires the simula-
tion of large parts of the 802.11 netlink kernel interface.
This would mean writing a library that symbolically sim-
ulates netlink API calls such as network interface config-
uration, network scanning, wireless station management,
and so on. A more practical option is inspired by the
success of analyzing iwd. In particular, we opted to first
write test cases that initialize wpa supplicant and test the
4-way handshake using concrete inputs. Once these unit
tests were working, we used them as a basis for sym-
bolically executing the 4-way handshake. This approach
also has the advantage that it now becomes easier to ana-
lyze the 4-way handshake of wpa supplicant using other
tools. Indeed, other tools can now use our unit test as a
basis to analyze the handshake without having to simu-
late or handle the 802.11 netlink kernel interface.

The third implementation we tested is contained in
the kernel driver of MediaTek’s Wi-Fi chips. Note that
this driver is commonly used in routers, access points,
and wireless repeaters. Given that the 4-way handshake
is implemented in a kernel driver, it is again non-trivial
to symbolically execute it. Nevertheless, similar to iwd
and wpa supplicant, we managed to isolate relevant code
and write unit tests for it. That is, we first wrote a user-
land program that simulates kernel functions used by the
driver, initializes global structures, and is then able to call
the 4-way handshake code using concrete inputs. Once
this worked, all that was required was changing the input
from concrete packets to symbolic ones.

4.2 Constraining Information Elements

The key data field of 4-way handshake messages is en-
coded using 〈t, `,v〉 triples. Here t represents the type,



Listing 1: Instructions executed by iwd’s decrypt func-
tion when AES unwrap is used. Note that this is a sim-
plified overview: iwd’s real function is more complex.

1 uint8_t *eapol_decrypt_key_data(const uint8_t *kek,

2 struct eapol_key *frame, size_t *decrypted_size)

3 {

4 size_t key_data_len = ntohs(frame->key_data_len);

5 const uint8_t *key_data = frame->key_data;

6

7 size_t expected_len = key_data_len - 8;

8 uint8_t *buf = l_new(uint8_t, expected_len);

9

10 if (key_data_len < 24 || key_data_len % 8)

11 return NULL;

12 if (!aes_unwrap(kek, key_data, key_data_len, buf))

13 return NULL;

14

15 return buf;

16 }

and ` denotes the length of the value v in bytes. Hence,
these are commonly called type-length-value triplets,
and in the 802.11 standard they are called Information
Elements (IEs). Certain types, such the Key Data cryp-
tographic Encapsulation (KDE), have values that are fur-
ther subdivided into their own type-length-value triplets.

When marking the whole key data field as symbolic,
this causes a huge state explosion. For example, if there
are n supported types, they can occur in n! different or-
ders. Additionally, each type has a symbolic length and
value, causing additional state explosions.

We avoid state explosions during the parsing of the key
data field by constraining the structure of the information
elements (i.e. the type-length-value triplets). This is done
by assigning concrete values to the fields t and `, and
requiring all types to occur in a fixed order. Concrete
values for t and ` are derived from the 802.11 standard.
Currently we support the two types required by WPA2,
namely the RSN element, and the KDE element which
contains the current group key. By supporting only these
two elements, we indirectly also constrain the length of
the key data field, and therefore also constrain the total
length of handshake messages.

5 Discovered Vulnerabilities

In this section we first discuss common programming
mistakes that were discovered, and then we discuss mis-
use of cryptographic primitives. We also explain in detail
whether and how all vulnerabilities can be exploited.

5.1 Denial-of-Service Attacks
Against Intel’s iwd daemon we discovered a denial-of-
service attack. The vulnerability is located in the func-

Listing 2: Simplified code of MediaTek’s function that
search for the group key in the key data of message 3,
and subsequently installs the extracted group key.

