
Analysis of Protected Management

Frames and WPA3's SAE-PK

Mathy Vanhoef - @vanhoefm

Workshop on Attacks in Cryptography (WAC), co-located with CRYPTO

14 August 2022, Santa Barbara, US (presented online)

Agenda

1. Introduction

2. Management Frame Protection

3. The SAE-PK Protocol

2

3

Early 2000 Wi-Fi Protected Access (WPA and WPA2)

Affected by various design flaws:

Vulnerable to offline dictionary attacks: a captured

handshake can be used to brute-force the password

No forward secrecy: can decrypt previously captured

traffic after learning the password

Unprotected management frames: can spoof beacons,

deauthentication frames, & other non-data frames

4

2017 Key reinstallation attacks (KRACK)

› Flaw in the standard → all devices affected

› Motivated standard bodies to improve Wi-Fi security

Practical impact:

› Decrypt frames sent by a vulnerable device

› Replay frames towars a vulnerable device

5

2018 Wi-Fi Protected Access 3 (WPA3)

1. Simultaneous Authentication of Equals (SAE) handshake

› Also called the Dragonfly handshake

Negotiates

session key

Provides mutual

authentication

Forward secrecy
& prevents offline
dictionary attacks

Protects against

server compromise

6

2018 Wi-Fi Protected Access 3 (WPA3)

1. Simultaneous Authentication of Equals (SAE) handshake

› Also called the Dragonfly handshake

2. Usage of Management Frame Protection (MFP)

› Protection of deauthentication and disassociation frames

to prevent denial-of-service attacks

› Protection of “robust” action frames (frames used to

manage the connection)

7

2019 Dragonblood attacks against WPA3

Main flaw is a side-channel leak in the Dragonfly handshake

Time it takes for the AP to respond to (partial)

handshake leaks info about the password

Attack against Raspberry Pi feasible in practice!

Leaked info enables offline brute-force attack

Agenda

1. Introduction

2. Management Frame Protection

➢ Based on collaboration with Domien Schepers and Aanjhan

Ranganathan, Northeastern University (WiSec’22)

3. The SAE-PK Protocol

8

WPA3 and Management Frame Protection (MFP)

WPA3 requires usage of management frame protection

Background: in Wi-Fi there are three types of frames:

1. Management frames: scanning for networks,

disconnecting, advanced sleep mode, etc.

2. Control frames: acknowledgements, request to send, etc.

3. Data frames: transporting higher-layer data

WPA2 only required protection of data frames…

9

Management Frame Protection (MFP)

Provides confidentiality, integrity, and replay protection for:

› Deauthentication frames

› Disassociation frames

› Robust action frames

Management frame protection has exisisted since 2009 (!!)

› Defined in 802.11w amendment and optional under WPA2

› Not used in practice because few devices supported it…

› …and because (client) implementations were often buggy

10

Prevent Denial-of-Service attacks

Security of Management Frame Protection (MFP)

11

› Security of the standard:

Manual specification analysis: are all frames protected? Are the

rules complete, consistent, and secure?

› Security of implementations:

Code inspection and tests: looking for denial-of-service attacks

1. How secure is the MFP standard?

2. How secure are implementations?

Analysis of standard (part one)

Several management frames are still left unprotected:

› ATIM frames: power management in ad hoc networks

› Timing Advertisement frames: used in vehicular networks

› Beacons: announces a network and its properties, used by

all Wi-Fi networks

There is a recent beacon protection defense [VAP20]

But this defense is optional for WPA3 networks

12

Abusing beacons [VAP20]

Beacons contain the maximum allowed transmit power

› Abuse to lower transmission power of victims

13

Cisco extension to limit transmission power of clients

› Linux: can be abused to forcibly disconnect a

victim by setting a negative transmission limit

They contain transmission back-off parameters (CSMA/CA)

› Abuse to lower the bandwith of clients

Other beacon attacks [VAP20]

14

Battery depletion attacks

› Spoof beacons to make clients stay awake

Other attacks: partial machine-in-the-middle

› Bypasses channel operating validation in Linux

Source: M. Vanhoef, P. Adhikari, and C. Pöpper. Protecting Wi-Fi Beacons from Outsider Forgeries.

In 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec), 2020.

