
DEMO: A Framework to Test and Fuzz Wi-Fi Devices
Domien Schepers

Northeastern University
Boston, Massachusetts, USA
schepers.d@northeastern.edu

Mathy Vanhoef
New York University Abu Dhabi

Abu Dhabi, UAE
mathy.vanhoef@nyu.edu

Aanjhan Ranganathan
Northeastern University

Boston, Massachusetts, USA
aanjhan@northeastern.edu

ABSTRACT
Over the years, numerous weaknesses have been identified in the
IEEE 802.11 standard and its implementations. In order to present
a proof-of-concept or demonstrate their impact in practice, re-
searchers are often required to implement entire procedures or
complex features from scratch (e.g., injecting encrypted frames
with customized header flags). In this paper, we present a frame-
work that allows researchers to more easily test and fuzz any device
(i.e., access points and clients). This framework enables one to, for
example, test hypothesis on new weaknesses, implement proof-
of-concepts, create testing suites, and automate experiments. Our
framework is implemented on top of the hostap user space daemon,
and includes a language in which complex test cases can be defined
(e.g., instructions to inject a sequence of user-modified frames into
the network). Notably, a test case can make use of the hostap control
interface, providing access to built-in features (e.g., authentication
procedures, retrieval of encryption keys) and allows users to create
customized hostap extensions.

CCS CONCEPTS
• Networks → Wireless access points, base stations and in-
frastructure; Mobile and wireless security.

KEYWORDS
IEEE 802.11, Wi-Fi, Framework, Security, Privacy
ACM Reference Format:
Domien Schepers, Mathy Vanhoef, and Aanjhan Ranganathan. 2021. DEMO:
A Framework to Test and Fuzz Wi-Fi Devices. In 14th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec ’21), June 28–
July 2, 2021, Abu Dhabi, United Arab Emirates. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3448300.3468261

1 INTRODUCTION
IEEE 802.11 (Wi-Fi) is an evolving set of standards providing wire-
less access to local area networks. Over the years, numerous weak-
nesses and vulnerabilities have been discovered in the wide variety
of security and privacy features offered by Wi-Fi. For example,
researchers identified key reinstallation attacks [9], security weak-
nesses in encryption protocols such as WPA-TKIP [5, 6] and the
Dragonfly handshake of WPA3 [10], and shown stealthy evil-twin
attacks against enterprise networks [1]. Furthermore, researchers
modeled the four-way handshake to identify weaknesses [7, 11],
inspected the impact of Wi-Fi Protected Setup (WPS) flaws [4], and

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates
© 2021 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 14th ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec ’21), June 28–July 2,
2021, Abu Dhabi, United Arab Emirates, https://doi.org/10.1145/3448300.3468261.

proposed numerous methods to enhance the security of Wi-Fi net-
works, for example, by presenting an extensive formal analysis of
the WPA2 protocol design [2]. In their experiments, researchers
are often required to implement complex features or entire proce-
dures from scratch (e.g., using Python and Scapy). For example, it
may be required to inject encrypted frames on a monitor interface
(requiring knowledge of cryptographic keys), set customized flags
in the header (often requiring one to bypass the driver), buffer or
discard specific frames, and more, all while supporting both clients
and access points. Instead of implementing this functionality from
scratch (e.g., using Scapy), it is often worthwhile to use existing
Wi-Fi daemons and leverage their built-in functionality. A popular
and well-known example for Linux-based computers is hostap, an
open implementation available under a BSD-license. Clients com-
monly install user space daemon software to connect to wireless
networks or to configure and run their own wireless access points.

We present a framework that is implemented on top of hostap,
and encompasses a language to define complex test cases which can
be executed automatically against any device. Our framework pro-
vides access to the hostap control interface, and as such test cases
can leverage existing built-in functionality. Since researchers can re-
use existing code, they are able to swiftly test and fuzz any device,
significantly reducing their efforts compared to an implementa-
tion from scratch. Furthermore, leveraging hostap has noticeable
benefits. For example, an access point will automatically transmit
beacon frames announcing the network, a client will not need to
scan for networks, and authentication algorithms can be reused al-
lowing test cases to be used against any network configuration (e.g.,
enterprise networks). Additionally, since the framework leverages
hostap it will automatically transmit acknowledgments to incoming
frames. As such, frames are acknowledged by the hardware without
delay, a benefit when building fuzz-testing tools.

