
Fragment and Forge: Breaking Wi-Fi Through
Frame Aggregation and Fragmentation

Mathy Vanhoef
New York University Abu Dhabi

mathy.vanhoef@nyu.edu

Abstract
In this paper, we present three design flaws in the 802.11

standard that underpins Wi-Fi. One design flaw is in the frame
aggregation functionality, and another two are in the frame
fragmentation functionality. These design flaws enable an
adversary to forge encrypted frames in various ways, which in
turn enables exfiltration of sensitive data. We also discovered
common implementation flaws related to aggregation and
fragmentation, which further worsen the impact of our attacks.
Our results affect all protected Wi-Fi networks, ranging from
WEP all the way to WPA3, meaning the discovered flaws
have been part of Wi-Fi since its release in 1997. In our
experiments, all devices were vulnerable to one or more of our
attacks, confirming that all Wi-Fi devices are likely affected.
Finally, we present a tool to test whether devices are affected
by any of the vulnerabilities, and we discuss countermeasures
to prevent our attacks.

1 Introduction

In the last few years, major improvements have been made to
the security of Wi-Fi. Most notably this includes the discov-
ery and prevention of key reinstallation in WPA2 [18, 57, 58],
and the standardization of WPA3 which, among other things,
prevents offline dictionary attacks [60]. Additionally, extra
defenses have been standardized, such as operating channel
validation and beacon protection, which further increases the
security of Wi-Fi networks [54, 55]. These recent improve-
ments are a welcome addition to Wi-Fi since it continues to be
one of the main methods used to access the Internet. Addition-
ally, Wi-Fi is used in home networks to prevent outsiders from
accessing personal printers, security cameras, smart home
devices, and so on. In enterprise networks, Wi-Fi plays an
equally important role since it authenticates users, it protects
access to internal services, and it secures content while being
transmitted to, for instance, local file servers, smart presenta-
tion screens in meeting rooms, and so on.

Despite the recent advances in Wi-Fi security, we found
design issues that went unnoticed for more than two decades.

These issues were discovered by analyzing open source Wi-Fi
stacks and systematically inspecting the 802.11 standard. Our
results affect all protected Wi-Fi networks, including old net-
works using Wired Equivalent Privacy (WEP), up to and in-
cluding the latest Wi-Fi Protected Access 3 (WPA3). Since
even WEP is affected, this implies the root cause of several
design flaws has been part of Wi-Fi since its release in 1997.
Equally worrisome is that every single device we tested was
vulnerable to at least one of our attacks.

The most trivial design flaw is in 802.11’s frame aggrega-
tion functionality: by flipping an unauthenticated flag in the
header of a frame, the encrypted payload will be parsed as
containing one or more aggregated frames instead of a nor-
mal network packet. We abuse this to inject arbitrary frames,
and then intercept a victim’s traffic by making it use a mali-
cious DNS server. Practically all devices that we tested were
vulnerable to this attack.

Another two design flaws are in 802.11’s frame fragmenta-
tion feature which splits large frames into smaller fragments.
First, although all fragments of a frame are always encrypted
under the same key, receivers are not required to check that
this is indeed the case. We show that an adversary can abuse
this missing check to forge frames and exfiltrate data by mix-
ing fragments encrypted under different keys. Second, a re-
ceiver is not required to remove (incomplete) fragments from
memory when connecting to a different network. We abuse
this to inject malicious fragments into the fragment cache, i. e.,
memory, of the victim and thereby inject arbitrary packets.
Most devices were affected by at least one of these attacks.

Apart from design flaws we also discovered widespread
implementation vulnerabilities related to frame aggregation
and fragmentation. These vulnerabilities can either be ex-
ploited on their own or make it significantly easier to abuse
the discovered design issues. The most common implementa-
tion vulnerability is that receivers do not check whether all
fragments belong to the same frame, meaning an adversary
can trivially forge frames by mixing the fragments of two
different frames. Against certain implementations it is also
possible to mix encrypted and plaintext fragments, to inject

1

plaintext aggregated frames by masquerading them as hand-
shake messages, and to inject plaintext fragmented (broadcast)
frames. Several other implementation flaws have also been
discovered, and we created a tool to test for all of them [1].

We believe that the discovered design flaws went unnoticed
for so long for two main reasons. First, some of the func-
tionality that we abuse is generally not considered as part of
the core cryptographic functionality of Wi-Fi and therefore
has received no rigorous or formal analysis. Second, patched
drivers or firmware are needed to confirm the fragmentation-
based vulnerabilities in practice. When using normal drivers,
certain fields of injected frames may be overwritten without
the programmer realizing this. This causes attacks to fail, and
as a result researchers may mistakenly conclude that devices
are secure, while in reality they are vulnerable.

Because our findings affect all Wi-Fi devices, we contacted
the Industry Consortium for Advancement of Security on
the Internet (ICASI) to help with a multi-party coordinated
disclosure. We are also collaborating with the Wi-Fi Alliance
to distribute information to vendors.

To summarize, our main contributions are:

• We present a design flaw in 802.11’s frame aggregation
functionality that can be abused to inject arbitrary frames
and demonstrate resulting attacks in practice (Section 3).

• We present a design flaw in 802.11’s frame fragmen-
tation feature where a receiver accepts fragments en-
crypted under different keys. We show how this can be
abused to forge frames and exfiltrate data (Section 4).

• We present another design flaw where we poison the
fragment cache of a receiver and abuse this to inject
packets and exfiltrate data (Section 5).

• We discover widespread implementation flaws and cre-
ated a tool to test for all vulnerabilities in this paper [1].
Our tool can test both clients and Access Points (APs)
and covers more than 45 test cases (Section 6).

Finally, we discuss related work, all our countermeasures, and
our results in Section 7, and we conclude in Section 8.

2 Background

This section introduces the 802.11 standard [31] and gives a
high-level description of the design flaws that we discovered.

2.1 Frame layout and packet aggregation
Figure 1 shows the layout of an 802.11 frame and we start
with explaining its general-purpose fields. First, the Frame
Control (FC) field contains several flags and defines the type
of a frame, e. g., whether it is a data or management frame.
This is followed by three MAC addresses defining the receiver,
sender, and the destination or source of the frame. The Quality
of Service (QoS) field defines the priority of the frame, which
is called the Traffic Identifier (TID) in 802.11. The payload

FC Addr1/2/3 Frag. No. Seq. No. QoS PN payload

Type ... More Frag. Protected TID A-MSDU flag

Figure 1: Layout of an encrypted 802.11 frame. Our aggre-
gation attack abuses the field in blue, and our fragmentation
attacks the fields in red. Only the payload field is encrypted.

Normal: LLC/SNAP IP header TCP header Data

A-MSDU: Destination Source Length packet1 . . .

This subframe is repeated for every packet

Figure 2: Contents of the payload field in a normal frame with
an example TCP/IP header (top), and the contents of a frame
with the A-MSDU flag set meaning it contains one or more
aggregated packets (bottom).

field of a normal frame contains the transported packet, which
starts with an LLC/SNAP header—sometimes also called an
rfc1042 header [44]—that defines the type of the packet, e. g.,
whether it is an IP or ARP packet (see Figure 2).

When the packet is small it is more efficient to aggregate
multiple packets into one larger frame. The 802.11n amend-
ment defines two aggregation methods [33], and we focus on
Aggregate MAC Service Data Units (A-MSDUs), which all
802.11n-capable devices are required to support. The layout
of an A-MSDU frame is similar to a normal frame as shown
in Figure 1, except that the A-MSDU flag in the QoS field is
set, and that the payload field contains one or more A-MSDU
subframes as shown in Figure 2. Each subframe starts with
the equivalent of an 802.3 header: the destination and source
MAC address of the packet, followed by the length of the
packet. Note that the packet itself starts with an LLC/SNAP
header, just like in a normal frame. Finally, each subframe
except the last is padded so that its length is a multiple of 4.

When a receiver sees that the A-MSDU flag is set in the
QoS field, it will extract all A-MSDU subframes and convert
them into Ethernet frames with the destination and source
addresses specified in the subframe. The problem is that, al-
though the QoS field is authenticated, by default the A-MSDU
flag is masked to zero, meaning this flag is not actually authen-
ticated. As a result, an adversary can intercept a normal frame,
set the A-MSDU flag, and the receiver will now incorrectly
interpret the payload as containing A-MSDU subframes. In
Section 3 we show how to abuse this to inject arbitrary frames.

2.2 Frame fragmentation
In noisy environments it can be more efficient to split large
frames into smaller fragments, so that if a fragment gets cor-
rupted, only that fragment has to be retransmitted. The layout
of a fragment, also called a MAC Protocol Data Unit (MPDU),

2

is identical to a normal frame and illustrated in Figure 1. Be-
cause of their similarity, we use the term frame to refer to both
a normal frame and an MPDU, while the term fragment will
be used to explicitly refer to an MPDU. When a frame is split
into multiple fragments, each one is assigned an incremental
4-bit fragment number (Frag. No. in Figure 1). This means
a frame can be split into at most 24 fragments. To allow a
receiver to determine when all fragments have been received,
every fragment except the last has the more fragments flag set
in its frame control field. Finally, all fragments of a specific
frame have the same 12-bit sequence number (Seq. No. in Fig-
ure 1). Only unicast data frames are (de)fragmented, and such
frames can be recognized by the type subfield in the frame
control field and by the receiver MAC address (Addr1). In
this paper, we use the notation Fragx(s) to denote a fragment
with fragment number x and sequence number s. For instance,
Frag1(9) denotes a 2nd fragment with sequence number 9.

By default, a frame is only split into fragments when it is
larger than the configured fragmentation threshold. This frag-
mentation threshold is independent of the maximum packet
size, i. e., the Maximum Transmission Unit (MTU). When
a device supports dynamic fragmentation, which is part of
802.11ax, a transmitter can split a frame into fragments in-
dependent of the fragmentation threshold [30]. In particular,
when a client is assigned a fixed-duration transmit opportu-
nity, called a resource unit in 802.11ax, it can fill the last part
of this duration with a fragmented frame.

