
Haunted by Legacy: Discovering and Exploiting Vulnerable Tunnelling Hosts

Angelos Beitis
DistriNet, KU Leuven

angelos.beitis@kuleuven.be

Mathy Vanhoef
DistriNet, KU Leuven

Mathy.Vanhoef@kuleuven.be

Abstract
This paper studies the prevalence and security impact of open
tunnelling hosts on the Internet. These hosts accept legacy or
modern tunnelling traffic from any source. We first scan the
Internet for vulnerable IPv4 and IPv6 hosts, using 7 different
scan methods, revealing more than 4 million vulnerable hosts
which accept unauthenticated IP in IP (IPIP), Generic Routing
Encapsulation (GRE), IPv4 in IPv6 (4in6), or IPv6 in IPv4
(6in4) traffic. These hosts can be abused as one-way proxies,
can enable an adversary to spoof the source address of packets,
or can permit access to an organization’s private network.
The discovered hosts also facilitate new Denial-of-service
(DoS) attacks. Two new DoS attacks amplify traffic: one
concentrates traffic in time, and another loops packets between
vulnerable hosts, resulting in an amplification factor of at
least 16 and 75, respectively. Additionally, we present an
Economic Denial of Sustainability (EDoS) attack, where the
outgoing bandwidth of a host is drained. Finally, we discuss
countermeasures and hope our findings will motivate people
to better secure tunnelling hosts.

1 Introduction

Tunnelling protocols are an essential backbone of the Inter-
net, with examples being the IP in IP (IPIP) and the Generic
Routing Encapsulation (GRE) protocol [37, 49]. These proto-
cols can link disconnected networks and form Virtual Private
Networks (VPNs). One limitation of these protocols is that
they do not authenticate or encrypt traffic. Instead, to secure
these protocols, they must be combined with Internet Protocol
Security (IPsec) [53].

Unfortunately, tunnelling protocols are often used without
extra security, allowing an on-path or even off-path attacker
to inject traffic into the tunnel [38,64]. More troubling is how
recently Yannay has demonstrated that misconfigured IPv4
hosts may accept unauthenticated IPIP tunnelling traffic from
any source [39]. He also showed that an adversary can abuse
these vulnerable hosts to spoof IPv4 addresses. Although this

was an excellent discovery, several questions remain unan-
swered. In particular, it is unclear: (1) whether IPv6 hosts can
also be vulnerable; (2) how to best scan for vulnerable hosts;
(3) whether other tunnelling protocols can be vulnerable; (4)
what the security implications of vulnerable tunnelling hosts
are; and (5) what some practical defences are.

To answer these questions, we systematically analyse tun-
nelling protocols, including GRE, IP6IP6, Generic UDP En-
capsulation (GUE), IPv4 in IPv6 (4in6), and IPv6 in IPv4
(6in4), and devise 7 different scanning methods to detect hosts
that accept unencrypted tunnelling traffic from any source. We
use these methods to scan the Internet for vulnerable IPv4 and
IPv6 hosts. This reveals that all studied tunnelling protocols
can be vulnerable: in total, we detected 3,527,565 vulnerable
IPv4 hosts and 735,628 vulnerable IPv6 hosts.

Even more problematic is that many vulnerable hosts can
be abused to spoof the source address of packets. This is
significant since the increased adoption of source address
filtering was thought to make spoofing harder for ordinary In-
ternet users [6]. Vulnerable hosts may also allow access to an
organisation’s private network, where carefully constructed
tunnelling packets can reveal details about the victim’s (pri-
vate) network, facilitating subsequent attacks. Additionally,
we present an administrative Denial-of-service (DoS) attack,
where traffic is spoofed to trigger incorrect abuse reports to-
wards the victim.

We also investigate how vulnerable hosts can facilitate
new DoS attacks. We uncover two new amplification DoS
attacks, called Tunnelled-Temporal Lensing (TuTL) and the
Ping-Pong attack, with an amplification factor of at least 16
and 75, respectively. Additionally, we present an Economic
Denial of Sustainability (EDoS) attack, where the outgoing
bandwidth of a host is consumed to incur unexpected financial
costs or lead to service disruptions.

To summarise, our main contributions are:
• We scan the Internet for vulnerable hosts that accept

tunnelling packets from any source (Section 3 and 4).
• We present a new administrative DoS attack (Section 4).
• We introduce three tunnelling-based DoS attacks: Ping-

Pong and Tunnelled-Temporal Lensing (TuTL) amplifi-
cation, and an EDoS attack (Section 5).

• We present defences against our new attacks (Section 6).
Finally, we discuss and compare to related work in Section 7,
and we conclude in Section 8.

Code Availability. To prevent abuse, we initially make our
scanning code available only upon request, and it will be made
public once the risk of misuse has sufficiently decreased.1

2 Background

This section explains tunnelling protocols, discusses known
issues with IPIP, and introduces temporal lensing DoS attacks.

2.1 Tunnelling Protocols
A tunnel in the context of the Internet is a protocol to transfer
frames or packets between two (disconnected) networks [52].
Generally, a tunnelling protocol encapsulates packets and
sends them to the receiver. The receiver will, in turn, strip
possible headers and acquire the original encapsulated packet,
which can then be forwarded [52]. Tunnelling protocols are
usually utilised to transport layer two frames or layer three
packets [49, 62]. Tunnels have several applications and can
be used for different reasons depending on the use case.

In this paper, we will discuss tunnelling protocols that do
not, by default, use authentication or encryption and demon-
strate how attackers can use hosts that implement such tun-
nelling interfaces to spoof and conduct DoS attacks. We will
use the term vulnerable hosts to refer to hosts that implement
a tunnelling protocol insecurely, meaning that they accept
plaintext tunnelling traffic from arbitrary sources. We define
the term host as a synonym for an allocated IPv4 or IPv6
address. This implies that a single physical machine might
represent multiple hosts if it has multiple (virtual) network
cards. The term unfiltered networks refers to networks that
do not implement source address filtering [6]. In other words,
hosts in an unfiltered network can transmit IP packets using
an arbitrary source IP address.

2.1.1 IPIP & IP6IP6. The IPIP tunnelling protocol was
standardised in 1996 as RFC 2003 [49], and the IP6IP6 pro-
tocol was standardised in 1998 as RFC 2473 [12]. These
protocols have no authentication or encryption and do not
add any additional headers when transporting an inner packet.
In other words, with IPIP, the IPv4 header of the outer (tun-
nelling) packet is directly followed by the inner (encapsulated)
IPv4 packet, and similarly for IP6IP6 with IPv6 packets.

2.1.2 GRE & GRE6. The GRE protocol introduced a
more general approach to encapsulation, which was standard-
ised as RFC 2784 in 2000 [37]. Unlike IPIP, the GRE protocol
adds a custom header before encapsulating the (inner) packet.

1https://github.com/vanhoefm/tunneltester

This allows GRE to encapsulate other EtherType protocols,
such as IPv4 packets and IPv6 packets. Furthermore, the GRE
header has been extended in RFC 2890 and can include an
optional 4-byte key field [15]. When this key field is used,
the recipient will only accept a GRE packet containing the
expected key value. Unfortunately, this key field is not en-
crypted and can be trivially eavesdropped by an adversary.
The key field is optional and remains identical unless explic-
itly changed, offering little security in practice.

Although the GRE key field does not prohibit a man-in-the-
middle attacker from spoofing packets, it does make it harder
for a man-on-the-side adversary to construct valid packets.
In particular, when scanning for vulnerable GRE hosts in
Section 3, hosts that use a key value are not detected.

2.1.3 6in4 & 4in6. The 6in4 and 4in6 protocols re-
fer to the encapsulation of an IPv6 packet in an IPv4
packet (6in4) and the encapsulation of an IPv4 packet in
an IPv6 packet (4in6) and are defined in RFC 4213 [20]
and 2473 [12], respectively. These two protocols were de-
signed to allow IPv4 traffic to flow in an IPv6 network and
vice versa, thus allowing interfaces with no IPv6 support to
communicate with IPv6 interfaces. The receiver of the data-
gram will strip the outer IPv4 (for 6in4) or IPv6 (for 4in6)
header and serve the packet.

The term 6to4 refers to a transition mechanism for 6in4
packets [8]. Unlike the standard 6in4 transition mechanism,
6to4 introduces its own IPv6 address, which is derived from
the host’s IPv4 address. The 6to4 address has the format
2002:IPV4_ADDRESS_IN_HEX::. For example, a 6to4 ad-
dress of a.b.c.d, is 2002:a.b.c.d::. For the remainder
of this paper, we will use the term 6in4 to refer to IPv6 pack-
ets encapsulated in IPv4 packets and 6to4 address to refer to
addresses of the aforementioned format.

2.1.4 GUE. GUE can encapsulate different protocols
within UDP datagrams [27]. It has two variants, one where a
custom GUE header is introduced and one where IPv4 and
IPv6 packets can be directly encapsulated. When setting up
a GUE tunnel, both parties must specify a UDP port num-
ber and the tunnelling protocol responsible for processing
the encapsulated packets [26]. Although GUE is currently a
draft standard, it is supported by Linux. The optional GUE
header is encapsulated inside a UDP frame with the destina-
tion port of the decapsulator’s UDP interface [27]. After the
GUE header, the next encapsulation protocol header follows,
which can be any IP protocol.

2.2 Known Weaknesses in IPIP
The IPIP protocol does not provide authentication or con-
fidentiality [49], making it trivial for a man-in-the-middle
attacker to inject traffic into an IPIP tunnel. To prevent such
attacks, it is recommended to use IPIP in combination with
protocols such as IPsec [53]. However, Yannay has recently

https://github.com/vanhoefm/tunneltester

Figure 1: Illustration of Yannay’s IPIP spoofing attack [39].

demonstrated that many IPv4 hosts accept bare IPIP packets
without source address filtering [39,49]. In other words, these
vulnerable IPv4 hosts accept plaintext IPIP packets from any
sender. As a result, an attacker can send an IPIP packet to a
vulnerable host, which will strip the outer header and forward
the inner IP packet without authenticating the sender.

An example of Yannay’s IPIP attack is shown in Figure 1,
which contains an attacker with IP address x, a vulnerable
host with IP address y and a victim with IP address v. The
IPIP packet sent by an adversary will have two IP headers:
the outer IP header, which will have address x as source and
address y as destination and the inner IP header, which will
have address y as source and address v as destination. The
vulnerable host will receive the IPIP packet, strip the outer IP
header, and forward the inner packet to its destination. Since
the source address y of the inner IP header equals the address
of the vulnerable host, it does not violate any network filtering
policies that might be in place, thus allowing an adversary to
send spoofed traffic to a victim [39]. The vulnerable host is
then considered a one-way proxy for the attacker.

