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Symbolic Execution
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void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

Mark data as symbolic

Symbolic branch



Symbolic Execution
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data[0] != 1

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

data[0] == 1

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}



Symbolic Execution
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data[0] == 1data[0] != 1

Continue execution:

if (data[1] != len)

PC = Path 

Constraint



Symbolic Execution
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data[0] != 1

Continue 

execution

data[0] == 1 &&
data[1] != len

data[0] == 1 &&
data[1] == len



Symbolic Execution
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Can data[2] equal zero 

under the current PC?

data[0] == 1 &&
data[1] == len

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...



Symbolic Execution
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Can data[2] equal zero 

under the current PC?

Yes! Bug detected!

data[0] == 1 &&
data[1] == len

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...



Implementations

Practical limitations:

› 𝑝𝑎𝑡ℎ𝑠 = 2|𝑖𝑓−𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠|

› Infinite-length paths

› SMT query complexity
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We build upon KLEE

› Works on LLVM bytecode

› Actively maintained
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Motivating Example
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void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

Mark data as symbolic



Motivating Example
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void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

Mark data as symbolic

Summarize crypto algo.

(time consuming)

Analyze crypto algo. 

(time consuming)

Won’t reach this code!



Efficiently handling decryption?

Decrypted output

=

fresh symbolic variable
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Example
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void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

create fresh 

symbolic variable

Normal analysis

Mark data as symbolic

 Can now analyze code 

that parses decrypted data



Other Applications

Handling hash functions

› Output = fresh symbolic variable

› Also works for HMACs (Message Authentication Codes)
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Tracking use of crypto primitives?

› Recording relationship between input & output

› Treating fresh variable as information flow taint



Detecting Crypto Misuse

Timing side-channels

› ∀(𝑝𝑎𝑡ℎ𝑠): all bytes of MAC in path constraint?

› If not: comparison exits on first difference
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Decryption oracles

› Behavior depends on unauth. decrypted data

› Decrypt data is in path constraint, but not in MAC
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The 4-way handshake

Used to connect to any protected Wi-Fi network
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Negotiates fresh PTK: 

pairwise transient keyMutual authentication



4-way handshake (simplified)
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4-way handshake (simplified)
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4-way handshake (simplified)
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PTK = Combine(shared secret,

ANonce, SNonce)



4-way handshake (simplified)
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4-way handshake (simplified)
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Encrypted with PTK



4-way handshake (simplified)
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4-way handshake (simplified)
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4-way handshake (simplified)

27

Authenticated 

with a MAC



We focus on the client

Symbolic execution of

28

How to get these working under KLEE?

Intel’s iwd deamon wpa_supplicant kernel driver



Intel’s iwd

Avoid running full program under KLEE

› Would need to model Wi-Fi stack symbolically

Our approach

› iwd contains unit test for the 4-way handshake

› Reuse initialization code of unit test!

› Symbolically execute only receive function
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wpa_supplicant

Unit test uses virtual hardware and runs full AP

› Still need to simulate Wi-Fi stack…

Alternative approach:

› Write unit test that isolates 4-way handshake like iwd

› Then symbolically execute receive function!

› Need to modify code of wpa_supplicant (non-trivial)
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MediaTek’s Driver

No unit tests & it’s a Linux driver 

› Symbolically executing the Linux kernel?!

Inspired by previous cases

› Write unit test & simulate used kernel functions in userspace

› Verify extracted code is correctly simulated in userspace!
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Not all our unit tests are created equally
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https://github.com/vanhoefm/woot2018
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Discovered Bugs I
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Timing side-channels

› Authentication tag not checked in constant time

› MediaTek and iwd are vulnerable

Denial-of-service in iwd

› Caused by integer underflow

› Leads to huge malloc that fails



Discovered Bugs II

Flawed AES unwrap crypto primitive

› Also in MediaTek’s kernel driver

› Manually discovered
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Buffer overflow in MediaTek kernel driver

› Occurs when copying the group key

› May lead to remote code execution



Decryption oracle in wpa_supplicant

 Decrypt group key (GTK) in Message 3 (Msg3)
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Decryption oracle:

› Doesn’t check authenticity of 

malformed handshake message

› But does decrypt and process data



Decryption oracle in wpa_supplicant II

Msg3’: decrypted using RC4, but not authenticated
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header 221 36 𝒙𝟎…𝒙𝟑𝟓 𝒙𝟑𝟔 𝒙𝟑𝟕

Type Length GTK’ Type’ Length’

header 221 38 𝒙𝟎…𝒙𝟑𝟕

Type Length GTK

 Parsing only succeeds if  𝑥37 is zero



Future work

Short-term

› Efficiently simulate reception of multiple packets

› If 1st packet doesn’t affect state, stop exploring this path

Long-term

› Extract packet formats and state machine

› Verify basic properties of protocol
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Conclusion

› Symbolic execution of protocols

› Simple simulation of crypto

› Interesting future work
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As a final note…
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Questions?

Thank you!