1 #define MAX_LEN_GTK 32

2 #define LEN_WEP64 5

3

4 BOOLEAN RTMPParseEapolKeyData(UCHAR *pKeyData,

5 UCHAR KeyDataLen, UCHAR MsgType, BOOLEAN bWPA2)

6 {

7 UCHAR GTK[MAX_LEN_GTK];

8

9 if (bWPA2 && (MsgType == EAPOL_PAIR_MSG_3 ||

10 MsgType == EAPOL_GROUP_MSG_1))

11 {

12 // Code locating GTK_KDE is removed for brevity

13 GTK_KDE *pKdeGtk = (GTK_KDE*)pKDE->octet;

14 UCHAR GTKLEN = pKDE->Len - 6;

15

16 if (GTKLEN < LEN_WEP64)

17 return FALSE;

18

19 NdisMoveMemory(GTK, pKdeGtk->GTK, GTKLEN);

20 }

21 else if (!bWPA2 && MsgType == EAPOL_GROUP_MSG_1) {

22 NdisMoveMemory(GTK, pKeyData, KeyDataLen);

23 }

24

25 APCliInstallSharedKey(GTK, GTKLEN);

26 return TRUE;

27 }

tion eapol decrypt key data, which is shown in List-
ing 1. The root cause of the flaw is on line 7: when the
length of the key data field is smaller than 8, the unsigned
variable expected len will overflow to a large positive
number. This causes the memory allocation on the next
line to fail, which automatically aborts the program. In
case the length of the key data field equals 8, l new will
be called to allocate zero bytes. This causes it to return
NULL, resulting in NULL-deference, causing the program
to terminate. Although there is a length check on line 10,
this check is performed too late. We tested both attack
scenario’s in practice against version 0.3 of iwd. This
confirmed our predictions, meaning an attacker can in-
deed exploit the integer underflow on line 7 as a denial-
of-service attack. At the time of writing the vulnerability
had been patched [33], but was not yet assigned a Com-
mon Vulnerabilities and Exposures (CVE) identifier.

5.2 Memory Corruption Vulnerabilities

Two stack-based buffer overflows were discovered in
MediaTek’s implementation of the 4-way handshake.
They were assigned the Common Vulnerabilities and Ex-
posures (CVE) identifier CVE-2018-14525. Both over-
flows occur in the function RTMPParseEapolKeyData,
which parses the key data field of handshake messages.



Listing 2 contains a simplified version of the func-
tion. First, if WPA2 is used, the function searches for
the KDE information element containing the group key.
Once found, its group key is copied to the stack vari-
able GTK (see line 19). Unfortunately, it is not checked
whether the length of the group key is smaller or equal
to MAX LEN GTK. Second, when the older WPA variant is
used, the key data field contains the group key as-is. This
key is copied to the stack on line 22. However, again
there is no check to assure there is enough space to save
the group key.

An attacker can exploit these stack-based buffer over-
flows by setting up a malicious WPA or WPA2 network,
and tricking victims into connecting to it. During the
4-way handshake the malicious AP then sends a mes-
sage 3 that triggers the buffer overflow. When using
WPA this is accomplished with a large key data field,
and when using WPA2 this is done by including a KDE
element containing a large group key. Given that Media-
Tek implements the 4-way handshake in a kernel driver,
successfully exploiting the buffer overflow results in full
control over the victim’s device.

We confirmed the vulnerability in practice against an
Asus RT-AC51U router that operated as a repeater. After
notifying MediaTek, they also confirmed the vulnerabil-
ity, and were preparing a patch.

5.3 Timing Side-Channels

Our symbolic execution technique also revealed timing
side-channels in both iwd and MediaTek’s 4-way hand-
shake. In particular, both use the timing sensitive memcmp
function to compare the expected HMAC output with
the received one. We conjecture that exploiting these
side-channels is challenging in practice. This is because
memcmp compares several bytes at once on most plat-
forms, and even if it compares bytes one-by-one, the re-
sulting time differences are hard to measure over a net-
work [35]. Nevertheless, these details depend on the type
of platform that the client is running on, and therefore we
do treat these timing side-channels as vulnerabilities.

We remark that wpa supplicant is not affected by tim-
ing attacks, because it uses its own timing-safe variant of
memcmp called os memcmp const.