The attacker is not constrained in using address y as the
source address of the inner header since, in the scenario where
the vulnerable host resides in a network with no (or bad) filter-
ing mechanisms, multiple spoofed addresses can be utilised
by an adversary. For this scenario to work, an adversary must
identify a network with poor filtering that allows a packet
with a spoofed source address to be forwarded [39].

2.3 Temporal Lensing attacks

A temporal lensing attack refers to a DoS amplification at-
tack, which can enhance an attacker’s damage towards the
victim [50]. Unlike traditional amplification attacks where the
traffic itself is amplified, meaning that an attacker can gener-
ate g packets and p packets are received by the victim where
p > g, in temporal lensing, an amplification effect is achieved
by concentrating packets in time. For instance, the attacker
sends packets for 10 seconds and uses protocol properties to
ensure they arrive at the victim in a window of less than one
second, resulting in an amplification factor of at least 10.

The original temporal lensing by Rasti et al. abused Do-
main Name System (DNS) resolvers, where an attacker could
construct different paths with different latencies towards a
target DNS server [50]. The attacker will then schedule pack-
ets over these paths and cause them to arrive at the victim at
practically the same time.

3 Internet Scanning

In this section, we describe how we selected the tunnelling
protocols to scan for, explain how we first did a preliminary
analysis of each selected protocol, describe the different scan-
ning methods we created to discover vulnerable hosts and
clarify how we tackled the scanning of the IPv6 address space.

3.1 Methodology

3.1.1 Protocol Selection. We first identified tunnelling
protocols that may cause a host implementing them to accept
traffic from arbitrary sources. For a vulnerable host to satisfy
this criteria, the tunnelling protocol must have the following
properties: (1) no default authentication and (2) no default en-
cryption. Additionally, to avoid testing historic protocols that
are no longer in use, we require that the tunnelling protocol
is supported by a recent Linux kernel. Going over the list of
assigned IP protocol numbers and a subset of the transport
protocol port number registry for UDP led us to select IPIP,
GRE, GUE, 4in6, and 6in4 for study [12, 20, 27, 37, 49].

3.1.2 Preliminary Experiments. Before scanning the In-
ternet for vulnerable hosts, we performed local experiments
to confirm that vulnerable hosts may exist for each selected
tunnelling protocol. For these experiments, we set up two
instances which would take the roles of attacker and victim.
We experimented with these instances to determine if a victim
host can be configured to accept tunnelling protocols from an
arbitrary source. Concretely, we set up a tunnelling interface
on the victim host and then transmit a tunnelling packet from
the attacker where the inner header’s source address is the
victim and the inner destination address is the attacker. We
can then determine whether the victim is vulnerable by seeing
if the attacker’s machine receives the inner packet. Our ex-
periments showed that all selected protocols, i.e., IPIP, GRE,
GUE, 4in6, and 6in4, can be configured to accept traffic from
an arbitrary source and therefore be vulnerable.

For Linux, we found that the following two factors influ-
enced whether a host was vulnerable:

• Decapsulating Arbitrary Traffic: When setting up a tun-
nelling interface, there is an option to declare a remote
address [31]. This field allows the user to specify an
address or set of addresses from which the interface will
decapsulate and serve packets. Additionally, this field
can be left empty, which causes the host to decapsulate
and serve packets from any source address. In the case
of GRE, leaving this field empty effectively creates a
multipoint GRE (mGRE) tunnel [58].

• Forwarding Traffic with Source IP: When the remote
address field is not empty, the attacker can still not force
the vulnerable host to spoof packets as long as the host’s
network implements filtering. Furthermore, the Linux
kernel will, by default, not forward packets whose source

Table 1: Scan methodology summary for each protocol.

Methodology IP
IP

IP
6I

P6

G
R

E

G
R

E6

4i
n6

6i
n4

G
U

E

Standard ✓ ✓ ✓ ✓ ✓ ✓ ✓
Echo/Reply ✓ ✓ ✓ ✓ – ✗ ✗
TTL Expired ✓ ✓ ✓ ✓ ✓ ✓ ✗

✓ We did this scan. ✗ We did not do this scan.
The scan has been done by related work [34, 39].

– The scan method is not possible for the protocol.

address is that of its own interface [59]. This can be
bypassed by setting the accept_local variable to True,
allowing any encapsulated header with the vulnerable
host’s address as the source to be forwarded.

When the above two conditions are met, a Linux host is vul-
nerable, and an adversary can carry out various attacks against
the host, as explained in the remainder of the paper.

Before performing a full (standard) Internet scan for each
tunnelling protocol, we first scanned 1% of the IPv4 addresses.
For GUE, a destination UDP port needs to be specified, and
we scanned with port number 6080 as the destination port.
This is the default port for GUE and hence has the highest
likelihood of detecting vulnerable hosts [27]. However, in our
1% scan, no vulnerable GUE hosts were identified. As a result,
we omitted GUE in our (other) Internet-wide scans. To more
firmly confirm this, we later further scanned 18% of the IPv4
space for GUE, with again no replies received. For all other
protocols, a partial 1% standard scan did reveal vulnerable
hosts, and for these protocols, we scanned the entire IPv4
address space using multiple different scanning methods.

3.2 Scanning Methods

Our scanning methodology consists of 7 different scans, each
identifying vulnerable hosts with different setups. These scans
fall in one of three scanning methods shown in Figure 2,
namely Standard Scans, Internet Control Message Protocol
(ICMP) Echo/Reply Scans and ICMP Time to Live (TTL)
Expired Scans. In the remainder of the paper, Internet scan-
ning refers to sending probe packets and accumulating data
based on the replies [10]. We will use ZMap and its IPv6
extension, ZMapv6, to scan the Internet [10, 60]. We imple-
mented different probe modules, allowing us to identify mul-
tiple types of vulnerable tunnelling hosts. Since scanning
the IPv6 address space by brute force is infeasible [43], we
used an IPv6 hitlist, which lists the latest responsive IPv6
addresses [57]. The scanning methodology remains the same
as with IPv4 scans, with the only difference being that mod-
ules created with the ZMapv6 extension [60] are given the
IPv6 hitlist as input. ZMapv6 will then send probe packets to

Scanner Host
IP(Host,Scanner)

IP(Scanner,Host) IP(Host,Scanner)

(a) Standard tunnel scan methodology with IPIP.

Scanner Host

IP(Host,Scanner) ICMP Reply

IP(Scanner,Host) IP(Scanner,Host) ICMP Echo

(b) ICMP Echo/Reply methodology with IPIP.

Scanner Host

IP(Scanner,Host) IP(Scanner,X), TTL =1

IP(Host,Scanner) ICMP TTL Expired

(c) ICMP TTL Expired methodology with IPIP.

Figure 2: Illustration of the three main scan methodologies.
The first arrow shows the scanner’s sent probe, while the
second arrows show the host’s response.

the IPv6 addresses specified in the histlist. We conducted the
scans from two AWS instances in the US (AS14618) and a
Time4VPS instance in Lithuania (AS212531). Table 1 sum-
marises each selected protocol, indicating which scans have
(not) been conducted by us, as well as those performed by
related work [34, 39].

3.2.1 Standard Tunnel Scans. Firstly, we introduce sim-
ple probe packets, which consist of an IP header (version 4
or 6) followed by the protocol to be tunnelled. For IPIP and
IP6IP6, the probe consists of an encapsulated IPv4 and IPv6
header, while for GRE and GRE6, the structure of the probe
is similar, with an additional GRE header between the two IP
headers. When a potentially vulnerable host receives such a
packet, its header will be removed (along with the GRE frame
in the case of GRE), and the inner header will be forwarded to
its destination address. For example, in Figure 2a, a scanning
machine wants to identify if a specific host is vulnerable. The
scanner will first send the IPIP packet to the host. The host
will decapsulate the outer header, and since the remaining
header is destined for the scanner, the host will forward it to
the destination address. This standard scan allows us to iden-
tify addresses that will serve and forward incoming traffic on
their tunnelling interface. In this initial scanning methodology,
the inner header’s IP source address is that of the potentially
vulnerable host. This will allow the forwarded traffic to pass
potential filtering mechanisms set up to disallow IP source
address spoofing. Yannay showcased the methodology in the
initial IPIP scanning iteration [39], which in 2020 identified
150k vulnerable IPIP hosts [40].

Subnet-Spoofing Scan. As shown by our preliminary
Linux experiments, a host may not forward the inner packet
if its source IP address equals the host’s address. To never-
theless try to detect such vulnerable hosts, we performed a
scan with the Standard tunnel scan methodology, but with the
source IP address of the inner packet being in the same subnet
as the host’s address. This source address was generated by
changing the last octet of the host’s IP address, ensuring it
belongs to the same /24 subnet in IPv4 and the same /112 sub-
net in IPv6. For instance, if the host has IP address a.b.c.5,
the inner packet would have source address a.b.c.6.

To detect numerous vulnerable hosts, the inner packet’s
source address must be in the same (smallest) subnet as the
host. This is because Autonomous Systems (ASs) might only
filter packets before they exit the AS and not within the AS.
Filtering can be implemented using techniques such as ingress
address filtering as defined in RFC 2827 and 3704 [5,54]. For
example, a router with the address a.b.c.0/24 should reject
outwards traffic from the source address a.b.f.5, where
c ̸= f, since it belongs to a different subnet.

Spoofing Scan. We can make a host forward a packet with
a spoofed source IP address, allowing us to identify ASs with
poor filtering. The methodology remains the same as in Figure
2a, but with the inner packet’s source address being spoofed,
e.g., if the host’s address is a.b.c.d, the inner packet’s source
address will be e.f.g.h. If we receive the inner packet as a
response, the host does not correctly implement source ad-
dress filtering for outgoing packets, meaning the host can be
abused to spoof IP packets with an arbitrary source address.

Furthermore, the spoofing scan is also possible with the
6in4 and 4in6 protocols by having a random IPv6 or IPv4
address as the inner packet’s source, respectively.

In our scans, we used 100.200.a.b as the spoofed source.2

6to4 & IPv4-Mapped Address Scan. One challenge is
scanning for mixed IPv4 and IPv6 protocols such as 6in4 and
4in6. For instance, in a 6in4 scan, we do not know the IPv6
address of a host when probing through its IPv4 address. This
complicates conducting the standard tunnel scans. Thankfully,
in the case of 6in4, we can do a standard scan where the source
address of the inner IPv6 packets equals the 6to4 or IPv4-
mapped address of the host. Both 6to4 and IPv4-mapped IPv6
addresses are derived from the host’s (outer) IPv4 address.
The IPv4-mapped address has a similar format to the 6to4
address, shown in Section 2. The IPv4-mapped format is
::ffff:IPV4_ADDRESS_IN_HEX [13]. This allows us to let
a vulnerable host forward an IPv6 packet towards the scanner
with a valid source IPv6 address. Since the packet has a valid
IPv6 source address, it is less likely to be filtered or blocked
by the host’s network. This methodology further allows us to
identify 6to4 relay routers [34].

