FragAttacks:
Aggregation & Fragmentation Flaws in Wi-Fi

WAC4 21, 15 August 2021 (co-located with CRYPTO)

Mathy Vanhoef ‘M NEW YORK UNIVERSITY

Advancements in WI-FI security

» WPAS is continously being updated
» Preventing recent Dragonblood [VR20] attack
» Securing hotspots using asymmetric crypto

Advancements in WI-FI security

» WPAS is continously being updated
» Preventing recent Dragonblood [VR20] attack
» Securing hotspots using asymmetric crypto

» Operating channel validation [VBDOP18]
» Beacon protection [VAP20]
» KRACK patches proven secure [CKM20]

Despite these major advacements,
found flaws in all networks (incl. WPA2/3)

Implementation

Flaws

Background

Sending small frames causes high overhead:

______ header-__ ACK header - ACK

Background

Sending small frames causes high overhead:

header packetl ACK header packet2 ACK

header’ packetl packet2 ... ACK

Problem: how to recognize aggregated frames?

Aggregation design flaw

9

Aggregation design flaw

Not authenticated

<€ >
|

| I

-—

L Flip flag = payload is parsed differently = inject packets

10

Exploit steps

T,

|

Get image from
attacker’s server

& &

A

WWW.

\\v -4

A

<€

|

Send special
IPv4 packet

11

Exploit steps

T,

|

Get image from
attacker’s server

| X

=

A

WWW.

\\v -4

A

<€

Send special
IPv4 packet

|

Encrypt as
normal frame

]

12

Exploit steps

* A\
= [Get image from] t é \w

attacker’s server)I

ey
Send special
IPv4 packet
<€

Encrypt as
normal frame

<€
Set aggregated flag

13

Exploit steps

AT -
[Get Image

attacker’s server

* X\
from] t é \w

A

Send special
IPv4 packet

<€
Encrypt as
normal frame
<€
Set aggregated flag

<€

Inject any packet

- Inject ICMPv6 RA with malicious DNS server

14

Exploit steps

TS

A
Inject special _
[EAPOL ez |—> Bug in AP = do attack

w/0 user interaction
(affected 2/, of home APS)

Encrypt as
normal frame

€
Set aggregated flag

<€

Inject any packet

- Inject ICMPv6 RA with malicious DNS server

15

Fragment

cache

Background

Large frames have a high chance of being corrupted:

______ header [packet] AcK

17

Background

Large frames have a high chance of being corrupted:

______ header [packet] AcK

—> Protected header info defines place in original frame

18

Fragment cache design flaw

Fragments aren’t removed after disconnecting:

19

Fragment cache design flaw

Fragments aren’t removed after disconnecting:

——— H
ﬁ Enc,(Fragy) eduroam

5 Store fragment f !

20

Fragment cache design flaw

Fragments aren’t removed after disconnecting:

g—
ﬁ ETle(FT'ago)
5 Store fragment
Disconnect
Client connects
< =
Enc,,(Fragq) 3 Ency,(Frag,) N

» Attacker’s Frag, and client's Frag, Is reassembled

e(iu roam

=

21

Summary of impact

Abuse to exfiltrate or inject packets assuming:
1. Hotspot-like network where users distrust each other
2. Client sends fragmented frames (rare unless Wi-Fi 6)

22

Summary of impact

Abuse to exfiltrate or inject packets assuming:
1. Hotspot-like network where users distrust each other
2. Client sends fragmented frames (rare unless Wi-Fi 6)

Even the ancient WEP protocol is affected!
» WEP is also affected by the mixed key design flaw

-> Design flaws have been part of Wi-Fi since 1997

23

Mixed key design flaw

Fragments decrypted with different keys are reassembled:

Ency,(Frag,), Enc,(Frag,)

Enc,(Fragg)

>

A\ A 4

=

25

Mixed key design flaw

Fragments decrypted with different keys are reassembled:

&

Enc,(Frag,), Enc,(Frag,) S Enc,(Frag,) R
>
< Refresh session key from k to m S

=

26

Mixed key design flaw

Fragments decrypted with different keys are reassembled:

&

Ency,(Frag,), Enc,(Frag,) S Enc,(Frag,) y
>
Refresh session key from k to m
P >
Enc,,(Fragg,), Enc,,(Fra
m(gO) m(gl) ; Encm(Fragl) S