Our framework supports researchers and enthusiasts who wish
to, for example, test hypothesis on new weaknesses, implement
proof-of-concepts, build fuzz-testing tools, create testing suites (e.g.,
test if a device is vulnerable to known attacks), or automate experi-
ments. Recently, researchers used the concept of our framework to
demonstrate a variety of fragmentation and aggregation attacks af-
fecting all protected Wi-Fi networks [8]. Their work demonstrates
the real-world usability and value of our framework. For example,
the researchers released a set of test cases to evaluate if a station is
vulnerable, enabling others to easily inspect their own devices [8].

2 FRAMEWORK
In this section, we present the various components that make up
our framework. An overview of our framework is given in Figure 1.

https://doi.org/10.1145/3448300.3468261
https://doi.org/10.1145/3448300.3468261


WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Domien Schepers, Mathy Vanhoef, and Aanjhan Ranganathan

hostap

Extension

Framework (Interpreter)

Test Cases

Wi-Fi Daemon Wi-Fi Framework

wpaspyEthernet
Interface

Monitor
Interface

Figure 1: Overview of the Wi-Fi Daemon and Framework
components and their respective communication interfaces.

Availability. Our framework and supporting documentation is
publicly available on Github 1. We provide tutorials on how to
extend the control interface of hostap as well as our own framework
and test case language, and share all test cases of our demonstration.

2.1 Implementation and Virtualization Support
Our framework is implemented in Python3 and makes use of Scapy,
a popular packet manipulation program. We provide support for
the most-commonly used user space daemon, hostap, using its latest
stable release (Version 2.9). Our framework can be used with any
physical hardware (e.g., Wi-Fi cards, Wi-Fi dongles) supporting vir-
tual interfaces and the injection of raw frames (i.e., monitor mode).
Additionally, our framework supports virtualizedWi-Fi radios since
Linux has a kernel module which can be used to simulate an ar-
bitrary number of WLAN radio interfaces (i.e., mac80211_hwsim).
As such, researchers do not require hands-on access to suitable
hardware, and are able to develop and run test cases through sim-
ulations preventing any real-world impact or radio interference.
Furthermore, our framework includes a tool to manage Linux-based
wireless network interfaces (e.g., to enable monitor mode) and sup-
ports custom hostap binaries and configuration files. Finally, we
provide a wrapper to run a stand-alone lightweight hostap daemon.

2.2 Definition and Features of a Test Case
Our framework supports a Python-based language to define test
cases, and can be easily extended to support user-specific needs.
Fundamentally, a test case defines a number of sequential actions,
which are executed upon the activation of their respective trigger.
Predefined actions include Inject, Receive, Function, Reconnect, and
more, offering a variety of features. Notably, Inject allows one to
inject plaintext as well as encrypted frames onto the monitor in-
terface. This allows one to modify the IEEE 802.11 header (e.g., to
manipulate header flags), which would otherwise not be possible
over the ethernet interface. Additionally, Function supports user-
defined functions which are executed at run-time (e.g., to request
connection-specific information), and Receive to receive frames
from the ethernet or monitor interface. Predefined triggers include
Associated, Connected, Disconnected, and more. Triggers ensure ac-
tions are executed only upon reaching a defined moment in the
life-cycle of a connection, and abstract away differences between a
client and an access point. For example, one can create a test where
1https://www.github.com/domienschepers/wifi-framework

where a frame is injected only after successfully establishing a con-
nection (i.e., after deriving fresh session keys), or when a client
initiates the authentication procedure with an access point.