2The spoofed IP address has been partially anonymised to ensure our
research does not negatively affect its reputation or normal usage.

3.2.2 Tunnelled ICMP Echo/Reply Scan. The previous
scanning methods can detect hosts that accept tunnelling pack-
ets and that forward the inner packet. However, in practice,
not all hosts may be configured to forward the inner packet.
To circumvent this limitation and identify vulnerable hosts
that cannot forward traffic, we let the inner packet be an ICMP
Echo request to the host itself, as shown in Figure 2b. In other
words, the packet’s inner header will have the scanner’s ad-
dress as the source and the host’s address as the destination.
Upon receiving the packet, a vulnerable host will strip the
outer header, serve the inner Echo request to itself, and finally
respond with an ICMP Echo reply to the scanner. A similar
scanning method has been previously used by Kristoff et al. to
discover open 6to4 relays [34]. In their study, they discovered
1.5 million IPv4 addresses. Therefore, we decided to exclude
this method for 6in4 scans since it was previously conducted
by related work. This method is infeasible for 4in6 scans since
it is impossible to map an IPv6 address to an IPv4 one.

3.2.3 Tunnelled ICMP TTL Expired Scan. Not all hosts
are configured to reply to ICMP Echo requests and, therefore,
cannot be discovered by the previous method. Additionally,
some hosts may be located behind private networks. For ex-
ample, some Virtual Private Cloud (VPC) providers allocate a
private address to their instances, and any traffic towards their
public IP will be translated to the private IP of the instance,
i.e., inbound Network Address Translation (NAT) may be
used. Moreover, these VPCs may only allow outgoing pack-
ets when the packet’s source address equals the private IP
address of the host. As a result, a standard or subnet spoofing
scan would also not detect such vulnerable hosts because the
inner packet will not use the host’s private IP address and,
hence, will be dropped by the VPC.

To overcome this complication, we can send an inner IPv4
header with a TTL equal to one or an IPv6 header with a hop
limit equal to zero and the scanner as the source address. The
inner packet’s destination can be any address other than the
host’s. For example, in Figure 2c, the vulnerable hosts that
receive the probe will pass the inner packet to its tunnelling
interface. When validating the header’s TTL value, it will
detect that the TTL has expired and, as a result, discard the
inner IP header, sending an ICMP or ICPMv6 TTL Expired
message to the inner packet’s source address. The scanner will
then receive the reply, and based on the ICMP TTL Expired
payload, which is the expired IP header along with 64 bits
of the original datagram [51], can confirm that the inner IP
header has expired in transit.

3.3 Ethics
To ensure our scans have no negative impact, we limit the
daily number of packets sent to a single address, guaranteeing
that scanned hosts never get overloaded. We limit ZMap’s
scanning rate to 10-20MBs, meaning IPv4 scans take roughly
4 days to complete. Setting a low scanning rate also ensures

that networks do not receive overwhelming amounts of traffic.
For IPv6 scans, we conducted a scan only once a day.

All probes have a benign ICMP packet as payload. The
spoofed ICMP Echo reply is necessary to understand how
many vulnerable hosts can spoof their source address. This
ICMP reply has our own server as its destination, which iso-
lates the spoofed traffic between the scanning server (us) and
the host being scanned. The spoofed ICMP Echo reply is
also kept as benign as possible: it resembles a normal and
short packet, which is unlikely to be considered malicious
by intermediate devices on the path between the vulnerable
host and our scanning server. To limit the number of spoofed
ICMP Echo replies that a vulnerable host would generate
and reduce the amount of traffic it would receive, we decided
to spoof only a single source address. This already gives us
sufficient information to estimate how many hosts can spoof
source addresses. We contacted the owner of the spoofed IP
to ensure that our spoofed scans had not caused any negative
effects.

We also follow standard practice and host a website on the
scanning server with information about the scan [10, 16]. The
website mentioned the scan dates, methodologies, scanned
protocols, and our email addresses in case any organisation
wanted to opt out of any future scans. Our scanning code
also included a reference to our scanning server in the ICMP
packet. This means that in the unlikely circumstance that
a network administrator is manually inspecting the spoofed
ICMP Echo replies, the administrator can visit the information
page on our scanning server for details about the experiment
and to opt out of future scans, as indicated previously. Three
ASs requested to be excluded from future scans.

Disclosure. We disclosed our results to CERT/CC, directly
contacted the domains’ owners in Table 4, and collaborated
with the Shadowserver Foundation to notify affected parties.
We also notified the national CERT of our country. One af-
fected party has acknowledged the vulnerability and associ-
ated it with a flaw in the 6in4 configuration of their home
routers. Other affected ASs have attributed the vulnerability
to their clients’ setups.

The newly discovered vulnerabilities in this paper have
been assigned the identifiers CVE-2024-7596 (GRE and
GRE6), CVE-2024-7595 (GUE), CVE-2025-23018 (4in6 and
IP6IP6) and CVE-2025-23019 (6in4).

4 Experimental Results

In this section, we analyse our scan results, try to determine if
others are also aware of the issue, and discuss abuse reports.

4.1 Scanning Results
All combined, we carried out 26 scans, with the results shown
in Table 2 and 3. The scans were performed sporadically for

a period of one year, beginning from April 2023 to Febru-
ary 2024. In total, we detected 3,527,565 vulnerable IPv4
addresses and 735,628 vulnerable IPv6 addresses. The ap-
proximate number of probed addresses for IPv4 and IPv6 is
3.7 billion and 10 million, respectively. Compared to Yan-
nay’s standard scan for vulnerable IPIP hosts in 2020, which
discovered roughly 150k vulnerable hosts [39, 40], our scan-
ning methods discovered a total of 530,100 vulnerable IPIP
hosts, and 4,263,193 vulnerable tunnelling hosts overall. We
can also make the following notable observations:

4.1.1 Host overlap. With the 6in4 and 4in6 TTL Expired
scans, we collected both IPv4 and IPv6 addresses from the
replies. As a result, some of these addresses will likely corre-
spond to the same hosts.

4.1.2 Scanning method analysis. In Table 2 and 3, col-
umn Replied refers to the number of replies gathered by each
scan, and column Unique refers to the unique hosts only iden-
tified by the specific scan. Each scan method detected vul-
nerable hosts that were not discovered by any other scanning
methods, demonstrating the importance of each scan method.

The 6in4 scan identified the most vulnerable hosts in ab-
solute numbers, namely 2,126,018 hosts, while the largest
percentage of vulnerable hosts identified by a single scan
was by the 4in6 TTL Expired scan, where roughly 1.27% of
scanned hosts were vulnerable. The 6in4 and 4in6 protocols
were created to make the transition to IPv6 easier and allow
communication between the two versions of the IP proto-
col [20]. These protocols may be more widely adopted due to
the slow adoption of native IPv6 networks, thereby possibly
resulting in more vulnerable hosts.

While testing our scanning module, we also noticed that
some hosting providers drop outgoing IPv4 ICMP TTL Ex-
pired packets. It is unclear why this was the case.

4.1.3 Geolocation analysis. The vulnerable IPv4 and
IPv6 hosts have a diverse geolocation. To gather the locations
and ASs of where these hosts reside, we used the IPtoASN
database, which is an open-source IP location database [30].
We identified 218 territories out of the 249 as having vulner-
able hosts. This is illustrated in Figure 3, where almost all
territories are coloured. The most significant number of vul-
nerable hosts belong to the Asia-Pacific Network Information
Centre (APNIC), while the region with the least vulnerable
hosts is the African Network Information Centre (AFRINIC).

Figure 4a, displays the most prevalent vulnerable countries
based on the number of vulnerable addresses in each territory.
We use the term prevalent to define countries that appear
most in the three categories, i.e., number of vulnerable hosts,
number of spoofing hosts and number of IPv6 vulnerable
hosts. Interestingly, most vulnerable hosts in France have
been collected through the 4in6 and 6in4 scans, while Chinese
vulnerable hosts are prevalent throughout all IPv4 scans.

The percentages of vulnerable IPv4 hosts that are in China,
France, Japan, the USA, Brazil, Australia and India are ap-

Table 2: Scan results for IPv4 and IPv6 hosts. The total vulnerable hosts are shown followed by the results of each scan type.

Standard Scan Subnet Spoof Scan Spoofing Scan Echo/Reply Scan TTL Expired Scan

Protocol Total Replied Unique Replied Unique Replied Unique Replied Unique Replied Unique

IPIP 530,100 88,123 8282 182,668 36,180 66,288 2068 411,565 256,225 105,833 21,820
GRE 1,548,251 612,479 159,673 517,331 394,932 219,213 219,213 509,433 95,735 193,629 145,641
IP6IP6 217,641 860 319 846 846 333 333 216,080 208,894 224 16
GRE6 1806 286 3 900 366 360 4 1219 238 167 20

Table 3: Mixed IPv4/6 scans. The total number of vulnerable
hosts is shown followed by the results of each individual scan.

Proto. Total Scan Type Replied Unique

4in6 130,217 Spoofing 4113 1158
TTL Expired 127,810 122,531

6in4 2,126,018 Spoofing 1,650,846 464,155
TTL Expired 465,304 405,252
IPv4-Mapped src 664,532 22,498
6to4 src 1,048,559 85,178

Figure 3: The number of vulnerable IPv4/6 hosts per territory,
where colours represent numbers from 10 to 10 million.

proximately 0.52%, 0.56%, 0.08%, 0.01%, 0.16%, 0.33%,
0.33%, respectively. The top 5 most vulnerable countries con-
cerning the percentage of vulnerable IPv4 hosts are Benin,
Zimbabwe, Jamaica, Laos and Monaco with 2.78%, 2.69%,
1.45%, 1.4% and 1.15%, respectively (see Appendix).

4.1.4 Spoofing-capable hosts. A total of 4276 ASs from
173 countries contained hosts that were able to completely
spoof their source IP address, i.e., contained spoofing-capable
hosts (not including subnet-spoofing hosts). Over all scans
combined, we detected 1,858,892 spoofing-capable hosts.
The red bars (second) in Figure 4a show the number of
spoofing-capable hosts in each of the most prevalent countries.
Notable is that China has more spoofing-capable hosts than all
other countries combined, i.e., China contains approximately
59% of all spoofing-capable hosts as identified by our scans.
The top 5 countries with the most spoofing-capable hosts
are China, Australia, Brazil, India and the USA. In terms of

ASs, the red bars (second) in Figure 4b show the number of
spoofing-capable hosts in each of the most prevalent coun-
tries. It is clear from this Figure that many spoofing-capable
addresses are allocated by the same ASs, with AS Chinanet
(CHN) having approximately 24% of all identified spoofing
addresses. Furthermore, all top 5 most spoofing-capable ASs
belong to the APNIC.