=

27

Mixed key design flaw

Fragments decrypted with different keys are reassembled:

&

Ency,(Frag,), Enc,(Frag,)

Enc,(Fragg)

> >
>
Refresh session key from k to m
< >
Enc,,(Fragg,), Enc,,(Fra

- Can mix fragments of different frames

=

28

Summary of impact

Abuse to exfiltrate data assuming:
1. Someone sends fragmented frames (rare unless Wi-Fi 6)
2. Victim will connect to server of attacker

3. Network periodically refreshes the session key

29

Summary of impact

Abuse to exfiltrate data assuming:

1. Someone sends fragmented frames (rare unless Wi-Fi 6)

2. Victim will connect to server of attacker

» Combine with implementation flaw to avoid this condition

30

Implementation

Flaws

Plaintext
frames

Broadcast

fragments

Cloacked
A-MSDUs

Trivial frame injection

Plaintext frames wrongly accepted:
» Depending Iif fragmented, broadcasted, or while connecting

33

Trivial frame injection

Plaintext frames wrongly accepted:
» Depending Iif fragmented, broadcasted, or while connecting
» Sometimes frames that resemble a handshake message

» Examples: Apple and some Android devices, some Windows
dongles, home and professional APs, and many others!

- Can trivially inject frames

34

No fragmentation

support

No fragmentation support

Some devices don’t support fragmentation
» But they treat fragmented frames as full frames

» Examples: OpenBSD and Espressif chips

- Abuse to inject frames under right conditions

- All devices are vulnerable to one or more flaws

36

Created tool to test devices

Has

Command
sanity checks
ping
ping 1,E,E
Basic device behaviour
ping I,E,E -~delay 5
ping-frag-sep
ping-frag-sep --pn-per-qes
A-MSDU attacks (83}
ping T,E --ansdu
ansdu-inject
amsdu-inject-bad
Mixed key attocks (§4)
ping I,F,B€,AE
ping I,F,8€,AE --pn-per-gos
Cache attacks (§5)
ping 1,E,8,AE
ping 1,E,8,€
ping 1,E,R,AE --full-reconnect

ping T,E,R,E -~full-recomnect

5+ test cases for both clients and APs:

shortd

Send a normal ping.

Send a normal fragmented ping.

Send a normal fragmented ping with a
Send a normal fragmented ping with fr

Same as above, but also works if the tar

Send a ping encapsulated in a normal {
Simulate attack: send A-MSDU frame w

Same as above, but against targets that

Inject two fragments encrypted under a

Same as above, but also works if the tar

Inject a fragment, iry triggering a reassc
Same as above, but with a longer delay
Inject a fragment, deauthenticate and re

Same as above, but with 2 longer delay

Non-consecutive PNs attack (§6.2)
ping I,E,E --inc-pn 2
Mixed plain/encrypt attack (§6.3)
ping IE,P
ping I,P,E
ping I,P
ping I,P,P
Linux-plain
Broadcast fragment attack (§6.4)
ping I,D,P --bcast-ra
ping D,BP --bcast-ra

A-MSDU EAPOL attack (§6.5)
eapol-amsdu I,P
eapol-amsdu BP
eapol-amsdu-bad I,P

eapol-amsdu-bad BP

Send a fragmented ping with non-

Send a fragmented ping: first fragn
Send a fragmented ping: first fragn
Send a plaintext ping.

Send a fragmented ping: both frag

Mixed plaintext/encrypted fragmer

Send unicast ping in a plaintext b

Same as above, but frame is sent d

Send a plaintext A-MSDU containir
Same as above, but the frame is sel
Send malformed plain. A-MSDU co

Same as above, but the frame is se

ping

ping

ping
ping
ping
ping
ping
ping

ping

ping
ping

ping

Command

A-MSDU attacks (§3)
LE --amsdu-fake
LE --amsdu-fake --amsdu-spp

Mixed key attacks (§4)
1,F,BE,E
I1,E,F,AE
1,E,F,AE --rekey-plain
1,E,F,AE --rekey-plain --rekey-req
1,E,F,AE --rekey-early-install
1,E,F,E [--rekey-pl] [--rekey-req]
1,F,BE,AE --freebsd

Cache attacks (§5)

