
Symbolic Execution of Security Protocol

Impl.: Handling Cryptographic Primitives

Mathy Vanhoef — @vanhoefm

USENIX WOOT, Baltimore, US, 14 August 2018

Overview

2

Symbolic Execution

Handling Crypto

4-way handshake

Results

Overview

3

Symbolic Execution

Handling Crypto

4-way handshake

Results

Symbolic Execution

4

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

Mark data as symbolic

Symbolic branch

Symbolic Execution

5

data[0] != 1

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

data[0] == 1

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

Symbolic Execution

6

data[0] == 1data[0] != 1

Continue execution:

if (data[1] != len)

PC = Path

Constraint

Symbolic Execution

7

data[0] != 1

Continue

execution

data[0] == 1 &&
data[1] != len

data[0] == 1 &&
data[1] == len

Symbolic Execution

8

Can data[2] equal zero

under the current PC?

data[0] == 1 &&
data[1] == len

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

Symbolic Execution

9

Can data[2] equal zero

under the current PC?

Yes! Bug detected!

data[0] == 1 &&
data[1] == len

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

Implementations

Practical limitations:

› 𝑝𝑎𝑡ℎ𝑠 = 2|𝑖𝑓−𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠|

› Infinite-length paths

› SMT query complexity

10

We build upon KLEE

› Works on LLVM bytecode

› Actively maintained

Overview

11

Symbolic Execution

Handling Crypto

4-way handshake

Results

Motivating Example

12

void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

Mark data as symbolic

Motivating Example

13

void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

Mark data as symbolic

Summarize crypto algo.

(time consuming)

Analyze crypto algo.

(time consuming)

Won’t reach this code!

Efficiently handling decryption?

Decrypted output

=

fresh symbolic variable

14

Example

15

void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

create fresh

symbolic variable

Normal analysis

Mark data as symbolic

 Can now analyze code

that parses decrypted data

Other Applications

Handling hash functions

› Output = fresh symbolic variable

› Also works for HMACs (Message Authentication Codes)

16

Tracking use of crypto primitives?

› Recording relationship between input & output

› Treating fresh variable as information flow taint

Detecting Crypto Misuse

Timing side-channels

› ∀(𝑝𝑎𝑡ℎ𝑠): all bytes of MAC in path constraint?

› If not: comparison exits on first difference

17

Decryption oracles

› Behavior depends on unauth. decrypted data

› Decrypt data is in path constraint, but not in MAC

Overview

18

Symbolic Execution

Handling Crypto

4-way handshake

Results

The 4-way handshake

Used to connect to any protected Wi-Fi network

19

Negotiates fresh PTK:

pairwise transient keyMutual authentication

4-way handshake (simplified)

20

4-way handshake (simplified)

21

4-way handshake (simplified)

22

PTK = Combine(shared secret,

ANonce, SNonce)

4-way handshake (simplified)

23

4-way handshake (simplified)

24

Encrypted with PTK

4-way handshake (simplified)

25

4-way handshake (simplified)

26

4-way handshake (simplified)

27

Authenticated

with a MAC

We focus on the client

Symbolic execution of

28

How to get these working under KLEE?

Intel’s iwd deamon wpa_supplicant kernel driver

Intel’s iwd

Avoid running full program under KLEE

› Would need to model Wi-Fi stack symbolically

Our approach

› iwd contains unit test for the 4-way handshake

› Reuse initialization code of unit test!

› Symbolically execute only receive function

29

wpa_supplicant

Unit test uses virtual hardware and runs full AP

› Still need to simulate Wi-Fi stack…

Alternative approach:

› Write unit test that isolates 4-way handshake like iwd

› Then symbolically execute receive function!

› Need to modify code of wpa_supplicant (non-trivial)

30

MediaTek’s Driver

No unit tests & it’s a Linux driver

› Symbolically executing the Linux kernel?!

Inspired by previous cases

› Write unit test & simulate used kernel functions in userspace

› Verify extracted code is correctly simulated in userspace!

31

Not all our unit tests are created equally

32

https://github.com/vanhoefm/woot2018

Overview

33

Symbolic Execution

Handling Crypto

4-way handshake

Results

Discovered Bugs I

34

Timing side-channels

› Authentication tag not checked in constant time

› MediaTek and iwd are vulnerable

Denial-of-service in iwd

› Caused by integer underflow

› Leads to huge malloc that fails

Discovered Bugs II

Flawed AES unwrap crypto primitive

› Also in MediaTek’s kernel driver

› Manually discovered

35

Buffer overflow in MediaTek kernel driver

› Occurs when copying the group key

› May lead to remote code execution

Decryption oracle in wpa_supplicant

 Decrypt group key (GTK) in Message 3 (Msg3)

36

Decryption oracle:

› Doesn’t check authenticity of

malformed handshake message

› But does decrypt and process data

Decryption oracle in wpa_supplicant II

Msg3’: decrypted using RC4, but not authenticated

37

header 221 36 𝒙𝟎…𝒙𝟑𝟓 𝒙𝟑𝟔 𝒙𝟑𝟕

Type Length GTK’ Type’ Length’

header 221 38 𝒙𝟎…𝒙𝟑𝟕

Type Length GTK

 Parsing only succeeds if 𝑥37 is zero

Future work

Short-term

› Efficiently simulate reception of multiple packets

› If 1st packet doesn’t affect state, stop exploring this path

Long-term

› Extract packet formats and state machine

› Verify basic properties of protocol

38

Conclusion

› Symbolic execution of protocols

› Simple simulation of crypto

› Interesting future work

39

As a final note…

40

Questions?

Thank you!