4.1.5 Autonomous System analysis. As of the writing of
this paper, there are over 110k allocated ASs [4]. We have
identified a total of 11,027 vulnerable ASs, indicating that
roughly 1% of ASs had at least one vulnerable host. Even
though the number of vulnerable hosts is widely distributed
between ASs, it is not evenly distributed amongst them. Fig-
ure 4b shows that certain ASs are exceptionally vulnerable.
The most vulnerable ASs are CHN, Free SAS (FSAS), China
Unicom China169 Backbone (CUCB), Softbank BB Corp.
(SBB), China Mobile (CM), TPG Internet Pty Ltd (TIPL),
China Mobile Communications Corporation (CMCC). ASs
CHN and FSAS have roughly 35% of vulnerable hosts among
themselves, while in terms of IPv6, AS FSAS has 49% of
vulnerable hosts. What is also evident is the re-occurrence of
particular ASs among the three categories. More specifically,
ASs CHN, CUCB and TIPL are prevalent throughout all three
categories, while AS CHN is always in the top three. Based
on these observations, we conjecture that specific software or
configuration practices used by some ASs may be the reason
why they are more vulnerable than others.

4.1.6 IPv6 scanning bias. Some territories might have a
higher IPv6 adoption than others, leading to a bias towards
territories with higher adoption. The countries with the great-
est IPv6 adoption, based on addresses accessing Google at the
time of writing, are France, Germany and India, with 75.45%,
72.68%, and 70.22% IPv6 adoption, respectively [21]. Since
France has the greatest IPv6 adoption, it is expected to have
more vulnerable IPv6 hosts. This bias towards France is es-
pecially noticeable by the yellow bar (second) in Figure 4a,
where it is the most vulnerable country regarding IPv6 hosts.
Although having the highest IPv6 adoption, the absolute num-
ber of vulnerable IPv6 hosts in France remains concerning,
especially considering that other territories, such as Germany,
appear exceptionally low on the list of vulnerable countries.

4.1.7 Open ports & domains. We used Shodan’s Inter-
netDB API [29], an IP lookup database updated weekly, to

Table 4: Top 3 domains and open ports for each protocol for a subset of hosts. The total number of hosts that were queried is
shown, followed by the top 3 domains and open ports. The number next to the domains indicates the number of vulnerable hosts
that belong to that domain, while the percentage next to a port indicates how many vulnerable hosts had this port open.

Protocol Total Hosts Top 3 ports Top 3 domains

Top 1 port Top 2 port Top 3 port Top 1 domain Top 2 domain Top 3 domain

IPIP 10,000 HTTP (54%) HTTPS (53%) SNMP (23%) fbcdn (2156) myqcloud (881) aiwan4399 (577)
IP6IP6 3099 HTTPS (79%) HTTP (67%) SSH (7%) fbcdn (2015) whatsapp (357) infinitum (65)
GRE 10,000 BGP (37%) GTP-C (18%) GTP-U (18%) telenet (310) windstream (221) 163data (194)
GRE6 24 HTTP (42%) SSH (29%) BGP (25%) N/A N/A N/A
6in4 10,000 NTP (51%) SNMP (46%) HTTP (5%) proxad (620) 49-tataidc (476) 14-tadaidc (327)
4in6 1258 SNMP (43%) NTP (16%) HTTP (14%) bbtec (384) synology (29) byteark (27)

CN FR JP USA BR AU IN
0K

500K

1,000K

1,500K
Total Vulnerable Hosts

Spoofing-Capable Hosts
Vulnerable Hosts (IPv6)

(a) Country-specific statistics.

CHN FSAS CUCB SBB CM TIPL CMCC
0K

200K

400K

600K

800K Total Vulnerable Hosts
Spoofing-Capable Hosts
Vulnerable Hosts (IPv6)

(b) AS-specific statistics.

Figure 4: Country and AS statistics. The y-axis represents
the number of vulnerable hosts and the x-axis represents the
most relevant countries (4a) or ASs (4b). The first bar (blue)
denotes the number of vulnerable hosts, the second (red) bar
denotes the spoofing-capable hosts, and the third (yellow) bar
denotes the number of vulnerable IPv6 hosts.

identify common open ports and domains on vulnerable hosts.
We retrieved information on a subset (10k) of hosts for each
protocol. For many of the collected vulnerable hosts, no in-
formation was available through Shodan’s InternetDB; thus,
we continuously queried until we had enough information for
each protocol. As a result, we assume that the collected data
may be biased towards systems that did not block Shodan’s
scans and/or had available information about them. Further-
more, for some protocols, such as IP6IP6, GRE6 and 4in6, we
have collected information on less than 10k results. Table 4

shows each protocol’s top 5 domains and open ports.

GRE ports. The three main open port protocols for GRE
hosts in the 10k subset are the Border Gateway Protocol
(BGP), GPRS Tunnelling Protocol User Plane (GTP-U) and
GPRS Tunnelling Protocol Control (GTP-C). BGP may utilise
GRE for its Tunnel Encapsulation attribute, as defined in
RFC 9012 [48]. This attribute allows BGP routers to ex-
change packets in disconnected paths. On the other hand,
GTP-C and GTP-U are used in mobile networks to transport
tunnelled packets [61]. Furthermore, GRE can act as an al-
ternative to these protocols, namely, transfer data in mobile
networks [19, 61]. Based on the findings for GRE in Table 4,
we infer that vulnerable hosts having ports 2123 (GTP-C) and
2152 (GTP-U) open most likely belong to mobile networks,
while hosts port 179 (BGP) are BGP routers.

IPIP & IP6IP6 ports. Unlike GRE, the most common
open port protocols for IPIP hosts are HTTP, HTTPS, and
Simple Network Management Protocol (SNMP). A total of
2521 vulnerable hosts have only port protocols HTTP and
HTTPS open, while 4571 vulnerable hosts have at least port
protocols HTTP and HTTPS open at the same time. Similar
observations are present in the case of IP6IP6 hosts. Based
on the observations of open ports, we hypothesise that many
IPIP and IP6IP6 vulnerable hosts are mainly servers.

6in4 & 4in6 ports. For 6in4 hosts, the three most common
open ports are Network Time Protocol (NTP), SNMP and
HTTP. 3715 vulnerable hosts only have the NTP port open,
while 3073 hosts only have the SNMP port open. A total of
1273 vulnerable hosts have only SNMP and NTP ports open
simultaneously. With 4in6 hosts, the same three port protocols
are prevalent, with SNMP being the most common open port.
447 vulnerable hosts only have the SNMP port open, while
153 only have the NTP port open. Because HTTP/HTTPS
are not as prevalent (5% and 14%), we hypothesise that most
6in4 and 4in6 vulnerable hosts are routers.

Domains. For IP6IP6 and IPIP, 80% and 59% of vulnera-
ble hosts have hostnames, respectively. In contrast, only 29%

of vulnerable GRE hosts have hostname records. The most
prevalent domain amongst IPIP and IP6IP6 vulnerable hosts is
fbcdn, which is Facebook’s Content Delivery Network (CDN),
while for GRE and 6in4, the most prevalent domains are Te-
lenet (Telenet ISP) and Proxad (Free ISP), respectively. For
IPIP and IP6IP6, 35.81% and 65.5% of vulnerable hosts have
at least one hostname with the substring “cdn”, respectively,
indicating that they may belong to a CDN. For all other pro-
tocols, the percentage of hostnames with the substring “cdn”
ranges from 0% to 2.5%.

4.1.8 Scanning Limitations. Our scanning methodology
might introduce false negatives due to packet loss. For ex-
ample, a vulnerable host might receive a probe, decapsulate
it, and forward it, but the forwarded packet might be lost in
transmission. As a result, our scanner will not catalogue it as
vulnerable since it has not received a reply.

Furthermore, when scanning from a specific address, there
is always the possibility of getting blocklisted, meaning that
initial scans might receive more replies than those conducted
at a later time. Ideally, each scan would need to be conducted
from a new location and address to guarantee that all hosts
being scanned will receive the sent probes.

Scanning from multiple distinct geographic locations is
essential to get the most accurate scanning results. In our
study, we scanned from three locations, though source address
filtering mechanisms could still have impacted our results.

Lastly, spoofing scans have an inherent false negative risk,
since a host might filter most spoofed addresses but not all.
To identify such hosts, one would need to repeat the spoof-
ing scans multiple times with different spoofed inner source
addresses. Due to ethical reasons, we did not use this method-
ology but opted for a single spoofed address instead.

4.2 Are others also scanning?

To determine whether others were aware of the issues we
discovered or were scanning for the known IPIP vulnerability,
we set up two servers, one in the UK and one in the US, to
monitor incoming traffic for tunnelling packets. This mea-
surement was started on 25 August 2023 and was stopped
on 4 February 2024. We mainly detected GRE packets with
seemingly random content and an empty or 512-byte UDP
payload. We conjecture that these packets are generated by
hosts infected by the Mirai botnet [42]. A single IPIP scan
was detected on 21 September 2023 that had the payload
GET / HTTP/1.1\r\nHost: www\r\n\r\n. This is the pay-
load used by Yannay’s public IPIP scanning tool.3 Overall,
this shows that few researchers or organisations are scanning
for vulnerable tunnelling hosts.

3We contacted Yannay, who informed us this was not one of his scans.

5 Attacks

In this section, we demonstrate that vulnerable hosts enable
new DoS attacks. Note that spoofing-capable hosts also enable
an attacker to spoof a packet’s source address, which in turn
enables attacks such as DNS spoofing [28], traditional am-
plification DoS attacks [22, 45], off-path TCP hijacking [47],
SYN floods [17], certain Wi-Fi attacks [63], and so on.

5.1 Routing loop DoS

While testing the 6in4 scan, we observed that an IPv6 packet
with as destination ::IPV4_ADDRESS_IN_HEX causes Linux
to loop the packet on the tunnelling interface until the hop
limit field reaches zero. That is, this packet is sent and trans-
mitted 256 times on the same interface, resulting in a trivial
DoS attack. Note that this is different from the observations
of Nakibly and Arvo [2] and the warning in RFC 6324 [44]:
our server was not vulnerable to existing looping attacks, but
only was vulnerable when using an IPv6 address that starts
with zeros and is followed by the encoded IPv4 address.