2.3 Authentication and encryption

In both protected home and enterprise Wi-Fi networks, the
client will eventually use the 4-way handshake to negotiate a
pairwise session key with the AP. This session key is used to
encrypt data frames. At any point in time, the AP can start a
new 4-way handshake to renew the session key.

When the (AES-)CCMP or GCMP data-confidentiality pro-
tocol is used, frames larger than the fragmentation threshold
are first split into fragments, and all fragments are then en-
crypted in the same way as normal frames: the payload field is
authenticated and encrypted, and selected metadata is also au-
thenticated. This metadata encompasses, among other things,
all MAC addresses in the header, the fragment number, and
the more fragments flags. The sequence number is not authen-
ticated because its value is only known immediately before
the station is able to transmit [39]. Note that encrypted frames
can be recognized by the protected flag in the FC field. Every
encrypted frame also has a strictly increasing Packet Num-
ber (PN), commonly called a nonce, which is used to prevent
replay attacks, and is implicitly authenticated by the data-con-
fidentiality protocol. We use the notation Encn

k{ f} to denote
the encryption of frame f using key k and packet number n.

A receiver first checks if the PN is increasing and otherwise
drops the fragment (or frame). Then it decrypts the fragment
and stores it until all fragments are received [31, Fig. 5-1].

On reception of the last fragment, all decrypted fragments
are reassembled into the original frame. Since the fragment
number and more fragments flag are authenticated, an adver-
sary cannot change the number of fragments or their relative
position. Additionally, to prevent an adversary from forging a
frame by combining fragments of different frames, a receiver
must drop all fragments if their PNs are not consecutive.

The older, but not deprecated [48], WPA-TKIP data-confi-
dentiality protocol does not authenticate the fragment number
and more fragments flag, and does not check that the PNs
of the fragments are consecutive. Instead, the reassembled
frame is authenticated using the Michael algorithm. When
using the broken and deprecated WEP protocol, the fragment
number and more fragments flag are not authenticated, and
the reassembled frame is not separately authenticated. This re-
sults in a novel attack against WEP where an attacker can mix
and reorder fragments of different frames (see Section 4.5).

2.4 Attack techniques and scenarios

Although exploiting each discovered design flaw requires a
different threat model, which is described at the start of every
section, there are similarities between most threat models. In
particular, several attacks rely on a multi-channel machine-
in-the-middle (MitM) position, some also rely on a relaxed
BEAST threat model, and one attack targets hotspot-type
networks. We therefore introduce these concepts first:

Multi-Channel MitM Many (known) attacks require the
ability to block, modify, or delay encrypted frames sent be-
tween the client and AP. To reliably do this, Vanhoef and
Piessens introduced the multi-channel MitM position [56]. In
this MitM technique, the adversary clones the real AP on a dif-
ferent channel, forces the client into connecting to the rogue
AP on the cloned channel, and forwards frames between the
client and the real AP. The adversary can then modify frames
before forwarding them or not forward them at all. Recently
a defense against this MitM has been ratified into the draft
802.11 standard, called operating channel validation [55], but
it is not yet used in practice. As a result, the multi-channel
MitM position can be reliably established in practice: the
only requirement is that the adversary possesses two Wi-Fi
antennas and is within radio range of the client and AP.

BEAST threat model The BEAST attack against TLS
introduced a novel threat model where the victim is tricked
into executing malicious JavaScript code [20]. This can for
example be accomplished by social engineering the victim
into visiting a website under control of the adversary, and
enables the adversary to make the victim send a large amount
of traffic. Other attacks against TLS also relied on this threat
model [3, 5, 12, 20, 22, 42, 46, 47], and we call it the BEAST
threat model. In a relaxed version of this threat model, we only
require that the victim connects to a server of the adversary
without requiring the execution of malicious JavaScript code.

3

Hotspot security Hotspots used to be synonymous with
open and insecure Wi-Fi networks. However, this is no longer
the case. In modern hotspot-type networks such as eduroam,
and Hotspot 2.0 networks where users can, e. g., authenticate
using their mobile SIM card [6], each user owns unique au-
thentication keys and as a result their encryption keys also stay
secret. To prevent users from attacking each other, hotspots
commonly use downstream group-addressed forwarding and
client isolation. With the former feature, each client is given
a random group key [6, §5.2], preventing attacks that abuse
the otherwise shared group key [2]. The latter feature, client
isolation, prevents users from communicating with each other,
which most notably blocks ARP-based MitM attacks.

3 Abusing Frame Aggregation

In this section, we present a design flaw in 802.11’s frame
aggregation functionality that allows an adversary to inject
arbitrary packets by making a victim process normal Wi-Fi
frames as aggregated ones. We abuse this to perform a port
scan and to trick a victim into using a malicious DNS server.
This design flaw has been assigned CVE-2020-24588.

3.1 Threat model
The attack works against all current data-confidentiality proto-
cols of Wi-Fi, namely WEP, TKIP, CCMP, and GCMP, mean-
ing all protected Wi-Fi networks are affected. The adversary
must be within radio range of the victim such that a multi-
channel MitM can be obtained, and the victim must support
the reception of A-MSDU frames, which is a mandatory part
of 802.11n [33]. Additionally, the adversary must be able to
send IPv4 packets to the victim with some control over the
payload and with a predictable IP identification (ID) field. In
Section 6.3, 6.5, and 6.6 we abuse implementation flaws to
perform the attack under alternative assumptions. This section
focuses on a general attack technique, where an adversary can
send such IPv4 packets to a client or AP as follows:

Attacking clients If the IP address of the client is known,
and no firewall is blocking incoming packets, we can directly
send IPv4 packets to the victim. Otherwise, we assume that
the adversary is able to make the victim connect to a server
under the adversary’s control, allowing the adversary to inject
IPv4 packets over this connection. A wide-scale method to ac-
complish this is to register a misspelled domain name [43], or
to exploit third-party advertisements in popular websites [27].
A relaxed BEAST threat model can also be used, where the
victim is social engineered into visiting the attacker’s website.

Attacking APs To attack APs, the IP ID field of at least
one connected client must be predictable. This can be the case
for older clients [37], and on some devices this field always
equals zero [53]. We also rely on the BEAST threat model to
make this client send IPv4 packets with a given payload.

AA AA 03 00 00 00 08 00 45 00 01 0C 00 22 · · · XX · · · XX
LLC SNAP IP hdr Len ID IP payload

Destination Source Length Subframe 2

Figure 3: Parsing an 802.11 payload containing an IPv4
packet (top) as an A-MSDU frame (bottom). Green under-
lined bytes can be controlled by the adversary, yellow ones
can be partially controlled, and red bytes have a fixed value.

3.2 Injecting frames by spoofing A-MSDUs

By default the A-MSDU flag, which informs a receiver how
to parse the encrypted payload of a frame, is not authenti-
cated (recall Section 2.1). Only when the sender and receiver
support Signaling and Payload Protected (SPP) A-MSDUs
is the A-MSDU flag authenticated [33, §11.17]. However,
none of the devices we tested support this feature, meaning
in practice the A-MSDU flag is never authenticated. This
is problematic because nearly all devices we tested do sup-
port receiving A-MSDUs, meaning they can be tricked into
processing normal frames as A-MSDUs, and vice versa.

We can exploit this design flaw by manipulating a normal
802.11 frame such that, when it is processed as an A-MSDU
frame, one of the subframes will correspond to a packet that
we want to inject. This requires the frame’s payload to contain
a specially crafted packet, for instance, the IPv4 packet illus-
trated in Figure 3. Notice that this IPv4 packet is prepended
with an 8-byte LLC/SNAP header when encapsulated in an
802.11 frame (recall Section 2.1). When targeting a client in
our threat model, the adversary can control the IP ID field
and the payload that follows the IPv4 header. When these
bytes are interpreted as A-MSDU subframes, the length field
of the first subframe corresponds to the IP ID field (see Fig-
ure 3). This means the attacker can set the 2-byte IP ID field
to, e. g., 34, meaning the next A-MSDU subframe starts after
the TCP or UDP header of the injected frame. This leaves
space to include a valid TCP or UDP header in the malicious
IPv4 packet, increasing the chance that the packet is correctly
routed to the victim. Finally, we remark that the IP ID field is
not changed by NAT devices or other middleboxes [37], and
therefore such devices will not interfere with our attack.

To change the IPv4 packet into an A-MSDU frame, the ad-
versary establishes a multi-channel MitM between the client
and AP (recall Section 2.4). The encrypted 802.11 frame
containing the IPv4 packet is detected based on its length
and QoS priority. The adversary sets the A-MSDU flag in
the unauthenticated QoS field, causing the client to treat the
frame’s payload as A-MSDU subframes. The first subframe
will have an unknown sender and destination MAC address
and will be ignored. The second subframe will contain the
packet that the adversary wants to inject, and the client will
parse and process this injected packet.

We can attack APs in a similar way if at least one client uses

4

predictable IP IDs, which is the case for certain older Operat-
ing Systems (OSs) [37, 49]. By relying on the BEAST threat
model, we make this client perform a POST request contain-
ing attacker-controlled binary data. This essentially causes the
transmission of IP packets with a partially attacker-controlled
payload. If the ID field of this IPv4 packet is correctly pre-
dicted, the second A-MSDU subframe will correspond to
attacker-controlled data. As a result, the attacker can inject
arbitrary packets. The AP will forward this packet to its next
destination, which is the gateway or any client in the network.
Finally, if a client always uses an IP ID value of zero, it is
possible to use the injection technique in Appendix C.

3.3 Practical impact

The impact of injecting arbitrary packets depends on the ser-
vices running on the victim, whether it is regularly updated,
and so on. As a general example, we performed the following
two attacks against an IPv6 or IPv4 capable victim:

Portscan We performed a portscan against IPv4 and IPv6
hosts to demonstrate the injection of a large number of packets.
Open ports were detected based on the length of the encrypted
TCP SYN/ACK replies.