Ethernet and Monitor Interface. Our framework supports both
the ethernet and monitor interface to receive and inject frames,
enriching the test case language. For example, at times it may be
convenient to use the daemon to encrypt and transmit a frame
(e.g., to send a ping request), alternatively, using the monitor in-
terface may be preferred since it gives more control (e.g., to set
customized header flags). Furthermore, when injecting a plaintext
frame over the virtual monitor interface, the kernel will (re)use the
packet queue of the managed client to transmit the frame, mean-
ing the injected frame will be automatically retransmitted if no
acknowledgment was received. Additionally, when testing a client,
the injected frame will be buffered by the Linux kernel in case the
client is asleep. As such, we increase the reliability of a test case
and reduce the occurrence of potential false negative results.

2.3 Extending the Daemon’s Control Interfaces
User space daemons such as hostap have control interfaces onwhich
commands can be executed (if enabled during compilation). Any
station, that is either an access point or client, has its own control
interface and respective set of commands. For example, a command
on the control interface of a client station is to disconnect from the
network. Using a Python-based communication wrapper named
wpaspy, we have direct access to the control interface, and are
able to issue commands. However, existing commands may be lim-
ited (e.g., they may not support the retrieval of all cryptographic
keys). In order to support the definition of complex test cases in
our framework, we implement extensions into the control inter-
faces, supporting additional commands. For example, we write a
command to extract the session’s temporal encryption key, since
it is needed to construct encrypted frames for injection over the
monitor interface. On our repository, we provide documentation on
how to enable and extend the control interfaces with customized
commands. Furthermore, we provide a patch file for the implemen-
tation of commonly used commands. As such our modifications are
transparent, and can be applied to already-deployed systems.

3 DEMONSTRATION
We demonstrate the strengths of our framework by creating two
distinct test cases, evaluating an access point as well as a client
station, thereby covering a wide range of research scenarios. First,
we define a test case which evaluates if a Wi-Fi PMF-enforced
access point is vulnerable to a deauthentication attack [3]. Second,
we evaluate if a client is vulnerable to key reinstallation attacks [9].

3.1 Wi-Fi PMF Deauthentication Vulnerability
The IEEE 802.11w amendment standardized Wi-Fi Protected Man-
agement Frames (PMF) and provides protection mechanisms for
management frames. For example, it prevents deauthentication
attacks in which an adversary forcibly disconnects clients from a
network. The Wi-Fi Alliance made Wi-Fi PMF part of certification
programs [12], and is mandatory in modern network configurations
such as WPA3. In 2019, vulnerabilities were identified in hostap
(CVE-2019-16275) and are resolved in its upcoming v2.10 release [3].

https://www.github.com/domienschepers/wifi-framework


DEMO: A Framework to Test and Fuzz Wi-Fi Devices WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

(a) Wi-Fi PMF Deauthentication Vulnerability. (b) All-Zero Key Reinstallation Vulnerability.

Figure 2: Example console output of the test cases presented in the demonstration of our framework.

Since manual patching is required, or the usage of the development
branch, some stations may still be vulnerable to the attack.

Test Case. In order to evaluate if an access point is vulnerable to
the deauthentication attack, we define a test case which operates
as a supplicant and implements CVE-2019-16275. That is, we must
send a plaintext association request to the access point, using a
broadcast sourceMAC address. As the first action, using a successful
connection as its trigger, we send a plaintext frame on the monitor
interface. If the access point is vulnerable, it replies with a PMF-
protected broadcast deauthentication frame, disconnecting all its
client stations. As a result, we can define a second action which
triggers when our station is disconnected from the network, and
if so, we know the attack was successful and the access point is
vulnerable. An example of a vulnerable station is given in Figure 2a.

3.2 All-Zero Key Reinstallation Vulnerability
Researches identified a number of key reinstallation attacks [9],
commonly known as KRACK attacks, in which an adversary abuses
design or implementation flaws in cryptographic protocols. These
weaknesses allow an adversary to reinstall an already-in-use key
and as a result decrypt network traffic. Depending on the network
configuration, the vulnerabilities may even be used to inject and
manipulate data. Notably, certain stations can be forced to install
an all-zero encryption key, making frames trivial to decipher.