5.2 Abusing abuse reports

We received two abuse reports while performing our scans.
The first was in response to a partial test scan where SYN
packets were sent to port 80, and SYN/ACK responses were
measured. The second was in response to a standard IP6IP6
scan. In both cases, we explained the research to our hosting
provider, and we were allowed to continue our scans, though
we did not complete or perform other SYN-based scans.

The identified vulnerable hosts enable an adversary to spoof
traffic that triggers abuse reports towards a victim. This can
lead to an administrative DoS attack since receiving a large
number of abuse reports may cause the hosting provider to
disable the victim’s account. In particular, an adversary can
spoof malicious traffic that appears to come from the victim
towards a host that is known to quickly send abuse reports.
For example, the abuse reports we received were in response
to traffic where the source address could have been trivially
spoofed. This means an adversary can spoof such traffic to-
wards different organisations and, as a result, cause a flood
of abuse reports towards the victim. A flood of abuse reports
would, at best, cause an administrative overhead for the vic-
tim and, at worst, may cause the termination or temporary
suspension of the victim’s account. When the victim does
not reside on the cloud, these abuse reports can cause system
administrators to blocklist the victim’s IP address, which can
lead to the victim being unable to access large parts of the
internet.

Although we did not test such an attack in practice due to
ethical concerns, our current observations indicate that such
an abusing-abuse-reports attack is feasible.

Attacker Victim1 Victim2

Figure 5: Ping-Pong Amplification Attack. The attacker sends
the encapsulated packet to the first victim, who will decap-
sulate the header and forward it to the second victim. This
continues until there are no more headers in the datagram.

5.3 Ping-Pong Amplification attack

Our first novel DoS attack, called the Ping-Pong amplifica-
tion attack, loops packets between vulnerable hosts. The idea
is that an adversary constructs a tunnelling packet that has
another tunnelling packet as an inner packet, and so on, until
the maximum packet size, i.e., Maximum Transmission unit
(MTU), is reached. The inner packets’ IP header has the other
vulnerable host as the destination, meaning the (decapsulated)
packet is constantly sent between the two hosts (see Figure 5).
For example, given that IP header i has source address A
and destination address B, then the next IP header i+1 will
have source address B and destination address A. The attacker
sends the constructed packet to one of the two victims, which
will forward the inner packet to the second victim. This con-
tinues until there are no inner packets to be decapsulated.
Note that the attack is not restricted to only two hosts, i.e., the
packet could be constructed to loop between several hosts.

This attack is considered an amplification attack because it
amplifies the amount of bytes-per-second sent by the attacker.
For example, assume that the attacker sends p Ping-Pong
packets and that the MTU equals m. Letting a denote the
minimum amount of bytes in an IP header, which is 20 for
IPv4 and 40 for IPv6 [14, 32], then a single Ping-Pong packet
can contain h = m/a headers. Without loss of generality, we
will assume that each packet is composed only of IP headers,
i.e., that the adversary is abusing the IPIP or IP6IP6 protocol.

When sending a single Ping-Pong packet, the total bytes
consumed by the first victim is the sum of all packets received
and sent by them. The victim will receive the packet of size m
and will forward the packet after stripping a header of a bytes.
The second time this packet is received, it will be m−2a
bytes since the second victim also stripped a header before
forwarding it back. This continues until there are no headers
to be stripped. As a result, when sending a single Ping-Pong
packet, the total number of bytes θ1 received and sent by the
first host can be calculated as follows:

θ1 =
h

∑
k=0

(m−a · k) = 1
2
· (h+1) · (2m−a ·h)≈ h ·m

2
(1)

For the second victim, the total bytes θ2 are the same as θ1
with the only exception of the initial k = 0, which is only being

received by the first victim of the attack for every packet:

θ2 = θ1 −m ≈ h ·m
2

−m ≈ h ·m
2

(2)

The amplification factor f of the attack equals the total
bytes consumed by a victim over the initial total bytes sent
by the attacker:

f =
θ1

m
≈ θ2

m
=

h
2

(3)

We can further split θ into the inwards consumed traffic θin
and outwards traffic θout , where θin ≈ θout ≈ θ/2, with the
exact calculation for θout shown in the Appendix.

The theoretical maximum number of IP headers, i.e., inner
packets, that can be encapsulated in a single packet is 3276
for IPv4 and 1638 for IPv6, corresponding to a packet of
65,520 bytes [46]. In practice, such a large packet will likely
exceed the MTU of the path towards the victim(s) and would
require fragmentation at the IP level. However, IPv6 does not
support fragmentation [14], forcing the attacker to construct
packets that are smaller or equal to the MTU, which in practice
typically ranges between 1280 and 1500 bytes [25].

As an example, when constructing an IPIP packet of 1500
bytes, it can contain 75 headers. The total traffic caused by
this packet to the first victim is 56,250 bytes, resulting in an
amplification factor of 37.5. When sending an IPIP packet
of 3000 bytes instead, the amplification factor would be 75.
Furthermore, the theoretical maximum amplification factor
for IPv4 and IPv6 would be 1638 and 819, respectively. This
theoretical maximum would rely on all in-between nodes
having an MTU of at least 65,520. Against IPv4, the use of
IP fragmentation may alternatively be exploited.

5.3.1 Economic Denial Of Sustainability (EDoS)

EDoS refers to elevating a victim’s costs on the cloud [56].
These attacks are possible since many cloud providers use a
self-scaling model, automatically adapting resources to en-
sure availability and protect a host from a DoS attack [55].
Thankfully, some cloud providers only charge their clients
based on outgoing traffic, obsoleting traditional EDoS attacks
that overload a victim with inbound traffic to elevate costs.

Unfortunately, our Ping-Pong attack causes a host to gener-
ate large amounts of outbound traffic, making an EDoS attack
possible. A vulnerable host residing in the cloud could be
forced to forward traffic, counting towards outbound traffic
and causing additional costs to the victim.

5.4 Tunnelled-Temporal Lensing (TuTL)

In this DoS attack, the adversary sends traffic over multiple
different chains of vulnerable hosts, such that this traffic ar-
rives simultaneously at the victim. In other words, it abuses
tunnelling to create a TuTL effect on the victim. The core

5ms
5ms

10ms

10ms 5ms

Attacker Victim
12ms

2ms

5ms

Figure 6: Example TuTL attack. The attacker sends two pack-
ets across two different paths (dotted line and solid line), with
each edge denoting the latency of that connection.

idea is that we can recursively encapsulate tunnelling pack-
ets within each other to create different paths, i.e., chains of
hosts a packet will go through before reaching the victim.
Each path takes a different amount of time for the most-inner
packet to reach the victim. By carefully scheduling when to
send packets over different paths, all most-inner packets will
arrive simultaneously at the victim.

For example, assume the attacker identified five vulnerable
hosts as shown in Figure 6. The attacker then estimates all
latencies between the hosts, attacker, and victim. Once the la-
tencies are known, different paths are constructed towards the
victim. In Figure 6, two example paths are shown: the dotted
line path with a total latency of 32ms and the solid line path
with a total latency of 22ms. The attacker then sends a burst
of packets over the dotted line path and, after 10ms, sends a
second burst of packets over the solid line path. Consequently,
the two packet bursts will arrive at the victim simultaneously,
resulting in a peak of inbound traffic called the pulsing win-
dow. This pulse of inbound traffic is similar to pulsing and
shrew attacks and causes benign traffic to be dropped [36,41].

Our TuTL attack consists of three phases: the latency col-
lection, path exploration, and path and traffic scheduling.

5.4.1 Latency Collection

Given a list of vulnerable hosts, the following three types of
latencies are first collected:

1. Attacker to vulnerable host: To estimate the latency α

between the attacker M and a vulnerable host A, the attacker
will send a tunnelled packet to the vulnerable host, which will
decapsulate it and return the inner packet back to the adver-
sary. The path followed by the probe will be M → A → M.
The attacker can then estimate the packet’s Round-Trip Time
(RTT) and calculate the latency α as follows:

α ≈ RT T (M → A → M)

2
(4)

This assumes that the latency between the attacker and hosts
is equal in both directions.

2. Vulnerable host to vulnerable host: To estimate the la-
tency β between two vulnerable hosts A and B, the attacker M
sends a probe over the path M → A → B → M, i.e., the probe

passes through both hosts and then returns to the attacker. Let
α∗ denote the latency of B → M, i.e., between the attacker
and the second host, calculated similarly as in Equation 4.
The latency β between A and B can then be estimated as:

β = RT T (M → A → B → M)−α−α
∗ (5)

Here α comes from Equation 4. Unlike previously, we assume
that the latency from A to B may differ from B to A; thus, the
attacker must estimate both latencies for increased accuracy.

3. Vulnerable host to victim: To estimate the latency c
between a host A and a victim V , the attacker first estimates
the latency v between itself and the victim V , i.e., of the path
V → M. To achieve this, we assume that the victim runs a
public service that replies to external requests, e.g., a web ser-
vice that replies with a SYN/ACK in response to a TCP SYN.
Similar to Equation 4, we can then send probes and estimate
the latency v. The attacker then sends a tunnelled probe over
the path M → A →V → M, i.e., the probe reaches the host,
the victim, and then the victim replies with a SYN/ACK. Here
the probe’s inner-most header must have a spoofed source
address, i.e., the attacker’s address, so that the SYN/ACK is
sent back to the attacker. The latency c between a vulnerable
host and the victim can then be estimated by:

c = RT T (M → A →V → M)−α− v (6)

Here α comes from Equation 4.
To eliminate outliers, we collect 1000 RTTs for each latency

and pick the median as the latency estimate.

5.4.2 Path Exploration Algorithm

The next step in our attack is to construct paths with different
latencies towards the victim. To simplify this task, we first
gather paths of increasingly large lengths d, where the length
of a path is defined as the number of vulnerable hosts a packet
travels through. To calculate the latency ℓ of a path, we first
define α as the latency between the attacker and the first
host. Furthermore, let βi be the latency between the host in
position i and i+1 of the path, and let c be the latency between
the last host of the path and the victim. We get:

ℓ= α+
d−1

∑
i=1

(βi)+ c (7)

We created a Breadth-First-Search (BFS) method to iden-
tify possible paths towards the victim. This BFS search pri-
oritises paths of lower depths. The BFS algorithm calls a
function which adds hosts to a path until the given depth is
reached. Before adding a path to the solutions, it ensures that
the current path introduces a variance in latency compared to
existing paths to avoid choosing paths with latencies that are
too similar. This latency variance threshold is set to 10ms.

The function also tracks the number of bytes each host
will process under the selected paths. If a host exceeds a
set amount of bytes, no new paths can include that host. This
ensures no intermediate host suffers from a DoS, which would
otherwise delay packets’ arrival at the victim. Moreover, at
each depth of the function, we randomise the list of available
hops to distribute the traffic each host will receive.