Malicious DNS server Against dual-stack IPv4/6 clients,
we can inject ICMPv6 router advertisements to trick the vic-
tim into using a DNS server under our control. More precisely,
we abuse IPv6 stateless address autoconfiguration by inject-
ing an ICMPv6 router advertisement that includes a malicious
DNS server [34]. Against Linux, Windows 10, Android 8.1,
iOS 13.4.1, and macOS 10.15.4, we confirmed that this suc-
cessfully poisoned the DNS server(s) used by the OS. Once
the victim is using the malicious DNS server, the adversary
can redirect all traffic to their malicious server, effectively
intercepting all IP-based traffic of the client. Note that the ma-
licious DNS server will be hosted on an IPv6 address, but can
still respond to DNS requests with IPv4 addresses if needed.

Against IPv4-only clients, a similar attack is possible if
we can obtain the 4-byte transaction identifier that the client
includes in its DHCP discover and requests. This identifier
is normally unpredictable [19]. However, we found that iOS
and macOS randomly generate an identifier on boot, but then
increment it for each DHCP message. Similarly, Halvorsen
et al. found that Mac OS X used predictable identifiers [24].
Moreover, certain IoT devices such as our Xiaomi security
camera randomly generate a transaction identifier on boot and
reuse this value in all DHCP messages. This means that if one
transaction identifier can be leaked or brute-forced, it becomes
possible to spoof DHCPv4 messages and force the client into
using a malicious DNS server. Finally, our ESP-12F always
uses the same identifier, even after reboots, meaning we can
trivially make it use a malicious DNS server if we can inject
packets towards it.

3.4 Applicability to short A-MSDUs

In Directional Multi-Gigabit (DMG) networks, defined by
amendment 802.11ad, stations can also send short A-MSDUs
where each subframe only consists of a length field and the
transported data. Short A-MSDUs can only be encapsulated
inside DMG frames because only these frames define the short
A-MSDU flag in the QoS field [31, §9.2.4.5]. This flag is al-
ways authenticated in DMG networks [31, §12.5.3.3.3]. Since
DMG frames should only be sent in DMG networks, the short
A-MSDU flag is always authenticated, and hence cannot be
manipulated by an attacker. Nevertheless, we recommend that
the standard more explicitly requires that the short A-MSDU
flag should only be used when it is authenticated.

An implementation risk is that the hardware supports and
authenticates the short A-MSDU flag, but that the software-
based network stack does not support short A-MSDUs. In that
case, short A-MSDUs may be treated as normal A-MSDUs.
Unfortunately, few devices currently support 802.11ad, mean-
ing we were unable to check whether any devices were af-
fected by such implementation-specific issues.

3.5 Spoofing A-MSDUs as normal frames

We can also trick a victim into processing A-MSDU frames as
normal frames. This causes the destination MAC address of
the first A-MSDU subframe to be processed as the start of an
LLC/SNAP header. This means that the resulting LLC/SNAP
header is only valid when the target has the (locally admin-
istered) MAC address AA:AA:03:00:00:00. Because of this
limitation, it is unlikely that this can be abused in practice.

3.6 Experiments

All major operating systems are vulnerable to our attack, in-
cluding Windows, Linux, Android, macOS, and iOS. See Sec-
tion 6.1 for a detailed overview of the devices we tested. All
APs we tested were also vulnerable, including home routers
and professional APs. The only exception is NetBSD and
OpenBSD: they do not support the reception of A-MSDUs
and therefore are unaffected by the attack.

We tested end-to-end attacks against several clients. During
these tests, we used two TL-WN722N dongles for the multi-
channel MitM, and we reliably obtained this MitM position by
spoofing channel switch announcements [55]. We detected the
injected IPv4 packet based on its length, set the A-MSDU flag
before forwarding it to the victim, and successfully injected
router advertisements to poison the victim’s DNS server.

When testing the attack against FreeBSD and Linux 4.9
and above, we noticed that we were unable to inject packets
as described in Section 3.2. Upon closer inspection we found
that these operating systems strip away the first 8 bytes of an
A-MSDU frame if these bytes look like a valid LLC/SNAP
header, and then further process the frame. This behavior is

5

not compliant with the 802.11 standard. When the first 8 bytes
are stripped, the length field of the first A-MSDU subframe
corresponds with the first two bytes of the source IP address.
If the victim is not behind a firewall, we can spoof the source
address of our IPv4 packets such that the injected packet will
again be contained in the second A-MSDU subframe. If the
victim blocks spoofed IP addresses, we can rent a server on
Amazon AWS with an IP address in the subnet 3.5.0.0/16 [7].
The first A-MSDU subframe then has a length of 773 bytes,
which leaves sufficient space to inject malicious packets.

3.7 Discussion
To prevent aggregation attacks, stations must either not use
A-MSDUs, or always authenticate the A-MSDU flag, i. e.,
only use SPP A-MSDUs. We elaborate on this in Section 7.2.

We conjecture that turning normal frames into A-MSDUs
can also be abused as an oracle to leak data. For instance, an
AP may act differently depending on the values that are lo-
cated at the A-MSDU header fields. We leave a more detailed
analysis on abusing A-MSDUs to leak data as future work.

4 Mixed Key Attack against Fragmentation

In this section, we first discuss the shared root cause of the two
fragmentation-based design flaws that we discovered. We then
focus on the first design flaw, namely how the 802.11 standard
allows an attacker to forge frames by mixing fragments that
are encrypted under different keys. This design flaw has been
assigned CVE-2020-24587. We show how to abuse this flaw
to exfiltrate client data and, for instance, recover sensitive info
sent over plaintext HTTP connections.

4.1 Fragmentation design flaws
At a high level, the discovered fragmentation flaws are caused
by not properly separating different security contexts and their
associated memory, receive queues, or fragment caches:

Mixed key attack A first problem is that the 802.11 stan-
dard does not require that each fragment was decrypted using
the same key. Therefore, an attacker can forge frames by mix-
ing fragments of frames that were encrypted under different
keys, i. e., by mixing fragments belonging to different secu-
rity contexts. This design flaw will be further discussed and
abused in this section.

Fragment cache poisoning The 802.11 standard also
does not state when decrypted fragments should be removed
from memory, i. e., from the fragment cache. That is, de-
crypted fragments are not dropped when the security context
changes due to a (re)connect or (re)association. An attacker
can abuse this to inject fragments into a victim’s fragment
cache, and then combine this with legitimate fragments to in-
ject packets or exfiltrate decrypted fragments (see Section 5).

4.2 Threat model

We first focus on the mixed key attack, which works against
WEP, CCMP, and GCMP. The older TKIP protocol is only
affected when the receiver forgets to verify the authenticity
of reassembled frames (see Section 6.7).

The attack requires that one or more devices in the network
send fragmented frames. Although not all devices do this by
default, because their configured fragmentation threshold is
equal to or bigger than the MTU, it is recommended to use
fragmentation in noisy environments. Moreover, 802.11ax de-
vices are expected to support dynamic fragmentation, making
the usage of fragmentation more common in practice (recall
Section 2.2). For instance, our Cisco Catalyst 9130 has dy-
namic fragmentation enabled by default, and Aruba APs also
support it. With this in mind, our fragmentation-based attacks
are especially relevant against new devices.

To perform the attack, the network must also periodically
refresh the session key of connected devices, and we must be
able to trick the victim into sending a packet to an attacker-
controlled server. Although most networks by default do not
periodically refresh the session key, we do remark that this
assumption matches the requirement of certain key reinstalla-
tion attacks against WPA2 [57, §3.4]. To trick the victim into
sending a packet to a server under our control, we can rely on
the relaxed BEAST threat model. In Section 5 and 6.2, we ex-
ploit additional design and implementation flaws to perform
mixed key attacks without these assumptions.

4.3 Exfiltrating sensitive data

The adversary’s goal is to forge a packet by mixing fragments
of frames that were encrypted under different keys. These
fragments must have consecutive packet numbers since the
receiver will otherwise discard the fragments. Although many
implementations do not check whether fragments use con-
secutive packet numbers (see Section 6.2), our attack does
assume the victim checks this, and thereby illustrates that
even implementations that fully comply with the standard are
vulnerable.

Mixing fragments Figure 4 illustrates our attack, where
we exploit a vulnerable AP to exfiltrate data sent by the client.
The attack starts with the generation of a packet towards the
adversary’s server (stage 1©). This attacker-destined packet
can, for instance, be generated by social engineering the vic-
tim into loading an innocent resource on the adversary’s
server. By hosting this resource on a long URL, the resulting
packet will be large enough such that it is split in two frag-
ments before transmission. These two encrypted fragments
are represented by Encn

k{Frag0(s)} and Encn+1
k {Frag1(s)}.

The attacker then relies on a multi-channel MitM position
to intercept all fragmented frames, and detects the attacker-
destined packet based on its unique length. Note that the
adversary must first collect all fragments of a frame before it

6

Client Attacker AP (vulnerable)

Visit attacker’s website

Encn
k{Frag0(s)}

Encn+1
k {Frag1(s)}

Detect packet to
attacker’s server

Encn
k{Frag0(s)}

Decrypt & store fragment

St
ag

e
1©

normal traffic & 4-way handshake rekey

Send sensitive data

Encn
`{Frag0(s

′)}

Encn+1
` {Frag1(s

′)} Detect packet with
sensitive data

Encn+1
` {Frag1(s)}

Reassemble frame

Packet with sensitive
data is sent to attacker

St
ag

e
2©

Figure 4: Mixed key attack against fragmentation. The first
fragment is the start of an IP packet to the attacker’s server,
which is appended in stage 2©with user data. The reassembled
packet is sent to the attacker’s server, exfiltrating the user data.

can determine the length of the full frame. Once the attacker-
destined packet is detected, the adversary only forwards the
first fragment to the AP. The AP will then decrypt this frag-
ment and will store the decrypted fragment in its memory.

