Operating Channel Validation

M. Vanhoef1, N. Bhandaru2, T. Derham2, I. Ouzzieli3, F. Piessens1

1 KU Leuven – 2 Broadcom – 3 Intel

WiSec, Stockholm (Sweden), 18 June 2018
Contributions

- Paper: attacks & high-level defense
- Specification: text for inclusion in 802.11
- Implementation: modified hostap
Old attacks don’t need Man-in-the-Middle (MitM)

Breaking WEP

Breaking WPS

Dictionary attacks

Rogue APs
New attacks do require MitM

Traffic Analysis
- **Capture all** encrypted frames
- **Block** certain encrypted frames

Attacking broadcast TKIP
- **Block** MIC failures
- **Modify** encrypted frames
New attacks do require MitM

Exploit implementation bugs
› **Block** certain handshake messages
› E.g. bugs in 4-way handshake

New attack scenarios
› See paper for details
› E.g. *modify* advertised capabilities
The elephant in the room

Key Reinstallation Attacks (KRACKs)
› **Block & delay** handshake frames
› E.g. 4-way & group handshake

Not all KRACKs require MitM
› E.g. FT handshake (802.11r)
Obtaining multi-channel MitM

Clone AP on different channel!

Handshake succeeds & can reliably manipulate frames!
Force client on rogue channel?

- Jam channel of real AP
 - Victim will connect on rogue AP
 - Stop jamming when client connects

We found an easier way while making the defense!

- **Abuse channel switch announcements**
Channel Switch Announcements (CSAs)

Background:
› AP may dynamically switch channels
› E.g. when radar pulses are detected
› Sends CSAs to connected clients
› **Clients switch to new channel in CSA**

Adversary can forge CSAs
› **Abuse to switch victim to rogue channel!**
Can we prevent MitMs?

Threat model

› Focus on verifying channel and bandwidth
› We exclude low-layer attacks such as beamforming

Goal is to make attacks harder, not impossible!

Similar to the idea of stack canaries.
Proposed Defense

Verify operating channel when connecting to a network
› E.g. in the 4-way and FT handshake

Also verify channel in
› WNM-Sleep exit frames: avoid tricky edge cases
› Group key handshake: defense in depth
Encoding the current channel

Operating Channel Information (OCI) element:

<table>
<thead>
<tr>
<th>Operating class</th>
<th>Channel number</th>
<th>Segment index 1</th>
</tr>
</thead>
</table>

1. Operating class: defines the bandwidth
2. Channel number: defines primary channel
 - Together this also defines the central frequency
3. Seg idx 1: for 80+80 MHz channels
Problem: Channel Switch Announcements (CSAs)

Unauthenticated CSAs
› Need to verify securely

Authenticated CSAs
› May not arrive → need to verify reception!

Solution: authenticate CSA using SA query
Limitations

Other (partial) MitM attacks still possible:
› Partial MitM when client didn’t receive CSA
› Adversary can act as repeater
› Other physical-layer tricks

So why use this defense?
› Remaining attacks are harder & not always possible
› Straightforward to implement
Standardization efforts

March 2018

doc.: IEEE 802.11-17/1807r10

IEEE P802.11
Wireless LANs

Defense against multi-channel MITM attacks via Operating Channel Validation

› Detailed technical specification
› **Has extra discussions not present in paper!**
› Hopefully ratified soon 😊
Proof-of-concept

github.com/vanhoefm/hostap-channel-validation

› Code for 4-way handshake
› Other handshakes in progress

Some remarks:
› Has many automated tests!
› Kernel may change bandwidth
Conclusion

› Easy MitM with channel switches
› We prevent multi-channel MitM
› Other MitM still possible
› Being standardized!
Thank you!

Questions?