The limit on the number of bytes that a host can process
also serves as an implicit stop condition for the BFS: when
there is an insufficient number of hosts available to cover a
given depth, the search can terminate.

5.4.3 Path & Traffic Scheduling

After identifying paths, the attacker sorts them based on la-
tencies and estimates the switch time sti between paths. A
switch time is when the attacker must switch from sending
bursts of packets over path pi to sending packets over the next
path pi+1. For instance, in Figure 6, the attacker sends bursts
of packets over the path with a latency of 32ms, and after
10ms, switches to sending packets over the path with 22ms
latency. This ensures the bursts arrive almost simultaneously
at the victim. In general, the switch time sti equals:

∀i ∈ Z,0 ≤ i < N : sti = ℓi − ℓi+1 (8)

where N is the number of paths and ℓi and ℓi+1 are the laten-
cies of the current and following path.

With the switch times determined, the attack can start by
sending bursts of packets over the path with the biggest la-
tency, and when the switch time for that path has expired,
sending bursts of packets over the next path, etc. We call the
time frame where bursts of packets are sent to a specific path
the sending window. The burst size should be big enough to
generate enough traffic towards the victim, but small enough
to ensure the attacker does not miss the next sending window.
We can estimate the resulting amplification factor a of our
TuTL attack by

a =
bv

ba
(9)

where ba is the number of packets that the attacker sends dur-
ing a given duration, i.e., the attacker’s bandwidth, and bv is
the number of packets the victim receives over a chosen 20ms
window, i.e., the victim’s bandwidth at specific 20ms. Estimat-
ing the victim’s bandwidth this way prevents the amplification
factor from being influenced by outliers. For example, if a
victim receives 95% of the traffic in 20ms but will then re-
ceive the other 5% over 500ms, the amplification factor would
have been severely influenced when measuring the victim’s
bandwidth over the whole receive duration.

5.4.4 Experiments & Results

Experimental setup. To evaluate the TuTL attack in prac-
tice, we cannot use real vulnerable hosts due to ethical con-
cerns, and instead, we set up five vulnerable IP6IP6 hosts. Two

0 0.25 0.5 0.75 1 1.25 1.5 1.75
0

100

200

300

400

500

600

700

800

900

Time(s)

Pa
ck

et
s/

20
m

s

Attacker
Victim

Figure 7: TuTL experiment with two hosts (5700 packets, 16
paths, sent in 1.20s, received in 0.58s). The X-axis shows, on
the left of the dotted horizontal line, the number of packets
sent by the attacker, and on the right the number of packets
received by the victim, in buckets of 20ms. Time on the X-
axis is synchronised between victim time and attacker time.

servers are in the US, one in France and two in Singapore. The
diverse locations of these servers allow us to collect latencies
simulating real/non-trivial networks in the wild. We restricted
the size of each packet sent by the attacker to 1280 bytes (32
headers) to ensure that an intermediary router would not drop
any packet. Additionally, we significantly reduce the paths
towards each vulnerable host by ensuring they will receive
no more than 200Mb/s of inwards or outwards traffic during
the attack simulation. We conducted several experiments with
different amounts of hosts to analyse how the attack scales.
Furthermore, we ran each experiment ten times and estimated
the average amplification factor and the standard deviation.

To measure the amplification factor of the TuTL attack, we
use Equation 9. The enumerator will consist of the packets
received by the victim at the tallest 20ms bucket over 20ms,
while the denominator will consist of the packets sent by the
attacker over the whole sending period. We do this to estimate
the worst-case scenario a victim will have to defend against.

Resulting amplification factors. An example of our ex-
periments with two vulnerable hosts can be seen in Figure 7.
The time is synchronised between the victim and the attacker.
In the experiment, the pulse is noticeable as a peak that the
victim receives in a 20ms bucket (examples with 3, 4 and
5 vulnerable hosts are in the Appendix). When we use two,
three, four, and five hosts, the average amplification factor
is 11, 13, 14, and 16, respectively, while the standard devia-
tion is 2, 2.5, 2, and 2.6, respectively. We can deduce that the
attacker, with as few as two hosts, can map their traffic at a
shorter time frame and thereby amplify their bandwidth. With

more hosts, the attacker’s amplification factor increases, as
seen by the taller peak at the victim.

DFS vs BFS. In Figure 7, where only two hosts are intro-
duced, we obtain the longest attack time of 1.20 seconds. The
attack time is longer than all other experiments since, with
only two hosts the BFS acts more like a Depth-First-Search
(DFS). For example, assume attacker M, hosts A and B and
victim V . The path M → A → B →V will have the same la-
tency with all other paths of depth 2, namely M →B→A→V .
The same holds with all other depths greater than 1. In con-
trast, this does not hold when introducing more hosts. For
example, path M → A →C →V is unlikely to have the same
latency as path M → A → B →V . As a result, when only two
hosts are present, and since we only choose one path from
each depth because of the 10ms difference threshold, we will
retrieve longer paths with longer total latencies.

Latency differences between paths. In Figure 7, it is also
apparent that some of the packets miss their pulsing window
at the victim and arrive earlier than expected. All experiments
present this behaviour when acquiring paths with a DFS-like
approach. This is because, with a DFS-like approach, the
paths have bigger latency differences (approximately 100ms
difference). When this phenomenon occurs, multiple bursts
are sent before switching to the following path (seen by the
red peaks in Figure 7), exceeding the 20ms buckets we anal-
yse. Finally, with this observation, we can deduce that latency
differences between paths greater than 20ms will cause some
packets to miss their pulse window. In contrast, having a very
small latency difference between each path will cause the at-
tacker to miss the next sending window, making some packets
arrive later. When more vulnerable hosts are introduced, lower
latency paths will be added first, meaning latencies closer to
each other but still respecting the 10ms threshold difference
will be chosen first. Since we introduce more hosts at each ex-
periment, more paths with closer latencies are selected; thus,
more packets will arrive at the same 20ms bucket.

5.4.5 Limitations and Discussion

MTU. Respecting an MTU in each packet means an attack’s
theoretical maximum latency is significantly reduced. The
typical MTU for an interface is approximately 1280 to 1500
bytes [25], corresponding to 75 IP headers in IPIP or 37 IPv6
headers for IP6IP6. Furthermore, an adversary must ensure
that each vulnerable host’s MTU is great enough to support
the attacker’s traffic, especially for early receiving hosts in
long paths.

Furthermore, since with IPv6, intermediary routers will
drop packets exceeding their MTU [14], an attacker using
a tunnelling protocol such as IP6IP6 must ensure that the
packet being sent is smaller in size than the respective MTU
of each node in the path to the destination. Furthermore, frag-
mentation can introduce latency differences concerning the

attacker’s original anticipated path latency due to the reassem-
bly of the fragmented packets at the victim’s side [33].

Host Bandwidth. Another attack limitation stems from the
attacker’s need to ensure that the intermediary hosts’ band-
width is not exceeded. When a host’s bandwidth is exceeded,
packets might be dropped or significantly delayed, impacting
estimated latencies and the resulting attack efficiency.

Latency. Measuring the latency with our methodology be-
comes increasingly more time-consuming as the number of
vulnerable hosts available for the attack increases. Addition-
ally, since the sent packets will be encapsulated and checked
before being forwarded back, these computations can also
increase the variance of the RTT for longer paths. That be-
ing said, this was not a noticeable issue with the vulnerable
tunnelling hosts used in our experiments.

A second aspect to consider is the latency’s evolution over
short and longer durations. If latencies change significantly
over short periods, such as during a lensing attack, the attack’s
efficiency decreases. If the latencies change over longer peri-
ods, the adversary would have to measure them before each
attack. However, in the original lensing attack of Rasti et al.,
the short-term variation in latencies towards DNS servers was
measured, and it was found that most servers do not suffer
from widely varying latencies [50, §3]. Additionally, in their
experiments, they found that path latencies exhibited very
little variance over a longer duration of at least 10 days. We
conjecture that the same is true for most vulnerable tunnelling
hosts. To validate this, we conducted the TuTL attack with 5
servers with three-day-old latencies. We gathered an average
amplification factor of 12.6 and a standard deviation of 1.98. It
is then apparent that the latencies do not change significantly
in a few days to render the TuTL attack obsolete to conduct,
even though the difference in amplification is observable.

Reduced Packet Sizes at Victim. When using paths with
a large depth, more tunnelling packets need to be recursively
encapsulated within each other, while only the most-inner
packet arrives at the victim. With long paths, the packet arriv-
ing at the victim can be substantially smaller than the original
packet sent by the attacker. However, this problem is reduced
by using a BFS algorithm to collect paths since it prioritises
paths of shorter depth. Moreover, long paths are only needed
when fewer vulnerable tunnelling hosts are available. Addi-
tionally, even when longer paths are used, we can assume that
amplification in terms of the number of packets is still severe
since for each packet a victim receives, they must waste com-
putational resources to process and validate the packet [9].

6 Defences

In this section, we will discuss two types of defence groups,
namely Host Defences and Network Defences.

6.1 Host Defences

Host Defences can be deployed by hosts without relying on
the network for security. A first defence that can be employed
is to only accept tunnelling packets from trusted source IP ad-
dresses. This would cause a host to stay hidden from Internet-
wide scans and prevent it from accepting tunnelling packets
from arbitrary sources. An IP address to which the host pre-
viously transmitted packets could be an example of a trusted
source IP address. The host could maintain a list of IPs for
which it will decapsulate packets based on previous inter-
actions, and tunnelled packets from different IPs should be
dropped. Unfortunately, since the discussed tunnelling pro-
tocols do not use authentication, an adversary that can spoof
source IP addresses can still send tunnelling packets to the
host by spoofing a trusted source address.

In the case of mGRE, or any multipoint tunnelling setup
where the remote address must be left empty, the host should
ensure that incoming traffic is only served if it originates from
desired addresses or known neighbours. This can be done by
configuring the firewall of that device to drop encapsulated
packets where the source address is from a non-trusted source.

As mentioned in Section 2, vulnerable hosts implementing
GRE tunnels can remain hidden from an attacker’s Internet-
wide scan by utilising a non-default GRE key. Unfortunately,
this key field is not an ideal authentication mechanism, and if
explicitly targeted, an attacker can trivially learn the key from
unencrypted packets or even brute-force the key.

Ideally, a host should use a more secure set of protocols to
provide authentication and encryption, e.g., IPsec [18]. Since
IPsec can transport any IP protocol, it can be used to protect
all discussed tunnelling protocols: a host should only accept
tunnelling packets that are protected using IPsec.