Between stages 1© and 2© of the attack, the adversary for-
wards all frames between the client and the AP. To prevent
these frames from interfering with the attack, the sequence
number s is never used when forwarding a frame to the AP.
This assures that the first fragment of the attacker-destined
packet is not removed from the AP’s memory. Any other for-
warded fragments also will not interfere with the attack, since
the standard requires that a device must support the concur-
rent reception of at least 3 fragmented frames [31, §10.6].
Before stage 2© starts, the client and AP must update, i. e.,
rekey, the pairwise session key from k to ` using the 4-way
handshake. Note that the adversary can predict when rekeys
occur because they happen at regular intervals, and rekeys
can be detected because they cause the packet numbers of the
data-confidentiality protocol to restart from zero.

Stage 2© of the attack starts when the client sends a frag-
ment containing sensitive information. This second fragment
must have a packet number equal to n+1, and otherwise the
attacker has to wait until another 4-way handshake is exe-
cuted so packet numbers start from zero again. The adversary
assigns sequence number s to the second fragment, which is
possible because this field is not authenticated, and forwards
the resulting fragment Encn+1

` {Frag1(s)} to the AP (stage 2©
in Figure 4). Upon reception of the second fragment, the AP

Header Payload

192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Mixed key attack against fragmentation

192.168.1.2 to 3.5.1.1
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Figure 5: Mixing fragments of two packets to exfiltrate user
data to an attacker-controlled server. The red packet is sent to
the attacker’s server, and the green packet contains user data.

combines both decrypted fragments to reassemble the packet.
This packet is now a combination of the attacker-destined
packet and a packet that contains sensitive user data.

Against devices that only accept fragments with consecu-
tive packet numbers, the second fragment must have packet
number n+1. To increase the chance that this is the case, an
adversary can rely on the BEAST threat model to make the
client send background traffic using malicious JavaScript.

Packet construction In our attack, we mix a fragment
of an attacker-destined IP packet with a fragment of a packet
containing user data. This process is illustrated in Figure 5.
The IP checksum of the forged packet is correct since it is
only calculated over the IP header. The TCP checksum will
be incorrect, but this has no impact on the attack: intermediate
hops will still forward the packet to its final destination since
they only verify the IP checksum. And since the attacker con-
trols the final destination, they can simply ignore the incorrect
TCP checksum. Finally, the attacker-destined packet must
not be larger than the targeted packet with sensitive user data.
Otherwise, the IP length field will be larger than the actual
payload of the reassembled packet, causing the AP to drop
the packet. If the IP length field is smaller than the payload,
only the trailing data is discarded.

The data that can be exfiltrated depends on the configura-
tion of the network and the victim. When a fragmentation
threshold of 512 bytes is used, which is for example rec-
ommended by Arch Linux [8], data beyond this position is
located in the second fragment meaning it can be exfiltrated.
Therefore we can exfiltrate HTTP cookies, POST data, basic
auth credentials, etc. Additionally, with the BEAST threat
model, malicious JavaScript can let the client perform cross-
origin requests with extra parameters in the URL that push the
cookie towards the second fragment. This is similar to now-
standard methods used in attacks against TLS [4, 20, 22, 42].

4.4 Attack variations
Vulnerable clients Against clients we can perform a sim-

ilar attack to forge packets. However, the TCP or UDP check-
sum of the forged packet only has a 2−16 chance of being

7

correct, meaning the packet will likely be dropped. Neverthe-
less, attacks remain possible against multimedia streaming
protocols that run over UDP-Lite. This is because the check-
sum in UDP-Lite is only over a portion of a packet, so certain
data can be changed without invalidating the checksum [35].
More general mixed key attacks against clients are possible
when combined with fragment cache attacks (see Section 5).

Multiple key support The 802.11 standard contains an
optional feature where the sender can pick between two keys
to encrypt unicast frames [31, §12.6.21]. This is useful to
facilitate the switchover to a new session key, and is made
possible by including a key ID in a frame’s header that iden-
tifies the used key. When this feature is used, two fragments
that are encrypted under different keys can be forwarded to
the target immediately after one another. This makes attacks
easier in case the target removes fragments from memory
after a certain timeout, or if any frames sent in-between the
fragments interfere with their reassembly on the target.

4.5 Applicability to WEP and TKIP
When using WEP with dynamic rekeying, it is also possible to
mix fragments that are encrypted under different keys. We em-
pirically confirmed this against Linux, which shows that the
discovered design flaw has been part of Wi-Fi since its release
in 1997. Moreover, because WEP does not require that frag-
ments have consecutive packet numbers, i. e., initialization
vectors, an adversary can even mix fragments of two frames
that are encrypted under the same key (see also Section 6.2).

The TKIP protocol is unaffected because, unlike CCMP
and GCMP, its authenticity check covers the full frame instead
of the individual fragments. However, some devices do not
perform this authenticity check, meaning mixed key attacks
can still be possible against TKIP in practice (see Section 6.7).

4.6 Experiments
To perform our attack, we have to inject frames with specific
fragment and sequence numbers. However, wireless network
cards may overwrite these fields. Additionally, network cards
may reorder frames with a different QoS priority, which can
also interfere with our attack. To overcome these problems,
we patched the driver of Intel cards, and we patched the driver
and firmware of Atheros cards (see Appendix A).

In our tests, all major operating systems are vulnerable,
including Windows, Linux, Android, macOS, and iOS. Sec-
tion 6.1 contains an overview of all tested devices. A low
number of devices are unaffected because they require that
all fragments are received immediately after one another, and
any frames sent in-between interfere with their reassembly,
preventing a default mixed key attack. This is, for example,
the case against NetBSD, FreeBSD, and against a few network
cards on Windows and Linux. We remark that this behavior
is not compliant with the standard. Additionally, we found a

method to still perform mixed key attacks against FreeBSD.
This technique relies on non-trivial conditions and is further
discussed in Appendix E. Finally, OpenBSD is not affected
because it does not support fragmentation.

All four home routers that we tested were affected, though
only one of our three professional APs was affected. Against
our Aruba AP-305, any frame sent in-between fragments in-
terferes with their reassembly. Our Cisco Catalyst 9130 did
not support renewing the pairwise session key, meaning a
default mixed key attack is not possible.

To keep experiments more reproducible, we performed end-
to-end attacks against Linux using virtual Wi-Fi interfaces.
In particular, we implemented and successfully performed
an attack against a vulnerable AP to exfiltrate (decrypted)
fragments sent by the client.

Against Linux, the attack is more tedious because it clears
fragments from memory after two seconds. This can be over-
come in the BEAST threat model, where malicious JavaScript
on the client can trigger the transmission of an attacker-des-
tined packet before the 4-way handshake completes. After
this, traffic can be generated such that a packet with sensitive
data is sent with a high enough packet number within two
seconds, which can then be exfiltrated. We successfully tested
this method against Linux 4.9.

4.7 Discussion
To prevent mixed key attacks, a receiver should verify that all
fragments were encrypted under the same key. We elaborate
on this in Section 7.2.

Our attacks assumed that the network periodically refreshes
the pairwise session key. In our experience this is not done
by default by most routers and APs. However, this does not
limit attacks in practice because nearly all implementations
accept non-consecutive packet numbers, meaning our attacks
are possible without relying on rekeys (see Section 6.2).

A limitation of our attack is that it can only be used when
one or more devices send fragmented frames. However, we
conjecture that dynamic fragmentation can be abused to in-
duce the transmission of fragmented frames. With dynamic
fragmentation, a transmitter will send fragmented frames in
order to fill allocated time slots (recall Section 2.2). To induce
this type of fragmentation, we can use our MitM position to
spoof the 802.11ax capabilities element of the client or AP,
and advertise that they support dynamic fragmentation. An
experimental analysis of this technique is left as future work.

5 Poisoning the Fragment Cache

In this section, we present a design flaw that enables an adver-
sary to inject fragments into the memory, i. e., fragmentation
cache, of victims. We show that this vulnerability allows an
adversary to exfiltrate client data and inject arbitrary packets.
This design flaws has been assigned CVE-2020-24586.

8

5.1 Threat model
Our attacks work against WEP, CCMP, and GCMP. The TKIP
protocol is only affected if the authenticity of reassembled
frames is not verified (see Section 6.7). Similar to the mixed
key attack, a device in the network must be sending frag-
mented frames for the attack to be possible. In Section 6.3
we abuse implementation flaws to perform fragment cache
attacks without this assumption. We also make the following
assumptions depending on whether the target is a client or AP:

Vulnerable APs Our attack will exploit vulnerable APs
in hotspot-type networks such as eduroam, and Hotspot 2.0
networks where users can, for example, authenticate using
their mobile SIM card [6]. In these networks, users may dis-
trust each other, and they will use individual authentication
and encryption keys. Our attack also works when these net-
works use downstream group-addressed forwarding and client
isolation (recall Section 2.4).

Vulnerable clients We assume the client will connect to
a protected Wi-Fi network of which the adversary also knows
the password. The client does not trust this network, and will
not send sensitive data when connected to this network. Such a
network can be a coffee shop or conference network where the
password is publicly shared. Note that in practice an adversary
can listen to probe requests to obtain the networks that (old)
devices are willing to connect to [21], and can use password
sharing apps to obtain the password of nearby hotspots.1

5.2 Exfiltrating client data
We begin by attacking a vulnerable AP and exfiltrating data
sent by a client. In stage 1© of this attack, we spoof the MAC
address of the targeted client and connect to the network
using valid credentials (see Figure 6). This allows us to inject
fragments into the AP’s memory that are saved under the
victim’s MAC address. Note that the attacker possesses valid
credentials since we target hotspot-type networks.

Stage 2© of the attack starts when the real client sends an
Auth frame in order to connect to the network. At that point,
the adversary sends the encrypted fragment Encn

k{Frag0(s)}
to the AP, which contains the start of an attacker-destined
IP packet. The AP decrypts this fragment and stores it in
its fragment cache under the victim’s MAC address. After
this, the attacker disconnects from the network by sending a
Deauth frame, and subsequently establishes a multi-channel
MitM between the client and AP. The 802.11 standard does
not state that the AP must remove fragments when a client
disconnects or reconnects, meaning the injected fragment
stays in the fragment cache of the AP.