5.4 Decryption Oracle

We found a decryption oracle in wpa supplicant, where
the behaviour of the client is influenced by decrypted
but unauthenticated data. This vulnerability has been
assigned the identifier CVE-2018-14526. Listing 3 il-
lustrates the root cause of the vulnerability. First, on
line 6 the authenticity of the frame is verified when the

Listing 3: Function in wpa supplicant that handles in-
coming EAPOL-Key frames. Here the key data field may
be decrypted without first checking its authenticity.

1 int wpa_sm_rx_eapol(...)

2 {

3 // Code validing other fields is skipped

4

5 if ((key_info & WPA_KEY_INFO_MIC) && !peerkey &&

6 wpa_supplicant_verify_eapol_key_mic(...))

7 goto out;

8

9 if ((key_info & WPA_KEY_INFO_ENCR_KEY_DATA) &&

10 sm->proto == WPA_PROTO_RSN)

11 if (wpa_supplicant_decrypt_key_data(...))

12 goto out;

13

14 // Some code is skipped for brevity

15 if (key_info & WPA_KEY_INFO_MIC)

16 wpa_supplicant_process_3_of_4(...);

17 else

18 wpa_supplicant_process_1_of_4(...);

19 }

MIC flag is set in the key information field. Then it de-
crypts the key data field on line 11 if both the encrypted
flag is set, and if WPA2 is used, i.e., when sm->proto

equals WPA PROTO RSN. Combined, when setting the En-
cryption flag but not the MIC flag, the client will decrypt
the key data field without first verifying the authentic-
ity of the frame. The function then checks whether the
incoming frame represents message 1 or 3 of the 4-way
handshake, and continues to process it further.

When processing either message 1 or 3, and using
WPA2, the (possibly decrypted) key data field is parsed
using the function shown in Listing 4. This function
parses and validates the type-length-value information
elements contained in the key data field. Important for us
is that, depending on the content of the data, parsing may
fail (see line 13-14). When parsing fails, the client aborts
the handshake and disconnects from the network. When
parsing succeeds, it continues with processing the frame,
and replies with the next handshake message if all other
checks are successful. We will abuse this difference in
behaviour as a side-channel to recover encrypted infor-
mation. More precisely, our goal is to decrypt the group
key that the AP transports to the client in message 3 of
the handshake. We will accomplish this by manipulat-
ing the encrypted key data field, and deriving plaintext
values based on response(s) of the client.

Two conditions must be met before we can launch a
decryption oracle attack. First, our attack is only possi-
ble if WPA2 is used. When WPA is used instead, the key
data field is not decrypted due to the check on line 10
in Listing 3. Second, the client must select TKIP as the
pairwise cipher. Otherwise, if the client selects CCMP,



Listing 4: Function in wpa supplicant that parses the in-
formation elements in the (decrypted) key data field.

1 /** Returns non-zero value on parsing failure */

2 int wpa_supplicant_parse_ies(buf, len, ie)

3 {

4 const u8 *pos, *end;

5 for (pos = buf, end = pos + len; end - pos > 1;

6 pos += 2 + pos[1]) {

7 /* Ignore padding */

8 if (pos[0] == 0xdd && ((pos == buf + len - 1)

9 || pos[1] == 0))

10 break;

11

12 /* Key Data underflow */

13 if (2 + pos[1] > end - pos)

14 return -1;

15

16 if (*pos == WLAN_EID_RSN) {

17 ie->rsn_ie = pos;

18 ie->rsn_ie_len = pos[1] + 2;

19 } else if (*pos == WLAN_EID_MOBILITY_DOMAIN)

20 // Code removed for brevity

21 }

22

23 return 0;

24 }

the AES wrap algorithm is used to protect the key data
field (recall Section 2). Since AES wrap includes its
own authenticity check [43], we will not able to ma-
nipulate the decrypted plaintext to construct a decryp-
tion oracle. In contrast, when the client selects TKIP, the
key data field is encrypted using the RC4 stream cipher.
This means an adversary can flip bits in the decrypted
plaintext, by flipping the corresponding bit in the cipher-
text. Interestingly, both conditions are automatically ful-
filled when a Wi-Fi network uses WPA2 and only sup-
ports TKIP. After all, in that case the client must use
WPA2 with TKIP. Based on a wardrive capture made in
2016 [48], roughly 20% of protected Wi-Fi networks use
this configuration. Hence, in practice the decryption ora-
cle can be exploited against 20% of protected networks.