6.2 Network Defences

Network Defences can be implemented on routers or other
Internet middle-boxes to prevent or limit the damage of at-
tacks. First, as shown in Table 2 and 3, many discovered hosts
can completely spoof their source address due to inadequate
source address filtering. Consequently, a network can prevent
an adversary from forcing hosts to spoof packets by incorpo-
rating ingress and egress traffic filtering [54].

Deep packet inspection can also be used to detect likely
malicious tunnelling packets. For instance, several of our at-
tacks involve sending recursively nested tunnelling packets.
Such unusual packets can be detected and dropped to limit
the damage that an attacker can inflict. For example, the net-
work could drop packets where the number of encapsulated
headers exceeds a number x, where x is the number of tun-
nelled hosts in the network. Deep packet inspection could
then be expanded to inspect other characteristics indicating
that an encapsulated packet might have malicious intent. For
example, inner packets with TTL value 0 should be dropped

since such a packet cannot exist in the wild and can be used
by attackers to identify vulnerable hosts. To the best of our
knowledge, this is a newly suggested defence.

In some networks, it may also be possible to block all ingo-
ing or outgoing unencrypted tunnelling packets. For instance,
if a host uses IPsec in combination with GRE but, due to
a misconfiguration, also accepts unencrypted GRE packets,
the network can block unencrypted GRE packets. The host
would still be able to receive IPsec traffic and hence function
normally while being protected from attacks.

7 Related Work

Tunnelling security. Closely related work is an excellent
1-page report by Yannay where the IPv4 Internet is scanned
for IPIP hosts using a standard scan [39]. This inspired us to
design additional scanning methods, scan the IPv6 Internet,
test other tunnelling protocols, including GRE, GUE, 4in6,
and 6in4, and investigate DoS attacks. While Yannay discov-
ered roughly 150k vulnerable IPIP hosts [40], we discovered
530,100 vulnerable IPIP hosts by incorporating additional
scanning methodologies. We also scanned for other IPv4/6
tunnelling protocols, and we explored DoS attacks. Phenoelit
discussed how to inject traffic into a GRE tunnel but did not
consider GRE hosts that accept traffic from any source [38,64].
The security of IPv6-in-IPv4 has also been studied in various
works [1, 3, 11, 23, 34]. Kristoff et al. conducted an Internet-
wide scan searching for open 6in4 hosts revealing 1,546,843
vulnerable IPv4 hosts [34], though their methodology only
consisted of the ICMPv6 Echo/Reply scan.

Temporal Lensing. Rasti et al. introduced temporal lensing
to perform DoS attacks [50]. They abused DNS recursion to
create traffic pulses and used the Kings method of estimating
latencies by utilising DNS resolvers close to the DNS vic-
tim [24]. These DNS resolvers are utilised to cause a temporal
lensing attack through a scheduler optimised to choose which
DNS resolver based on their latency and the probability that
the message will arrive at a specific pulsing window.

Rasti et al. experimented with public DNS resolvers, re-
sulting in an estimated amplification factor of 14 with a low-
bandwidth attacker (500pps and 75 hosts) and 5 with a high-
bandwidth attacker (20,000pps and 1201 hosts) [50]. It is
non-trivial to compare this to our results because, due to eth-
ical reasons, we were limited in using our own vulnerable
tunnelling hosts during the evaluation, while Rasti et al. could
use 3000 public DNS servers. Nevertheless, using only 5
vulnerable tunnelling hosts, we already achieved an average
amplification factor of 16, and we conjecture that using more
vulnerable hosts would further increase the amplification fac-
tor. One advantage of our TuTL attack is that longer paths can
be created, resulting in a higher amplification factor.

Spoofing-capable networks. Beverly et al. identify net-
works from which the client can spoof their source address,
and they measure how many IP addresses are spoofable [6].
Their methodology allows clients to test their networks using
a “spoofer” software that will send spoofed UDP traffic to a
researcher-controlled server. The project has since expanded
to include IPv6 addresses [7]. The latest results, as of the
writing of this paper, show that 560 IPv4 (including NAT) and
252 IPv6 ASs can at least partially spoof.

Kührer et al. use broken public DNS proxies to identify
ASs that allow spoofing [35]. A DNS proxy is considered
broken if it forwards the DNS request without first changing
the source IP, ultimately forwarding packets which should be
filtered for spoofing. By sending DNS queries to these broken
DNS proxies and receiving the traffic back, they catalogue
the AS where the DNS proxy resides as poorly filtered. The
paper identified a total of 2692 ASs that allow spoofing.

While the two aforementioned papers have discovered a
total of 560 and 2692 spoofing ASs, respectively, our paper
showcases that a total of 4276 ASs have the ability to spoof.

8 Conclusion

This paper is the first to systematically analyse the security
of tunnelling hosts on the IPv4 and IPv6 Internet. Our large-
scale Internet-wide scans identified over 4 million hosts that
accept unencrypted tunnelling packets from any source. This
is concerning because vulnerable hosts can be abused as
one-way proxies, and many of these hosts also allow an ad-
versary to spoof a packet’s source address, enabling various
kinds of known and novel attacks. Moreover, we also demon-
strated that these vulnerable hosts enable novel DoS attacks,
such as our TuTL and Ping-Pong attacks. The TuTL attack
is especially concerning since it can be abused to perform
DoS attacks against any third-party host on the Internet. Our
measurements also show that many Autonomous Systems,
more than four thousand in total, do not (properly) imple-
ment source address filtering, thereby allowing the spoofing
of source IP addresses. We hope our results will motivate and
guide administrators to secure tunnelling hosts better.

Acknowledgments

This research is partially funded by the Research Fund KU
Leuven and the Cybersecurity Research Programme Flanders.

References

[1] Shubair A Abdulla. Survey of security issues in IPv4 to
IPv6 tunnel transition mechanisms. International
Journal of Security and Networks, 12(2):83–102, 2017.

[2] Gabi Nakibly Michael Arov. Routing loop attacks
using IPv6 tunnels. In USENIX WOOT, 2009.

[3] Zeeshan Ashraf, Adnan Sohail, Sohaib A Latif,
Abdul Hameed Pitafi, and Muhammad Yousaf Malik.
Challenges and mitigation strategies for transition from
IPv4 network to virtualized next-generation IPv6
network. Int. Arab J. Inf. Technol., 20(1):78–91, 2023.

[4] Number resource allocation data.
https://www.iana.org/numbers/allocations/,
2024. Accessed on March 12, 2024.

[5] Fred Baker and Pekka Savola. Ingress Filtering for
Multihomed Networks. RFC 3704, March 2004.

[6] Robert Beverly and Steven Bauer. The spoofer project:
Inferring the extent of source address filtering on the
internet. In USENIX SRUTI, volume 5, pages 53–59,
2005.

[7] Robert Beverly and Steven Bauer. State of IP spoofing,
2023.

[8] Brian E. Carpenter and Keith Moore. Connection of
IPv6 Domains via IPv4 Clouds. RFC 3056, February
2001.

[9] Danilo Cerović, Valentin Del Piccolo, Ahmed
Amamou, Kamel Haddadou, and Guy Pujolle. Fast
packet processing: A survey. IEEE Communications
Surveys & Tutorials, 20(4):3645–3676, 2018.

[10] Liting Chang, Keyu Lu, Chao Li, and Zhaoxin Zhang.
ZMap performance in open DNS resolver discovery. In
ACCTCS, 2022.

[11] Lorenzo Colitti, Giuseppe Di Battista, and Maurizio
Patrignani. Discovering IPv6-in-IPv4 tunnels in the
internet. In IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2004.

[12] Dr. Steve E. Deering and Alex Conta. Generic Packet
Tunneling in IPv6 Specification. RFC 2473, December
1998.

[13] Dr. Steve E. Deering and Bob Hinden. IP Version 6
Addressing Architecture. RFC 4291, February 2006.

[14] Dr. Steve E. Deering and Bob Hinden. Internet
Protocol, Version 6 (IPv6) Specification. RFC 8200,
July 2017.

[15] Gopal Dommety. Key and Sequence Number
Extensions to GRE. RFC 2890, September 2000.

[16] Zakir Durumeric, Michael Bailey, and J Alex
Halderman. An Internet-Wide view of Internet-Wide
scanning. In USENIX Security, 2014.

[17] Wesley Eddy. TCP SYN Flooding Attacks and
Common Mitigations. RFC 4987, August 2007.

https://www.iana.org/numbers/allocations/

[18] Sheila Frankel and Suresh Krishnan. IP Security
(IPsec) and Internet Key Exchange (IKE) Document
Roadmap. RFC 6071, February 2011.

[19] Jens Gebert and Andreas Wich. Comparison of
provider backbone bridging, TRILL, GRE and GTP-U
in 5G for time sensitive industrial applications. In 2018
IEEE CSCN, pages 1–6, 2018.

[20] Robert E. Gilligan and Erik Nordmark. Basic
Transition Mechanisms for IPv6 Hosts and Routers.
RFC 4213, October 2005.

[21] Per-country IPv6 adoption, 2024. Accessed on
February 6, 2024 from https://www.google.com/
intl/en/ipv6/statistics.html#tab=
per-country-ipv6-adoption.

[22] Harm Griffioen, Kris Oosthoek, Paul van der Knaap,
and Christian Doerr. Scan, test, execute: Adversarial
tactics in amplification DDoS attacks. In ACM CCS,
2021.

[23] Kejun Gu, Liancheng Zhang, Zhenxing Wang, and
Yazhou Kong. Comparative studies of IPv6 tunnel
security. In ICNC-FSKD. IEEE, 2017.

[24] Krishna P. Gummadi, Stefan Saroiu, and Steven D.
Gribble. King: estimating latency between arbitrary
internet end hosts. In Workshop on Internet
Measurment. ACM, 2002.

[25] Matthias Göhring, Haya Shulman, and Michael
Waidner. Path MTU discovery considered harmful. In
ICDCS, 2018.

[26] Tom Herbert. UDP encapsulation in linux. In The
Technical Conference on Linux Networking, 2015.

[27] Tom Herbert, Lucy Yong, and Osama Zia. Generic
UDP Encapsulation. Internet-Draft
draft-ietf-intarea-gue-09, Internet Engineering Task
Force, October 2019. Work in Progress.

[28] Amir Herzberg and Haya Shulman. Fragmentation
considered poisonous, or:
One-domain-to-rule-them-all.org. In 2013 IEEE
Conference on Communications and Network Security
(CNS), pages 224–232. IEEE, 2013.

[29] InternetDB. https://internetdb.shodan.io/.
Accessed on May 17, 2024.

[30] IP to ASN. https://iptoasn.com/, 2024. Accessed
on February 6, 2024.