Between stages 2© and 3© of the attack, the adversary lets
the client connect normally. Additionally, the adversary never
sends frames to the AP with sequence number s. This assures

1Example apps are http://wifimap.io or http://instabridge.com

Client Attacker AP (vulnerable)

Spoof client MAC address

Connect under client MACSt
ag

e
1©

Auth Encn
k{Frag0(s)}

Decrypt & store fragment

Deauth

Fragment cache is not cleared

Let client connect & forward normal traffic

St
ag

e
2©

Send sensitive data

Encn
`{Frag0(s

′)} Encn
`{Frag0(s

′)}

Encn+1
` {Frag1(s

′)} Encn+1
` {Frag1(s)}

Reassemble frame and
thereby exfiltrate data

St
ag

e
3©

Figure 6: Fragment cache attack against a vulnerable AP
with as goal to exfiltrate (decrypt) client data. The adversary
injects a fragment with an attacker-destined IP packet, which
is appended with a fragment containing sensitive data.

that the fragment that we inject in the second stage of the
attack stays in the AP’s fragment cache.

In stage 3© of the attack, the adversary waits until a second
fragment with packet number n+1 is sent. The adversary for-
wards this fragment to the AP with sequence number s. This
causes the AP to combine it with the injected fragment since
they have the same sequence number and MAC addresses.
Because the AP does not store under which credentials these
fragments were received, it does not realize both fragments
were in fact sent by different users. The reassembled frame
will contain an IP packet with as destination the adversary,
and with as payload the user data (similar to Figure 5). This
exfiltrates the user data to the adversary. If the frame with
packet number n+1 is not a second fragment, the attack can
be restarted by forcibly disconnecting the client from the AP.

5.3 Packet injection
An attacker can also inject packets by poisoning the fragment
cache. Against an AP this attack is similar to the data exfiltra-
tion attack of Section 5.2, except that the injected fragment
Frag0 in stage 2© contains the packet to be injected. When
reassembling the frame upon reception of the second frag-
ment, unknown content will be appended to the injected frame.
However, the network layer above 802.11 will discard this
unknown content as padding data. The receiver knows where
this padding data starts because network packets, such as IP
or ARP packets, contain length fields that define the size of
the packet. As a result, the adversary can inject packets under

9

http://wifimap.io
http://instabridge.com

Client (vulnerable) Attacker AP

Spoof AP MAC address

Connect to untrusted network

Encn
k{Frag0(s)}

Decrypt & store fragment

St
ag

e
1©

Deauth

Fragment cache is not cleared

Let client connect & forward normal traffic

Encn
`{Frag0(s

′)} Encn
`{Frag0(s

′)}

Encn+1
` {Frag1(s)} Encn+1

` {Frag1(s
′)}

Reassemble frame
and process packet

St
ag

e
2©

Figure 7: Fragment cache attack against a client with as goal
to inject a packet. We abuse this to force the client into using
our DNS server while being connected to a trusted network.

another client’s identity, which is otherwise not possible in
our hotspot-type networks.

To abuse fragment cache poisoning against a client, we
rely on a novel threat model where the client will connect to
an untrusted protected network, but will only send sensitive
data when connected to a trusted network. For instance, a
company laptop can be configured to only send sensitive data
when connected to the company network, but the laptop is also
used for casual internet surfing by, for example, connecting
to a coffee shop network with a publicly shared password.

To attack a client, the adversary first spoofs the MAC ad-
dress of the trusted (company) network but advertises the
SSID of the untrusted (coffee shop) network (see stage 1© in
Figure 7). Once the client connected to this rogue network, the
adversary injects fragment Frag0(s) into the victim’s memory.
This fragment contains the packet to be injected.

Between stages 1© and 2© of the attack, the client is discon-
nected from the untrusted network, after which it connects to
the trusted (company) network. While the client is connecting,
the adversary establishes a multi-channel MitM position be-
tween the client and AP. In this MitM position, the adversary
forwards all frames between the client and AP, while avoiding
to use sequence number s in frames towards the client. Note
that the 802.11 standard does not require that the client clears
its fragment cache when (re)connecting to an AP.

Stage 2© of the attack starts when the AP of the trusted net-
work sends a second fragment with packet number n+1. The
adversary forwards this frame with sequence number s, such
that the client will reassemble it with the injected fragment
Frag0(s). Similar to the attack against the AP, the network
layer of the client will discard the content in the second frag-
ment as padding bytes, and will subsequently process the

packet contained in Frag0. In practice, an adversary can use
this packet injection capability to trick the client into using
a malicious DNS server (recall Section 3.3). This in turn
enables the adversary to intercept data that the client only
transmits while connected to the trusted (company) network.

5.4 Experiments
Similar to the mixed key attack, patched drivers are needed
to perform the attack in practice. Windows and Linux are
vulnerable with more than half of all tested network cards. The
Android and iOS devices we tested were not vulnerable. Out
of the tested BSD systems, only FreeBSD is vulnerable in AP
mode and when using the injection technique of Appendix E.
Our three professional APs were not affected, but all our
four home routers unfortunately were. See Section 6.1 for an
overview of all tested devices.

To keep experiments easier to reproduce, we again tested
end-to-end attacks against Linux user virtual Wi-Fi interfaces.
The target network used EAP-PWD, meaning users authenti-
cate themselves using a username and password. In this setup
we successfully attacked a vulnerable AP, poisoned its frag-
ment cache with the start of an IP packet towards our server,
and exfiltrated (decrypted) fragments sent by the victim.

We also successfully confirmed the attack against WEP on
Linux, meaning this design flaw has been part of the 802.11
standard since its release in 1997.

Finally, we note that attacking Linux is non-trivial because
it clears fragments from memory after two seconds. Neverthe-
less, attacks against Linux APs are practical, because there
we can inject the malicious fragment right before a client is
already attempting to connect to the AP, which assures delay
between the injected and forwarded fragment is low.

5.5 Discussion
A backwards-compatible defense is to clear the fragment
cache when (re)connecting or (re)associating with a station.
We elaborate on this in Section 7.2.

Our cache poisoning attack is only possible if a device in
the network uses fragmentation. Similar to our mixed key
attack, we conjecture that our MitM position can pretend that
the client and AP support dynamic fragmentation, and thereby
induce the use of fragmentation against 802.11ax devices.

In practice, if a device is vulnerable to cache attacks, it is
likely also vulnerable to mixed key attacks. This is not guar-
anteed though, because mixed key attacks can be prevented
while cache attacks remain possible (and vice versa).

6 Experiments and Implementation Flaws

In this section, we elaborate on the experimental setup used to
confirm the design flaws, and we present common implemen-
tation flaws related to frame aggregation and fragmentation.

10

6.1 Experimental setup

To confirm the design flaws in practice we tested smartphones,
laptops, internet-of-things devices, home routers, and profes-
sional APs (see Table 1). We also tested Windows 10 and
Linux 5.5 as clients using 16 wireless network cards on a Lati-
tude 7490 and MSI GE60 (Table 2). Then we tested FreeBSD
12.1 and NetBSD 7.0 using several network cards (Table 3),
and OpenBSD 6.4 using a small number of supported network
cards (Section 6.8). In total this means we tested 75 devices,
i. e., network card and OS combinations. In these experiments
all devices were affected by one or more attacks. In general,
whether a device is affected depends on the OS, network card,
and whether it is acting as a client or AP. While performing
experiments, we also analyzed the code of leaked and open
source network stacks and found several implementation flaws
related to aggregation and fragmentation.

We created a tool that can test if clients or APs are affected
by the discovered design and implementations flaws [1]. It can
test home networks and enterprise networks where authentica-
tion is done using, e. g., PEAP-MSCHAPv2 or EAP-TLS. Our
tool supports over 45 test cases, and over all devices combined
we performed more than a thousand tests.

6.2 Non-consecutive packet numbers

A common implementation flaw is that devices do not check
whether all fragments of a frame have consecutive packet num-
bers, i. e., whether the received fragments indeed belong to the
same frame. This flaw has been assigned CVE-2020-26146.2

In our tests, all devices were affected except Windows 10
when using an Intel 3160 or 8265 card, and Linux when the
kernel itself reassembles fragments (this is generally the case
with SoftMAC 802.11 drivers). This means out of 68 tested
devices that support fragmentation, 52 were vulnerable. See
the “Non-con” column in Table 1, 2, and 3 for an overview of
affected devices. Similar to the mixed key attack of Section 4,
an adversary can abuse this vulnerability by mixing fragments
of different packets in order to exfiltrate user data. The details
of this attack are illustrated in Figure 9 in the Appendix.

The vulnerability affects CCMP and GCMP. TKIP is only
affected if the authenticity of reassembled frames is not ver-
ified (see Section 6.7). The WEP protocol is vulnerable by
design, meaning this can be considered a fourth novel design
flaw. Interestingly, when GCMP was introduced in 2013, its
specification did not require that GCMP-encrypted fragments
must have a consecutive PNs [32, §11.4.3]. The 802.11 group
noticed this mistake in 2015 and updated the standard to
require this check for GCMP as well [41]. Due to this tempo-
rary design flaw, Linux 4.0 to 4.4 was vulnerable when using
GCMP even when the kernel reassembled fragments [11].

2For each implementation flaw we list a reference CVE identifier, however,
vendors may use different CVEs because an implementation flaw normally
receives a unique CVE for each affected codebase. For further details see [1].

Table 1: Devices tested using their default built-in wireless
network card and operating system. The first three attacks are
the design flaws discussed in Section 3, 4, and 5, respectively.
The last four attacks correspond to implementation flaws dis-
cussed in Section 6.2, 6.3, 6.4, and 6.5, respectively.

Attacks

Device A
-M

SD
U

M
ix

ed
ke

y

C
ac

he
at

t.

N
on

-c
on

.