1,E,R,AF --freebsd [”full—r‘E(Dnl’IEEt]
1,E,R,AP --freebsd [--full-reconnect]

1,E,R,AP [--full-reconnect]

Short de

If this test succeeds, the A-MSDU fl

Check if the A-MSDU flag is authen

In case the new key is installed relat
Variant if no data frames are accept
If the device performs the rekey hat
Same as above, and actively reques
Install the new key after sending m
Same as above 4 tests, but with lon

Mixed key attack against FreeBSD ¢

Cache attack specific to FreeBSD im
Cache attack specific to FreeBSD im

Cache attack test where 2nd fragme

Mixed plain/encrypt attack (§6.3)
ping I,E,E --amsdu
ping I1,E,P,E
Llinux-plain 3

Broadcast checks (extensions of §6.4)
ping I,P --bcast-ra
ping BP --bcast-ra [--bcast-dst]
ping BP [--bcast-dst]
eapfrag BP,BP

A-MSDU EAPOL attack (§6.5)
eapol-amsdu[-bad] BP --beast-dst
AP forwards FAPOL attack (56.6)

eapol-inject 00:11:22:33:44:55
eapol-inject-large 00:11:22:33:44:55

No fragmentation support attack (§6.8)
ping I1,D,E

ping T,E,D

Send a normal ping as a fragments
Ping with first frag. encrypted, secc

Same as linux-plain but decay frag

Ping in a plaintext broadcast frame
Ping in plaintext broadcast frame ¢
Ping in a plaintext frame during th

Experimental broadcast fragment ¢

Same as eapol-amsdu BP but easic

Test if AP forwards EAPOL frames |

Make AP send fragmented frames

Send ping inside an encrypted sec:

Send ping inside an encrypted first

- Avallable at https://github.com/vanhoefm/fragattack

37

https://github.com/vanhoefm/fragattack

Discussion

Design flaws took two decades to discover
» Without modified drivers some attacks will falil

38

Discussion

Design flaws took two decades to discover
» Without modified drivers some attacks will falil
» Fragmentation & aggregation wasn’t considered important

39

Discussion

Design flaws took two decades to discover
» Without modified drivers some attacks will falil
» Fragmentation & aggregation wasn’t considered important

Long-term lessons:

» Adopt defences early even if concerns are theoretic

» Isolate security contexts (data decrypted with different keys)
» Keep fuzzing devices. Wi-Fi Alliance can help here!

40

Conclusion

\N Z » Discovered three design flaws

W » Multiple implementation flaws
\ /

-

o — » Several flaws are trivial to exploit
FRAG TTACK
» More info: www.fragattacks.com

41

http://www.fragattacks.com/

	Default Section
	Dia 1: FragAttacks: Aggregation & Fragmentation Flaws in Wi-Fi

	Introduction
	Dia 2: Advancements in Wi-Fi security
	Dia 3: Advancements in Wi-Fi security
	Dia 4
	Dia 5

	Aggregation attack
	Dia 6
	Dia 7: Background
	Dia 8: Background
	Dia 9: Aggregation design flaw
	Dia 10: Aggregation design flaw
	Dia 11: Exploit steps
	Dia 12: Exploit steps
	Dia 13: Exploit steps
	Dia 14: Exploit steps
	Dia 15: Exploit steps

	Fragment Cache Attack
	Dia 16
	Dia 17: Background
	Dia 18: Background
	Dia 19: Fragment cache design flaw
	Dia 20: Fragment cache design flaw
	Dia 21: Fragment cache design flaw
	Dia 22: Summary of impact
	Dia 23: Summary of impact

	Mixed key attack
	Dia 24
	Dia 25: Mixed key design flaw
	Dia 26: Mixed key design flaw
	Dia 27: Mixed key design flaw
	Dia 28: Mixed key design flaw
	Dia 29: Summary of impact
	Dia 30: Summary of impact

	Implementation flaws
	Dia 31
	Dia 32
	Dia 33: Trivial frame injection
	Dia 34: Trivial frame injection

	Less common implementation flaws
	Dia 35
	Dia 36: No fragmentation support

	Discussion
	Dia 37: Created tool to test devices
	Dia 38: Discussion
	Dia 39: Discussion
	Dia 40: Discussion
	Dia 41: Conclusion