Before we can launch our attack, and decrypt the
group key contained in a captured message 3, we must
let the client successfully complete the handshake. Oth-
erwise, the client will refuse to decrypt the key data field,
because a session key has not yet been negotiated. Once
the client completed the 4-way handshake, an adversary
can decrypt the group key transported in message 3 as
follows. First, the adversary clears the MIC flag in the
captured message 3. As a result, wpa supplicant will
no longer check the authenticity of the frame, but will
still decrypt the key data field since the Encrpyted flag
is still set. The modified frame will now be treated as
a message 1 (see line 15 in Listing 3). The adversary
also manipulates the encrypted key data field, in order to

221 38 x0 . . . x37

type length GTK

(a) Original KDE information element sent by the AP.

221 30 x0 . . . x29 x30 x31 x32 . . . x37

type length GTK’ type length

(b) Recovering the value of x31. Parsing only succeeds if x31 is
zero. The trailing bytes x32 . . . x37 are removed from the frame
before sending it to the victim.

Figure 3: Recovering the bytes x0 . . . x37 by shortening
the KDE IE, and introducing an empty IE at the end. A
concrete example recovering byte x31 is shown in the sec-
ond figure, which can be generalized to recover any byte.

construct a decryption oracle that will reveal the plain-
text byte-by-byte. In particular, the length field of the
KDE element which contains the group key is reduced,
causing the next type-length-value triplet to start in the
middle of the group key (see Figure 3). We only reserve
two bytes for this new type-length-value triplet, and dis-
card any bytes after it. This effectively creates an empty
information element. Parsing the decrypted key data now
only succeeds if the length field of this newly created in-
formation element equals zero. This enables us to guess
the plaintext byte value at the location of the length field.
In particular, we guess the value of the group key at this
location, and use the guessed value to flip bits in the ci-
phertext to set the length field to zero. If the guess was
correct, parsing succeeds, and the client replies with a
new message 2. If the guess was wrong, parsing fails,
and the client disconnects from the network. Since the
group key remains identical between different connec-
tions, the adversary can continue with guessing and try-
ing the next value, even when the key data field is en-
crypted under a new session key. Once the group key has
been fully recovered, it can be used to inject both broad-
cast and unicast traffic, and can even be used to decrypt
unicast and broadcast traffic [49].

We confirmed the vulnerability against version 2.6 of
wpa supplicant on Debian 8 (“Jessie”), using the virtual
mac80211 hwsim Wi-Fi driver [1]. Against this configu-
ration, an adversary can guess a plaintext value every 14
seconds. Hence, decrypting a 16-byte group key would
take 8 hours on average. To speed up the decryption pro-
cess, an adversary can attack multiple clients in paral-
lel. For instance, when attacking 16 clients in parallel,
it takes less than 30 minutes to decrypt a 16-byte group
key. Finally, we remark that the attack is only possible if
the client accepts plaintext EAPOL-Key messages when
a PTK has already been installed. Previous work has
shown that several platforms meet this requirement [50].



We have notified wpa supplicant of the vulnerability.
It has been assigned the identifier CVE-2018-14526, and
a patch is being worked on.

5.5 Flawed Decryption Primitives
Finally, two bugs were discovered manually, before sym-
bolically executing any code. That is, when preparing
MediaTek’s cryptographic function AES_Key_Unwrap

for symbolic execution, which implements the AES un-
wrap algorithm, we observed that it did not check the
resulting Initialization Vector (IV). Normally this IV
must equal 0xA6A6A6A6A6A6A6A6 after decryption, oth-
erwise the decrypted data is deemed inauthentic [43].
However, the IV is never checked, meaning decrypted
data is always treated as authentic.