→ Solution: use beacon protection!

http://papers.mathyvanhoef.com/wisec2020.pdf

Analysis of standard: part two [SRV22]

Part two: inspecting the MFP rules

› There are ~10 import rules, each described in a paragraph:

“A STA with dot11RSNAProtectedManagementFramesActivated equal to false shall transmit and receive unprotected

individually addressed robust Management frames to and from any associated STA and shall discard protected individually

addressed robust Management frames received from any associated STA.

A STA with dot11RSNAProtectedManagementFramesActivated equal to true and

dot11RSNAUnprotectedManagementFramesAllowed equal to true shall transmit and receive unprotected individually

addressed robust Management frames to and from any associated STA that advertised MFPC = 0 and shall discard protected

individually addressed robust Management frames received from any associated STA that advertised MFPC = 0.

…

Management frame protection cannot be applied until the PTK and IGTK has been established with the STA. A STA shall not

transmit robust Action frames until it has installed the PTK for the peer STA, or in the case of group addressed frames, has

installed the IGTK. The STA shall discard any robust Action frames received before the PTK and IGTK are installed.”

15

First issue: complex conditionals in the rules

“A STA with dot11RSNAProtectedManagementFramesActivated equal to true and

dot11RSNAUnprotectedManagementFramesAllowed equal to true shall transmit

and receive unprotected individually addressed robust Management frames to and from any associated

STA that advertised MFPC = 0 and shall discard protected individually addressed robust

Management frames received from any associated STA that advertised MFPC = 0.”

› Whether a rule applies is conditional on:

Whether the client and access point are capable of MFP

Whether the client and access point require MFP

Whether the client advertised support of MFP

Whether the AP advertised support of MFP

Whether the AP and client possess the necessary keys
16

Analysis of standard: part two [SRV22]

We discovered that this complexity leads to:

› Undefined scenarios as well as contradictory rules

› Shortcomings lead to new denial-of-service vulnerabilities

› Example contradictory rule: handling unprotected Deauth

frames once connected

Some rules say to drop them, some say to start a protected SA Query

› Example undefined scenario: how a client should handle

broadcast frames when the AP doesn’t support MFP

17

First issue: the standard is hard to understand

› We also discovered insecure rules:

“The receiver shall process unprotected individually addressed Disassociation

and Deauthentication frames before the PTK and IGTK are installed.”

› Adversary can cause the handshake to fail by spoofing

Disassociation or Deauthentication frames

› Suggested defense:

18

Start a timer instead of disconnecting

Stop the timer when the handshake progresses. This effectively

ignores the unprotected Deauth or Disassoc frame.

Addressing issues in the standard

Long-term fix: require MFP so the rules become simpler

› Avoids all the conditional statements in the rules

Short-term fix: we proposed updates to simplify the rules in the

standard & offer defenses:

19

› Presented at TGm meetings of the IEEE 802.11

› Currently still being discussed by the IEEE

MFP security part two: implementation analysis

We also audited implementations of MFP

› Goal was to find disconnection attacks

› Causes the victim to reconnect & perform a new handshake

› This facilitates attacks that target the connection process

(KRACK, FragAttacks, Dragonblood, etc.)

20

MFP security part two: implementation analysis

Methodology:

1. First focus on open-source implementations (e.g., Linux)

2. Inspect code paths that lead to disconnection calls

3. Can these be triggered by spoofing plaintext frames?

4. Test whether discovered attacks also work against other

implementations

Testing framework: github.com/domienschepers/wifi-framework

21

https://github.com/domienschepers/wifi-framework

Implementation analysis: disconnection attacks

Found several implementation vulnerabilities:

› Spoofing 4-way handshake messages: are accepted on

Linux even if sent in plaintext. Causes client to disconnect.

› Spoofing 802.1X messages: accepted on Linux even if sent

in plaintext. Various messages will disconnect the client.

› Spoofing beacon frames: specifying an invalid bandwidth or

channel witch announcement causes the client to disconnect

(Linux, macOS, iOS, iPadOS, and Windows).