Pl
ai

n.
fr

ag
.

B
ca

st
.f

ra
g.

Fa
ke

ea
po

l

Huawei Y6 prime # U #
Nexus 5X # # # G#

Samsung i9305 # # G# G#

iPhone XR # # G# #
iPad Pro 2 # # G# #

MacBook Pro 2013 # G# #
MacBook Pro 2017 # G# #
Dell Latitude 7490 # # G# # #
MSI GE60 # # G# # #

Kankun smart plug # # # #
Xiaomi Mi Camera U
NanoPi R1 # #
Canon PRO-100S U # #

Asus RT-N10 # # G#

Linksys WAG320N # # G#

Asus RT-AC51U U # #
D-Link DIR-853 U #

Aruba AP-305 / 7008 # # # # #
LANCOM LN-1700 # # #
Cisco Catalyst 9130 # # # # #

Not affected G# Vulnerable during handshake
 Vulnerable o Resulted in crash
G# (H#) Only first (or last) fragment must be encrypted
◎ Accepts all fragmented frames U Accepts plaintext

6.3 Mixed plaintext and encrypted fragments

Another common implementation flaw we countered is that
devices reassemble mixed encrypted and plaintext fragments,
instead of only accepting encrypted ones (CVE-2020-26147).
This allows an attacker to replace certain encrypted fragments
with plaintext ones. In our tests, 21 devices only require that
the first fragment is encrypted (icon G#), 9 that the last frag-
ment is encrypted (iconH#), and 3 that only one fragment is en-
crypted (icon). Moreover, 11 devices even accept plaintext
frames (CVE-2020-26140), and another 9 accept fragmented
but not unfragmented plaintext frames (CVE-2020-26143).
We represent these last two implementation vulnerabilities
using the icons U and ◎, respectively. All combined, 53 out
of 68 devices that support fragmentation are affected by at

11

Table 2: Test results against Windows (W) and Linux (L)
using various network cards. The AWUS051NH and Ralink
Wi-Pi did not support fragmentation on Linux. The TFWM
was not supported by Windows. See Table 1 for the legend.

Attacks
A

-M
SD

U

M
ix

ed
ke

y

C
ac

he
at

t.

N
on

-c
on

.

Pl
ai

n.
fr

ag
.

B
ca

st
. f

ra
g.

Fa
ke

ea
po

l

Network card W L W L W L W L W L W L W L

Intel 3160 # # # # G# G# # # # #
Intel 8265 # # # # G# G# # # # #
Intel AX200 # # G# G# # # # #
AWUS036H # # U G# # # # #
AWUS036NHA # # # G# G# # # # #
AWUS036ACH # ◎ U # # o
AWUS036ACM # ◎ G# # #
AWUS051NH v2 # # # ◎ # # #
ZyXel NWD6505 # ◎ G# # #
TL-WN725N v1 # ◎ U # # # #
WNDA3200 # # # G# G# # # # #
WN111v2 # # # G# # # # #
Ralink Wi-Pi # # # ◎ # # #
Sitecom WL-172 # # ◎ G# # # # #
ZyXel M-202 # # # G# G# # # # #
TWFM-B003D – – – # – – # – G# – G#

least one of these implementation vulnerabilities (see column
“Plain. frag” in Table 1, 2, and 3).

The defragmentation code in Linux tries to enforce that
all fragments are encrypted by checking whether they have
consecutive PNs. Unfortunately, this check is implemented
insecurely: after decrypting a frame, its PN is stored a session
variable, and the PN of the previous fragment is compared to
this session variable. As a result, when a (second) plaintext
fragment is received, it checks whether the PN in this session
variable is consecutive to the previous fragment, and does not
realize this PN is unrelated to the received plaintext fragment.
This means the PN check can be bypassed by first forwarding
a valid encrypted fragment towards Linux using a consecutive
PN but under a different sequence number, and then injecting
a plaintext fragment under the correct sequence number (see
Figure 10 in the appendix for details).

Practical impact If the first fragment can be a plaintext
one, an attacker can include a malicious packet in this frag-
ment, which will be processed by the victim once it received
all fragments. This is similar to the cache attack of Section 5.3.

In case the first fragment must be encrypted, we can com-
bine this vulnerability with either the A-MSDU or fragment
cache attack to inject arbitrary frames. When combined with
the A-MSDU attack, an attacker uses its multi-channel MitM
position to set the A-MSDU flag of an encrypted first frag-
ment. After this, the attacker injects a plaintext fragment, upon

Table 3: Test results against FreeBSD (F) and NetBSD (N).
Network cards at the top were tested in client mode, and
the ones at the bottom in AP mode. The AWUS0351NH
is not supported by NetBSD, and the TL-WN722N not by
FreeBSD. See Table 1 on page 11 for the legend.

Attacks

A
-M

SD
U

M
ix

ed
ke

y

C
ac

he
at

t.

N
on

-c
on

.

Pl
ai

n.
fr

ag
.

B
ca

st
. f

ra
g.

Fa
ke

ea
po

l

Network card F N F N F N F N F N F N F N

Intel 3160 # # ## H#H# ## #
Sitecom WL-172 # # ## H# ## #
AWUS036H # # ## H#H# ## #
AWUS051NH v2 – – # – – G# – # – –
TL-WN725N v1 # # ## H# ## #
Belkin F5D8053 # # ## G#H# ## #
TL-WN722N – # – # – # – – H# – # – #

Sitecom WL-172 # # # ◎ U #
TL-WN725N v1 # # # ◎H# #
Belkin F5D8053 # # # U #
TL-WN722N – # – # – # – – U – # – #

which the victim reassembles both fragments and processes
the resulting A-MSDU. The idea is now that the second sub-
frame will correspond to the payload of the plaintext fragment
and contains a packet that the attacker wants to inject. An
obstacle is that the first encrypted fragment, which the ad-
versary cannot control, must result in a small first subframe
of predictable length, such that the second subframe is con-
tained in the injected (second) plaintext fragment. This can
be assured by predicting the IP ID of packets, similar to the
A-MSDU attack against clients in Section 3.2. A second limi-
tation is that not all devices support fragmented A-MSDUs.
In particular, out of 56 devices that supported A-MSDUs, 33
properly handled fragmented A-MSDUs, 9 received them as
malformed frames, and the other 14 silently discarded them.

When combined with the cache attack, the attacker first poi-
sons the fragment cache of an AP or client with an encrypted
fragment containing (part of) the packet to be injected. Af-
ter the victim connects to the target network, the adversary
injects the second fragment as plaintext, and the victim will
reassemble the frame and process the injected packet. An
advantage of this combination compared to a default cache
attack is that it can be performed even when no devices in the
network send fragmented frames.

Applicability to WEP and TKIP We also tested WEP
on Linux and found that an adversary could trivially set the
more fragments flag, since it is not authenticated, and subse-
quently combine this first encrypted fragment with plaintext
fragments. The TKIP protocol is only affected if the authen-
ticity of reassembled frames is not verified (see Section 6.7).

12

AA AA 03 00 00 00 88 8E 01 00 00 00 00 02 · · · XX · · · XX
LLC SNAP EAPOL EAP

Destination Source Length Subframe 2

Figure 8: An A-MSDU payload (bottom) whose first 8 bytes
are also a valid EAPOL LLC/SNAP header (top). Red bytes
must have the given value, and green ones can have any value.

6.4 Broadcast plaintext fragments

Although broadcast frames should never be fragmented, sev-
eral devices process broadcasted fragments as normal unfrag-
mented frames. Moreover, some devices accept second (or
subsequent) broadcast fragments even when sent unencrypted
in a protected Wi-Fi network (CVE-2020-26145). An attacker
can abuse this to inject packets by encapsulating them in a
second fragmented plaintext broadcast frame, i. e., in a Frag1
frame with a broadcast receiver address. Even unicast network
packets, such as IPv4 or ARP packets, can be encapsulated in
broadcast 802.11 frames and hence be injected in this manner.

Affected devices are listed under the column “Bcast. frag.”
in Table 1, 2, and 3. Notable affected devices are those of
Apple and APs on NetBSD and FreeBSD. Some devices are
only vulnerable during the execution of the 4-way handshake,
but this does not limit attacks: a victim can be forcibly discon-
nected, e. g., deauthenticated or jammed, such that the victim
will reconnect and execute a new 4-way handshake.

6.5 Cloaking A-MSDUs as handshake frames

Devices accept plaintext 4-way handshake frames, i. e., plain-
text data frames with an EAPOL LLC/SNAP header, when
connecting to a network. If implemented wrongly, this can be
abused to inject plaintext A-MSDUs (CVE-2020-26144). In
particular, an adversary can construct a plaintext A-MSDU
whose first 8 bytes can also be interpreted as a valid EAPOL
LLC/SNAP header (see Figure 8). Although this causes the
destination and source address of the first subframe to be
invalid, meaning the receiver drops this subframe, other sub-
frames are still processed. Hence, an attacker can inject arbi-
trary packets against devices that accept plaintext A-MSDUs
whose first 8 bytes equal an EAPOL LLC/SNAP header.

Against FreeBSD and several devices shown in Table 1
and 2, this allows an adversary to inject plaintext A-MSDU
frames. Similar to Section 6.4, some devices are only vulner-
able during the execution of the 4-way handshake. Against
an AWUS036ACH on Windows 10, an A-MSDU starting
with a valid EAPOL header resulted in a blue screen of death.
Finally, some implementations strip away the first 8 bytes of
an A-MSDU if these bytes equal a valid LLC/SNAP header
(recall Section 3.6). This is not compliant with the standard
and does not prevent attacks against vulnerable devices.