[31] ip-tunnel(8) Linux User’s Manual, December 2011.

[32] Internet Protocol. RFC 791, September 1981.

[33] Christopher A. Kent and Jeffrey C. Mogul.
Fragmentation considered harmful. SIGCOMM
Comput. Commun. Rev., 25(1):75–87, jan 1995.

[34] John Kristoff, Mohammad Ghasemisharif, Chris
Kanich, and Jason Polakis. Plight at the end of the
tunnel: Legacy IPv6 transition mechanisms in the wild.
In PAM 2021, Berlin, Heidelberg, 2021.
Springer-Verlag.

[35] Marc Kührer, Thomas Hupperich, Christian Rossow,
and Thorsten Holz. Exit from hell? reducing the impact
of Amplification DDoS attacks. In USENIX Security,
San Diego, CA, 2014.

[36] Aleksandar Kuzmanovic and Edward W Knightly.
Low-rate TCP-targeted denial of service attacks: the
shrew vs. the mice and elephants. In ACM SIGCOMM,
2003.

[37] Tony Li, Dino Farinacci, Stanley P. Hanks, David
Meyer, and Paul S. Traina. Generic Routing
Encapsulation (GRE). RFC 2784, March 2000.

[38] Felix Lindner. GRE: Attacking generic routing
encapsulation. Accessed on February 4, 2024 from
https://web.archive.org/web/20200216140042/
http://www.phenoelit.org/irpas/gre.html, 2000.

[39] Yannay Livneh. Spoofing IP with IPIP. Proof of
Concept or GTFO, 21:7, 2022.

[40] Yannay Livneh. Modern adventures with legacy
protocols. Insomni’Hack, 2023.

[41] Xiapu Luo, Rocky KC Chang, et al. On a new class of
pulsing denial-of-service attacks and the defense. In
NDSS, 2005.

[42] Joel Margolis, Tae Tom Oh, Suyash Jadhav, Young Ho
Kim, and Jeong Neyo Kim. An in-depth analysis of the
mirai botnet. In ICSSA, pages 6–12. IEEE, 2017.

[43] Austin Murdock, Frank Li, Paul Bramsen, Zakir
Durumeric, and Vern Paxson. Target generation for
Internet-Wide IPv6 scanning. In IMC, IMC ’17.
Association for Computing Machinery, 2017.

[44] Gabi Nakibly and Fred Templin. Routing Loop Attack
Using IPv6 Automatic Tunnels: Problem Statement and
Proposed Mitigations. RFC 6324, August 2011.

[45] M. Nawrocki, J. Kristoff, R. Hiesgen, C. Kanich, T. C.
Schmidt, and M. Wählisch. SoK: A data-driven view
on methods to detect reflective amplification DDoS
attacks using honeypots. In EuroS&P. IEEE, 2023.

https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
https://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
https://internetdb.shodan.io/
https://iptoasn.com/
https://web.archive.org/web/20200216140042/http://www.phenoelit.org/irpas/gre.html
https://web.archive.org/web/20200216140042/http://www.phenoelit.org/irpas/gre.html

[46] Tammy Noergaard. Chapter 4 - the fundamentals in
understanding networking middleware. In Tammy
Noergaard, editor, Demystifying Embedded Systems
Middleware, pages 93–190. Newnes, Burlington, 2010.

[47] Yepeng Pan and Christian Rossow. TCP spoofing:
Reliable payload transmission past the spoofed TCP
handshake. In IEEE S&P. IEEE Computer Society,
2024.

[48] Keyur Patel, Gunter Van de Velde, Srihari R. Sangli,
and John Scudder. The BGP Tunnel Encapsulation
Attribute. RFC 9012, April 2021.

[49] Charles E. Perkins. IP Encapsulation within IP. RFC
2003, October 1996.

[50] Ryan Rasti, Mukul Murthy, Nicholas Weaver, and Vern
Paxson. Temporal Lensing and Its Application in
Pulsing Denial-of-Service Attacks. In IEEE S&P, 2015.

[51] Internet Control Message Protocol. RFC 792,
September 1981.

[52] T. Saad, B. Alawieh, H. T. Mouftah, and S. Gulder.
Tunneling techniques for end-to-end VPNs: Generic
deployment in an optical testbed environment. Comm.
Mag., 44(5):124–132, May 2006.

[53] Reiner Sailer, Arup Acharya, Mandis Beigi, Raymond
Jennings, and Dinesh Verma. IPSECvalidate: A tool to
validate IPSEC configurations. In USENIX LISA, pages
19–24, 2001.

[54] Daniel Senie and Paul Ferguson. Network Ingress
Filtering: Defeating Denial of Service Attacks which
employ IP Source Address Spoofing. RFC 2827, May
2000.

[55] Gaurav Somani, Manoj Singh Gaur, Dheeraj Sanghi,
and Mauro Conti. DDoS attacks in cloud computing:
Collateral damage to non-targets. Computer Networks,
109:157–171, 2016. Traffic and Performance in the Big
Data Era.

[56] Marco Antonio Sotelo Monge, Jorge Maestre Vidal,
and Gregorio Martínez Pérez. Detection of economic
denial of sustainability (EDoS) threats in
self-organizing networks. Computer Communications,
145:284–308, 2019.

[57] Lion Steger, Liming Kuang, Johannes Zirngibl, Georg
Carle, and Oliver Gasser. Target acquired? evaluating
target generation algorithms for IPv6, 2023.

[58] Sudo Null IT News. Creating point-to-multipoint
tunnels based on GRE encapsulation in Linux 2.6.
Accessed on February 4, 2024 from

https://sudonull.com/post/201046-Creating-
point-to-multipoint-tunnels-based-on-GRE-
encapsulation-in-Linux-26, 2010.

[59] Networking - IP Sysctl Documentation.
https://www.kernel.org/doc/Documentation/
networking/ip-sysctl.txt. Accessed on February
1, 2024.

[60] ZMap IPv6. https://github.com/tumi8/zmap,
2016.

[61] Juha-Matti Tilli and Raimo Kantola. Data plane
protocols and fragmentation for 5G. In 2017 IEEE
CSCN, pages 207–213, 2017.

[62] Rene Tio, Suhail Nanji, Ajoy Singh, and Rollins Turner.
Layer Two Tunnelling Protocol (L2TP) Over ATM
Adaptation Layer 5 (AAL5). RFC 3355, September
2002.

[63] Mathy Vanhoef. Fragment and forge: Breaking Wi-Fi
through frame aggregation and fragmentation. In
USENIX Security, 2021.

[64] Andrew Vladimirov, Konstantin Gavrilenko, and
Andrei Mikhailovsky. Hacking exposed Cisco
networks: Cisco security secrets & solutions.
McGraw-Hill Education, 2016.

Appendix

The inwards traffic is the sum of all bytes received by a
victim, which includes every even step of the original θ1,
while outwards traffic is the summation of every odd step:

θout =

h
2−1

∑
k=0

(m−a · (2k+1)) (10)

Here, we assume that h, which is the number of tunnelling
protocol headers that fit into a single packet, is an even
number larger than two. We can work out this formula as
follows:

θout =
h
4
· (m−a+m−a · (h−1)) =

h ·m
4

(11)

The last step is valid because m = h ·a where m is the MTU
and a denotes the length of the tunnelling protocol header.

https://sudonull.com/post/201046-Creating-point-to-multipoint-tunnels-based-on-GRE-encapsulation-in-Linux-26
https://sudonull.com/post/201046-Creating-point-to-multipoint-tunnels-based-on-GRE-encapsulation-in-Linux-26
https://sudonull.com/post/201046-Creating-point-to-multipoint-tunnels-based-on-GRE-encapsulation-in-Linux-26
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://github.com/tumi8/zmap

US CN JP AU INFRBR
0M

200M

400M

600M

800M

1,000M

1,200M
1,239

302

166

402
349

694

852

of IPv4 Hosts (million)

Figure 8: Number of IPv4 Hosts of the most prevelant coun-
tries in Figure 4a. The y-axis is the number of IPv4 Hosts.
The x-axis is the Country.

BJ ZW JM LA MC
0%

1%

2%

3% 2.78 2.69

1.45 1.4
1.15

% of Vulnerable Hosts

Figure 9: Top 5 most vulnerable Countries based on percent-
age of hosts that are vulnerable (IPv4). The y-axis represents
the percentage of vulnerable hosts over the total number of
IPv4 hosts in that country. The x-axis represents the Country.

0 0.25 0.5
0

100

200

300

400

500

600

700

800

900

Time(s)

Pa
ck

et
s/

20
m

s

Attacker
Victim

(a) Experiment with three hosts
(2550 packets, 32 paths, sent in 0.50s, received in 0.078s).

0 0.25 0.5 0.75 1
0

100

200

300

400

500

600

700

800

900

1,000

Time(s)

Pa
ck

et
s/

20
m

s

Attacker
Victim

(b) Experiment with four hosts
(3700 packets, 38 paths, sent in 0.78s, received in 0.14s).

0 0.25 0.5 0.75
0

100

300

500

700

900

1,100

1,300

Time(s)

Pa
ck

et
s/

20
m

s

Attacker
Victim

(c) Experiment with five hosts
(3400 packets, 33 paths, sent in 0.68s, received in 0.078s).

Figure 10: TuTL attack showing in 20ms buckets the number
of packets being sent by the attacker (line on the left of the
dotted line) and the number of packets received by the victim
(line on the right of the dotted line). Time on the X-axis is
synchronised between victim time and attacker time.

	Introduction
	Background
	Tunnelling Protocols
	IPIP & IP6IP6.
	GRE & GRE6.
	6in4 & 4in6.
	GUE.

	Known Weaknesses in IPIP
	Temporal Lensing attacks

	Internet Scanning
	Methodology
	Protocol Selection.
	Preliminary Experiments.

	Scanning Methods
	Standard Tunnel Scans.
	Tunnelled ICMP Echo/Reply Scan.
	Tunnelled ICMP TTL Expired Scan.

	Ethics

	Experimental Results
	Scanning Results
	Host overlap.
	Scanning method analysis.
	Geolocation analysis.
	Spoofing-capable hosts.
	Autonomous System analysis.
	IPv6 scanning bias.
	Open ports & domains.
	Scanning Limitations.

	Are others also scanning?

	Attacks
	Routing loop DoS
	Abusing abuse reports
	Ping-Pong Amplification attack
	Economic Denial Of Sustainability (EDoS)

	Tunnelled-Temporal Lensing (TuTL)
	Latency Collection
	Path Exploration Algorithm
	Path & Traffic Scheduling
	Experiments & Results
	Limitations and Discussion

	Defences
	Host Defences
	Network Defences

	Related Work
	Conclusion