Test Case. In order to evaluate if a client is vulnerable to the
installation of an all-zero pairwise encryption key, we define a
test case which operates as an authenticator and executes the key-
reinstallation attack. That is, we must resend the third message
of the four-way handshake. As the first action, using a successful
connection as its trigger, we invoke a user-defined function. In this
function, we use wpaspy to issue a command to the hostap control
interface, asking the access point to resend the third message of the
four-way handshake. Upon receipt of this message, a vulnerable
client will install an all-zero pairwise encryption key. We then
define an action which processes any frame received by the client
under test, and evaluate if a frame is encrypted with an all-zero
pairwise encryption key. Upon detection of such a frame, we have
verified that a client is vulnerable. An example is given in Figure 2b.

4 CONCLUSION
We presented a framework to swiftly test and fuzz Wi-Fi devices
by creating a language in which complex test cases can be defined.
Our framework leverages the control interface of the hostap user
space daemon, and uses and extends its built-in commands. As such,
researchers are no longer required to implement complex features or
procedures from scratch. Our framework allows researchers to test
hypothesis on newweaknesses, implement proof-of-concepts, build
fuzz-testing tools, create testing suits, or automate experiments.

REFERENCES
[1] Aldo Cassola, William K Robertson, Engin Kirda, and Guevara Noubir. 2013. A

Practical, Targeted, and Stealthy Attack Against WPA Enterprise Authentication.
In NDSS.

[2] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. 2020. A Formal Analysis of
IEEE 802.11’s WPA2: Countering the Kracks Caused by Cracking the Counters.
In 29th USENIX Security Symposium (USENIX Security 20). 1–17.

[3] Jouni Malinen. 2019. AP mode PMF disconnection protection bypass. Retrieved
14 Mar 2021 from https://w1.fi/security/2019-7/ap-mode-pmf-disconnection-
protection-bypass.txt

[4] Amirali Sanatinia, Sashank Narain, and Guevara Noubir. 2013. Wireless spreading
of WiFi APs infections using WPS flaws: An epidemiological and experimental
study. In 2013 IEEE Conference on Communications and Network Security (CNS).
IEEE, 430–437.

[5] Domien Schepers, Aanjhan Ranganathan, and Mathy Vanhoef. 2019. Breaking
WPA-TKIP Using Side-Channel Attacks. In Black Hat Europe Briefings, Location:
London, UK.

[6] Domien Schepers, Aanjhan Ranganathan, and Mathy Vanhoef. 2019. Practical
Side-Channel Attacks against WPA-TKIP. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security. 415–426.

[7] Chris McMahon Stone, Tom Chothia, and Joeri de Ruiter. 2018. Extending
automated protocol state learning for the 802.11 4-way handshake. In European
Symposium on Research in Computer Security. Springer, 325–345.

[8] Mathy Vanhoef. 2021. Fragment and Forge: Breaking Wi-Fi Through Frame
Aggregation and Fragmentation. In Proceedings of the 30th USENIX Security
Symposium. USENIX Association.

[9] Mathy Vanhoef and Frank Piessens. 2017. Key reinstallation attacks: Forcing
nonce reuse in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 1313–1328.

[10] Mathy Vanhoef and Eyal Ronen. 2020. Dragonblood: Analyzing the Dragonfly
Handshake of WPA3 and EAP-pwd. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 517–533.

[11] Mathy Vanhoef, Domien Schepers, and Frank Piessens. 2017. Discovering logical
vulnerabilities in the Wi-Fi handshake using model-based testing. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security.

[12] Wi-Fi Alliance. 2018. Wi-Fi Alliance introduces security enhancements. Retrieved
30 May 2020 from https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-
introduces-security-enhancements

https://w1.fi/security/2019-7/ap-mode-pmf-disconnection-protection-bypass.txt
https://w1.fi/security/2019-7/ap-mode-pmf-disconnection-protection-bypass.txt
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-security-enhancements

	Abstract
	1 Introduction
	2 Framework
	2.1 Implementation and Virtualization Support
	2.2 Definition and Features of a Test Case
	2.3 Extending the Daemon's Control Interfaces

	3 Demonstration
	3.1 Wi-Fi PMF Deauthentication Vulnerability
	3.2 All-Zero Key Reinstallation Vulnerability

	4 Conclusion
	References