Additionally, the AES unwrap function also does not
check whether the ciphertext length is a multiple of 8
bytes. This means that if the length is not divisible by 8,
trailing data smaller than 8 bytes is copied as-is to the
output buffer. An adversary can abuse this to inject up
to 7 plaintext bytes at the end of the ciphertext.

Recall from Section 2 that all 4-way handshake mes-
sages, except message 1, are also protected by a MIC
over the full EAPOL-Key frame. This means an attacker
would first have to bypass this MIC check, before they
can exploit MediaTek’s vulnerable AES unwrap imple-
mentation. Fortunately, this does not appear possible.
This means that MediaTek’s flawed AES unwrap prim-
itive, at least when used in the 4-way handshake, is not
exploitable in practice. Nevertheless, we notified Media-
Tek about these bugs, and they have reportedly patched
them in the meantime.

6 Related Work

Several techniques exist to evaluate the correctness of
network protocols. First, a protocol design can be for-
mally modelled and its properties can be proven [8, 29].
Additionally, it is possible to create a reference imple-
mentation of the protocol in a custom language, and
then prove security properties about these implementa-
tions [7, 6, 25]. The downside of this approach is that
existing protocol implementations cannot be verified in
this manner.

Model checking has also been used to verify proper-
ties of a protocol [21, 32, 37]. One interesting exam-
ple is ASPIER, which combines software model check-
ing with standard protocol security models to analyze
properties of bounded instances of the OpenSSL hand-
shake [15]. Another tool that analyzes implementations
is CSur [28]. It models the protocol using Horn clauses,
to subsequently prove certain properties. Dupressoir et
al. [22] used VCC to prove memory safety and security

properties of protocols written in C. Finally, static analy-
sis can also be used to check the correctness of concrete
implementations or configurations [47, 52, 24].

Symbolic execution is a general technique to discover
bugs in programs [34]. Several modern tools implement
this technique, examples are DART [26], KLEE [10], and
SAGE [27]. Symbolic execution has two main limita-
tions. First, certain queries to the SMT solver can be
slow to practically unsolvable. Second, a state explo-
sion might occur when analysing large programs. Aizat-
ulin et al. [3, 4] combine symbolic execution with proof
techniques, by using it to extract a ProVerif model from
a protocol implementation written in C. Unfortunately,
their technique is limited to protocols without branching,
because it only considers a single code path. Chau et
al. [16] use symbolic execution to test X.509 parsers in
TLS protocols. Unfortunately, only the X.509 parser was
symbolically analysed, and the implementation logic of
the TLS protocol itself was not considered. Our tech-
nique to constrain information elements is similar to the
one employed by Chau et al. when symbolically execut-
ing X.509 certificate parsers [16]. Finally, Corin et al.
simulate cryptographic primitives during symbolic ex-
ecution using rewriting rules [18]. However, their ap-
proach does not enable efficient analysis of code that
processes decrypted data. In contrast, our approach does
allow this.

The 4-way handshake has been extensively studied.
First, He et al. proved the soundness of its design [29].
Nevertheless, it was recently shown vulnerable to key re-
installation attacks [50]. The handshake was also found
to be vulnerable to certain downgrade attacks [49], and
it is vulnerable to dictionary attacks [38]. Researchers
also performed model-based testing of the 4-way hand-
shake [51], and used state machine learning to discover
various vulnerabilities in implementations of the 4-way
handshake [46].

7 Conclusion

We successfully applied symbolic execution to client-
side implementations of the 4-way handshake of WPA2,
by simulating cryptographic primitives, and constraining
parts of the symbolic input to prevent excessive state ex-
plosions. This revealed memory corruptions in code that
processes decrypted data, uncovered insecure implemen-
tations of cryptographic primitives, and even revealed a
decryption oracle. We consider this surprising, as our
current symbolic execution technique is quite straightfor-
ward, yet still revealed vulnerabilities in all three tested
implementations. Inspired by these results, we consider
it interesting future work to further extend and improve
our techniques. We also believe it is worthwhile to apply
them on other security protocol implementations.
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