22

Implementation analysis: other attacks

› Packet counter for group key is not set when connecting to

a network, allows for replay of management frames

› Flooding a lot of SAE (Dragonfly) handshake messages

crashes the D-Link DIR-X1860 router

Out-of-memory flaw in the driver

Other routers with the same driver likely also vulnerable

23

Agenda

1. Introduction

2. Management Frame Protection

3. The SAE-PK Protocol

24

Introduction to SAE-PK

Goal of SAE Public Key:

› Authenticate a Wi-Fi hotspot using a password…

› …but prevent an adversary from cloning the network

→ Accomplished by using asymmetric crypto

25

High-level overview of SAE-PK

Based on public key crypto:

1. The Access Point (AP) generates a public/private key pair

2. The Wi-Fi password is derived from the public key

3. The public key is sent to the client when connecting

4. Clients use the password to verify the public key of the AP

5. AP proves possession of the corresponding private key

→ The password forms a signature of the public key

26

The SAE-PK password

The SAE-PK password is the truncated output of:

Hash(SSID || Modifier M || public key)

› SSID (Service Set Identifier): name of the Wi-Fi network

› Modifier M: starts from a random value and is incremented

until the output starts with 3 or 5 zero bytes.

Number of required zero bytes is controlled by a security parameter

› Public key: point on an elliptic curve

27

The SAE-PK password

The SAE-PK password is the truncated output of:

Hash(SSID || Modifier M || public key)

Output is converted into a human-readable form

› Example password: 2udb-slxf-3ijn-dbu3

› Password length is variable and decided by administrator

› Shortest allowed password length encodes 52 bits of the

hash output (excluding the leading 3 or 5 zero bytes)

28

Attack: creating a rogue clone of the network?

Find a modifier M & public key that result in the same password

Hash(SSID || Modifier M || public key)

What is the complexity of this in the best case?

› Hash output must start with at least 3 zero bytes → 224

› Remaining output must equal the password → 252

Total time complexity of 276 to perform a naïve attack

29

Time-memory trade-off attack

An attacker is essentially inverting the hash function:

› We can construct rainbow tables to optimize the attack.

› The SSID is part of the hash input, so every table only will work

against a specific network name.

› On verge of practicality based on theoretical estimates.

E.g., a table of ~6TB can break a password in ~2 weeks on AWS.

More research is needed, these are very rough estimates.

→ Mitigate attacks using a long password or by making the

truncated output start with at least 5 zero bytes.

30

Downside of computed table

Major downside: computed table can only be used

to attack a single SSID.

› Simplified, the table inverts Hash(SSID || M || Public key)

› We need to pick a specific SSID when building the table

31

Idea! Can we change the

SSID without changing the

input to the hash function?

Different SSID but same hash input

32

ssid_2 00 … B5 30 8A 30 88 00 00 00 00 00 00 00 39 30 … 18

ssid 2

ssid 1

modifier 2

modifier 1

public key 2

public key 1

› Network “ssid_2”: uses the modifier value “00 … B5 30 8A”

› Network “ssid”: uses the modifier value “_2 00 .. B5”

› Public key 1 starts in the middle of public key 2

Problem: how to embed public key 1 into public key 2?

Different SSID but same hash input

33

ssid_2 00 … B5 30 8A 30 88 00 00 00 00 00 00 00 39 30 … 18

ssid 2

ssid 1

modifier 2

modifier 1

public key 2

public key 1

Public key is encoded according to RFC 5480. We abuse

parsing flexibilities to embed one public key into another:

› CVE-2014-1569: encode arbitrary data within a length field

› CVE-2018-16151: accepts arbitrary parameters in the

algorithm identifier

Different SSID but same hash input

34

ssid_2 00 … B5 30 8A 30 88 00 00 00 00 00 00 00 39 30 … 18

ssid 2

ssid 1

modifier 2

modifier 1

public key 2

public key 1

› A vulnerable client will accept public key 2 and public key 1

› A secure client accepts public key 1, but rejects public key 2
because it contains unexpected data

→ Against a vulnerable client a single precomputed table can
target two SSIDs where one is the prefix of the other

Network-based attacks

ARP poisoning

› The SAE-PK standard allows client-to-client traffic

› An adversary can use ARP poisoning to intercept traffic

Abuse of the group key

› All clients have the symmetric key to protect broadcast traffic

› This means every client and spoof broadcast traffic

35

Conclusion

Security of SAE Public Key:

› Need to pick a long enough password…

› …or pick a strong enough security parameter

36

Security of Management Frame Protection:

› Standard is complex and difficult to understand

› Non-trivial to implement in practice

› DoS attacks still possible in practice

Thank you! Questions?

Security of SAE Public Key:

› Need to pick a long enough password…

› …or pick a strong enough security parameter

37

Security of Management Frame Protection:

› Standard is complex and difficult to understand

› Non-trivial to implement in practice

› DoS attacks still possible in practice