6.6 EAPOL forwarding & fragmentation
As highlighted in the previous section, devices must accept
plaintext 4-way handshake frames when a client is connecting
to a network. We found that some devices also forward plain-
text handshake frames if they are destined to other clients
in the network, even when the sender has not yet authenti-
cated (CVE-2020-26139). Affected devices are FreeBSD and
NetBSD APs, and certain home routers such as our Asus
RT-N10 and Linksys WAG320N. An adversary can abuse this
to perform the A-MSDU attack from Section 3 using only a
multi-channel MitM position. In particular, the adversary first
associates with the target network. Then, instead of starting
the 4-way handshake, the adversary will send a handshake,
i. e., EAPOL, frame to the AP with as final destination a client
that is connected to the network. A vulnerable AP accepts
and forwards this EAPOL frame to its destination, in this case
the targeted client. Moreover, the AP will encrypt this frame
towards the client. The adversary can then uses its MitM posi-
tion to set the A-MSDU flag in the encrypted EAPOL frame.
An adversary can then inject arbitrary packets by constructing
an EAPOL frame as illustrated in Figure 8 and placing the
packet to be injected in the second A-MSDU subframe.

Against a NetBSD AP, an adversary can also send a large
EAPOL frame, after which the AP will fragment, encrypt, and
forward it to the targeted client. In other words, the adversary
can abuse a NetBSD AP to generate encrypted fragments.
This can be combined with the cache attack by first poisoning
the fragment cache of the victim, and then generating a second
encrypted fragment through the NetBSD AP that causes the
victim to reassemble the fragments and process the injected
packet. Another option is to abuse this against clients that
accept fragmented frames as long as the last fragment is en-
crypted. Unfortunately, most NetBSD drivers do not support
sending fragmented frames, and only send the first fragment
and drop subsequent ones. Nevertheless, drivers such as ath
do transmit all fragments, which an adversary can exploit to
more easily perform fragmentation-based attacks.

6.7 Skipping the TKIP authenticity check
Fragmentation attacks should be impossible against TKIP
because it verifies the authenticity of the full (reassembled)
frame. However, we found several network cards on Linux
and Windows that do not verify the authenticity of reassem-
bled TKIP frames (CVE-2020-26141). On Windows, the
AWUS036H, AWUS036ACH, and TL-WN725N are affected,
and on Linux the NWD6505 and AWUS036ACM are af-
fected. Against these devices our fragmentation-based attacks
are possible even if the old TKIP protocol is used.

6.8 Treating fragments as full frames
Certain implementations, such as OpenBSD and the ESP-12F,
do not support A-MSDUs or fragmented frames. However,

13

they are still vulnerable to attacks because they treat all frames
as non-fragmented ones (CVE-2020-26142). An adversary
can abuse this to inject arbitrary network packets by control-
ling the content that is included in one of the fragments. This
can be accomplished in the relaxed BEAST threat model by
making the client load an attacker-controlled URL or resource,
such that the resulting request or response is fragmented at
the Wi-Fi layer, and one of the fragments purely consists of
attacker-controlled data (which is then treated as a full frame).

In the case of OpenBSD, the more fragments flag is not
included in the associated metadata when decrypting a frag-
ment, causing decryption to fail on all but the last fragment.
The last fragment does not have this flag set, meaning it is
successfully decrypted and will be processed as a full frame.
OpenBSD can also offload decryption to the Wi-Fi chip. In
that case, all fragments are properly decrypted, but OpenBSD
treats each decrypted fragment as an unfragmented frame. In
both cases it is possible to inject arbitrary network packets by
controlling the content that is included in the last fragment.

We confirmed the resulting attack(s) against the ESP-12F,
which even accepted plaintext frames, and against OpenBSD
6.6 when it acted as a client using a Belkin F5D8053 v3 or
Intel 8265. We conjecture that other devices, which also do
not support fragmentation, can be attacked in similar ways.

7 Related Work & Discussion

In this section we cover related work, give an overview of all
our countermeasures, discuss results, and explore future work.

7.1 Related work

Aggregation Robyns et al. presented packet-in-packet
attacks that exploit aggregated MPDUs where (encrypted)
frames are aggregated close to the physical layer [45]. In this
aggregation method, encryption happens before aggregation,
and their attacks enabled the remote injection of frames in
open (but not protected) Wi-Fi networks. Similarly, other
packet-in-packet attacks against different protocols are also
only feasible in open networks [15,23]. We study aggregation
at a higher network layer, where encryption takes places after
aggregation. Our resulting attacks apply to protected Wi-Fi
networks and allow an adversary, that is within radio range
of victims, to inject packets. In other work, A-MSDUs were
abused to more easily trigger key reinstallations [58], but no
attention was paid to the unauthenticated A-MSDU flag.

Fragmentation Previous work abused fragmentation to
more efficiently exploit known flaws in WEP [13], but did not
uncover flaws in (de)fragmentation features itself. Schepers et
al. found that OpenBSD incorrectly handled fragmented TKIP
frames [50], allowing Denial-of-Service (DoS) attacks and
packet injection, but this was an implementation vulnerability
and not a design flaw in the standard.

Implementation flaws in IPv4 and IPv6 (de)fragmentation
have been abused for DoS attacks, firewall evasion, etc [9,36].
It was also abused to launch off-path DNS cache poisoning
attacks by bypassing its plaintext challenge-response proto-
col [28]. This was possible because the first fragment of a
response contains the unpredictable challenge values, and
an adversary can replace the second fragment with malicious
data. In contrast, our attacks work against encrypted protocols.
Nowadays, IP fragmentation is considered fragile [14].

Against 6LoWPAN, fragmentation was abused to launch a
DoS attack by preventing (correct) packet reassembly [29].

Formal models Cremers et al. formally modeled WPA2
and demonstrated the correctness of key reinstallation de-
fenses. Their model did not include aggregation and fragmen-
tation functionality, and therefore missed the attacks that we
discovered [18]. Other work on formally verifying and mod-
eling WPA2 only focuses on the 4-way handshake [26, 51].

Wi-Fi security Lately major advancements have been
made to the security of Wi-Fi. This includes the discovery
and prevention of key reinstallations in WPA2 [57, 58], the
release of WPA3 [60], and extra defenses such as operating
channel validation and beacon protection [54, 55]. Although
shortcomings in WPA3 were identified [40, 59], these have
been addressed in an update to the standard [25]. Finally, a
recent update to WPA3 improves the security of enterprise
networks, as these were often insecurely configured [10, 16].

Other work studied Wi-Fi provisioning schemes [38], in-
ferred and analyzed state machines [52], and studied potential
electromagnetic side-channel leaks in 802.11 radios [17].

7.2 Countermeasures for the design flaws

Spoofing aggregated frames The aggregation attack of
Section 3 can be prevented by updating the standard to assure
the A-MSDU flag is always authenticated, i. e., assuring only
SPP A-MSDUs are used. This can be accomplished by setting
and adhering to the “SPP A-MSDU required” flag in the RSN
element when connecting to another station or network. In
theory, this assures all stations either: (1) never accept/send
A-MSDUs; or (2) always authenticate the A-MSDU flag in
sent and received frames [31, Table 11-12].

The RSN element also contains a flag to indicate whether
the device supports SPP A-MSDUs. When a device does not
set this flag, but does set the SPP required flag, this means no
A-MSDUs should be sent to it. In other words, if a device does
not support SPP A-MSDUs, this flag combination instructs
peers to never accept or send A-MSDUs [31, Table 11-12].
This flag combination also prohibits the device itself to send or
accept A-MSDUs, preventing all possible aggregation attacks.

Unfortunately, most devices ignore the SPP flags in the
RSN element, and will send or accept non-SPP A-MSDUs
independent of these flags. Therefore, if a device sets the SPP
required flag, and a peer still sends non-SPP A-MSDUs, these

14

will be dropped. In other words, setting the SPP required flag
may degrade reliability. It also means the attack of Section 3.5
remains possible because, when the sender does not authen-
ticate the A-MSDU flag, it masks the A-MSDU flag to zero
in the authenticated metadata (recall Section 2.1). As a result,
an attacker can unset the A-MSDU flag without the receiver
noticing this. Nevertheless, the impact of this attack appears
low, and as a defense we therefore still recommend to set and
adhere to the SPP required flag in the RSN element.

If dropping non-SPP A-MSDUs is not feasible, attacks can
be mitigated by dropping the full A-MSDU frame if any of
the subframe’s MAC addresses do not belong to connected
stations. In particular, A-MSDUs must be dropped if their first
6 bytes equal the start of an LLC/SNAP header, i. e., if the des-
tination address of the first subframe is AA:AA:03:00:00:00.
Although this prevents our main attack, other novel aggrega-
tion-based attacks may remain possible.

Mixed key attack Mixed key attacks of Section 4 can be
prevented by not reassembling fragments that were decrypted
using different keys, which is backwards-compatible because
this does not occur in normal circumstances. The standard
and all implementations should be updated to include this
check. An efficient way to implement this is to assign an in-
cremental key identifier to decrypted fragments, increase this
identifier whenever a new key is installed, and verifying that
all fragments were decrypted using the same key identifier.

To mitigate (but not prevent) attacks against receivers, a
transmitter can decide to never use fragmentation. However,
this may reduce reliability. Note that clearing the fragment
cache whenever installing a key does not prevent mixed key
attacks when using multiple key support (recall Section 4.4).

Cache attack The fragment cache attack of Section 5
can be prevented by updating clients to clear the fragment
cache whenever (re)connecting or (re)associating with a net-
work. Similarly, an AP should clear all fragments received by
a specific client when this client reconnects, reassociates, or
disconnects from the network. These changes are backwards-
compatible since legitimate devices do not rely on this vul-
nerable behavior. The 802.11 standard and all existing imple-
mentations should be updated to perform these actions.

7.3 Overall discussion

Test considerations Several devices were not affected by
our default attack(s), but only to minor variants, e. g., FreeBSD
and OpenBSD. Therefore, we recommend to only consider a
device secure if there are explicit checks in the code to prevent
attacks and if practical tests show it is indeed not vulnerable.

To test attacks, driver and firmware patches are required to
reliably inject fragmented frames. Otherwise important fields
may be overwritten, causing attacks to fail. This obstacle
when testing attacks may be one reason why the discovered
design flaws went unnoticed for more than two decades.

Future work Crucial future work is formally modeling
802.11’s aggregation and fragmentation features to evaluate,
and increase confidence in, the correctness of our defenses.

It is also worthwhile to investigate how 802.11ax can be
abused to induce fragmentation in practice, since this would
increase the impact of our fragmentation-based attacks.

We also believe it is important to study in more detail how
different flaws can be combined in practical attacks. Finally,
we consider it interesting future work to analyze other (pro-
prietary) protocols for similar fragmentation-based flaws.

8 Conclusion

We discovered widespread design and implementation flaws
related to frame aggregation and fragmentation. Interestingly,
our aggregation attack could have been avoided if devices
had implemented optional security improvements earlier. This
highlights the importance of deploying security improvements
before practical attacks are known. The two fragmentation-
based design flaws were, at a high level, caused by not ade-
quately separating different security contexts. From this we
learn that properly separating security contexts is an important
principle to take into account when designing protocols.

In practice, our implementation-specific vulnerabilities are
the most devastating. Several enable the trivial injection of
frames, which we abused to trick a victim into using a mali-
cious DNS server to then intercept most of the victim’s traffic.

Acknowledgments

We thank LANCOM, Aruba, and Cisco for their test devices,
and thank Cisco for help with the disclosure. This work was
supported by the Center for Cyber Security at New York Uni-
versity Abu Dhabi (NYUAD). The author holds a Postdoctoral
fellowship from the Research Foundation Flanders (FWO).

References

[1] https://github.com/vanhoefm/fragattacks

[2] Md Sohail Ahmad. Wpa too! In DEF CON, 2010.

[3] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky
thirteen: Breaking the TLS and DTLS record protocols.
In IEEE S&P, 2013.

[4] Martin R Albrecht and Kenneth G Paterson. Lucky
microseconds: a timing attack on amazon’s s2n imple-
mentation of TLS. In Eurocrypt, 2016.

[5] Nadhem AlFardan, Daniel Bernstein, Kenneth Paterson,
Bertram Poettering, and Jacob Schuldt. On the security
of RC4 in TLS and WPA. In USENIX Security, 2013.

[6] Wi-Fi Alliance. Hotspot 2.0 Specification Ver. 3.1, 2019.

15

https://github.com/vanhoefm/fragattacks

[7] Amazon. AWS IP address ranges. Retrieved
3 June 2020 form https://docs.aws.amazon.com/
general/latest/gr/aws-ip-ranges.html, 2020.

[8] Arch Linux Wiki. Network configuration /
wireless. Retrieved 18 February 2020 from
https://wiki.archlinux.org/index.php/
Network_configuration/Wireless, 2020.

[9] Antonios Atlasis. Attacking IPv6 implementation using
fragmentation. In Black Hat EU Briefings, 2012.

[10] Alberto Bartoli, Eric Medvet, Andrea De Lorenzo, and
Fabiano Tarlao. (in)secure configuration practices of
WPA2 enterprise supplicants. In WiSec, 2018.

[11] Johannes Berg. mac80211: check PN correctly for
GCMP-encrypted fragmented MPDUs. Linux commit
9acc54beb474, 2016.

[12] Karthikeyan Bhargavan and Gaëtan Leurent. On the
practical (in-)security of 64-bit block ciphers: Collision
attacks on HTTP over TLS and OpenVPN. In CCS,
2016.

[13] Andrea Bittau, Mark Handley, and Joshua Lackey. The
final nail in WEP’s coffin. In IEEE S&P, 2006.

[14] Ron Bonica, Fred Baker, Geoff Huston, Bob Hinden, Ole
Trøan, and Fernando Gont. IP fragmentation considered
fragile. RFC 8900, 2020.

[15] Sergey Bratus, Travis Goodspeed, Ange Albertini, and
Debanjum S Solanky. Fillory of PHY: Toward a peri-
odic table of signal corruption exploits and polyglots in
digital radio. In USENIX WOOT, 2016.

[16] Sebastian Brenza, Andre Pawlowski, and Christina Pöp-
per. A practical investigation of identity theft vulnera-
bilities in eduroam. In WiSec, 2015.

[17] Giovanni Camurati, Sebastian Poeplau, Marius Muench,
Tom Hayes, and Aurélien Francillon. Screaming chan-
nels: When electromagnetic side channels meet radio
transceivers. In CSS, 2018.

[18] Cas Cremers, Benjamin Kiesl, and Niklas Medinger. A
formal analysis of IEEE 802.11’s WPA2: Countering
the kracks caused by cracking the counters. In USENIX
Security, 2020.

[19] Ralph Droms. Dynamic Host Configuration Protocol.
RFC 2131, 1997.

[20] T. Duong and J. Rizzo. Here come the xor ninjas. In
Ekoparty Security Conference, 2011.

[21] Julien Freudiger. How talkative is your mobile device?
an experimental study of Wi-Fi probe requests. In WiSec,
2015.

[22] Christina Garman, Kenneth G. Paterson, and Thyla Van
der Merwe. Attacks only get better: Password recovery
attacks against RC4 in TLS. In USENIX Security, 2015.

[23] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Re-
becca Shapiro, and Ryan Speers. Packets in packets:
Orson welles’ in-band signaling attacks for modern ra-
dios. In USENIX WOOT, 2011.

[24] Finn Michael Halvorsen and Olav Haugen. Cryptanaly-
sis of ieee 802.11i TKIP. Master’s thesis, 2009.

[25] Dan Harkins, Jouni Malinen, and Mike Montemurro.
Finding PWE in constant time. Retrieved 14 June 2020
from https://mentor.ieee.org/802.11/dcn/19/
11-19-1173-18-000m-pwe-in-constant-time.
docx, 2019.

[26] Changhua He, Mukund Sundararajan, Anupam Datta,
Ante Derek, and John C Mitchell. A modular correctness
proof of IEEE 802.11i and TLS. In CCS, 2005.

[27] Alex Hern. Major sites including new york times and
BBC hit by ransomware malvertising. The Guardian,
2016.

[28] Amir Herzberg and Haya Shulman. Fragmentation con-
sidered poisonous, or: one-domain-to-rule-them-all.org.
In IEEE CNS, 2013.

[29] René Hummen, Jens Hiller, Hanno Wirtz, Martin Henze,
Hossein Shafagh, and Klaus Wehrle. 6LoWPAN frag-
mentation attacks and mitigation mechanisms. In WiSec,
2013.

[30] IEEE P802.11ax/D4.3. Amendment 1: Enhancements
for High Efficiency WLAN (draft), 2019.

[31] IEEE Std 802.11. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Spec, 2016.

[32] IEEE Std 802.11ac. Amendment 4: Enhancements for
Very High Throughput for Operation in Bands below 6
GHz, 2013.

[33] IEEE Std 802.11n. Amendment 5: Enhancements for
Higher Throughput, 2009.

[34] Jaehoon Paul Jeong, Soohong Daniel Park, Luc Beloeil,
and Syam Madanapalli. IPv6 Router Advertisement
Options for DNS Configuration. RFC 8106, 2017.

[35] Lars-Erik Jonsson, Lars Åke Larzon, Gorry Fairhurst,
Stephen Pink, and Mikael Degermark. The Lightweight
User Datagram Protocol (UDP-Lite). RFC 3828, 2004.

[36] Malachi Kenney. Ping of death. Retrieved 14 June
2020 from https://insecure.org/sploits/ping-
o-death.html, 1996.

16

https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://wiki.archlinux.org/index.php/Network_configuration/Wireless
https://wiki.archlinux.org/index.php/Network_configuration/Wireless
https://mentor.ieee.org/802.11/dcn/19/11-19-1173-18-000m-pwe-in-constant-time.docx
https://mentor.ieee.org/802.11/dcn/19/11-19-1173-18-000m-pwe-in-constant-time.docx
https://mentor.ieee.org/802.11/dcn/19/11-19-1173-18-000m-pwe-in-constant-time.docx
https://insecure.org/sploits/ping-o-death.html
https://insecure.org/sploits/ping-o-death.html

[37] Amit Klein and Benny Pinkas. From IP ID to device ID
and KASLR bypass. In USENIX Security, 2019.

[38] Changyu Li, Quanpu Cai, Juanru Li, Hui Liu, Yuanyuan
Zhang, Dawu Gu, and Yu Yu. Passwords in the air: Har-
vesting Wi-Fi credentials from SmartCfg provisioning.
In WiSec, 2018.

[39] Jie Liang. Simplifying implementation of CCMP mode.
Retrieved 29 May 2020 from mentor.ieee.org/802.
11/dcn/03/11-03-0122-00-000i-simplifying-
implementation-of-ccmp-mode.ppt, 2003.

[40] Karim Lounis and Mohammad Zulkernine. Bad-token:
denial of service attacks on WPA3. In SIN, 2019.

[41] Jouni Malinen and Mark Rison. GCMP decapsulation.
Retrieved 18 May 2020 from https://mentor.ieee.
org/802.11/dcn/15/11-15-1132-02-000m-gcmp-
decapsulation.docx, 2015.

[42] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE bites: exploiting the SSL 3.0 fallback,
2014.

[43] Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: Large-scale evaluation of remote
JavaScript inclusions. In CCS. ACM, 2012.

[44] J. Postel and J. Reynolds. Standard for the transmission
of IP datagrams over IEEE 802 networks. RFC 1042,
1988.

[45] Pieter Robyns, Peter Quax, and Wim Lamotte. Injection
attacks on 802.11n MAC frame aggregation. In WiSec,
2015.

[46] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi
Shamir, David Wong, and Yuval Yarom. The 9 lives
of bleichenbacher’s CAT: New cache attacks on TLS
implementations. In IEEE S&P, 2019.

[47] Eyal Ronen, Kenneth G. Paterson, and Adi Shamir.
Pseudo constant time implementations of TLS are only
pseudo secure. In CCS, 2018.

[48] Jon Rosdahl, Mark Hamilton, and Michael Montemurro.
Minutes REVmd – may 2018 – warsaw. Retrieved 14
September 2020 from https://mentor.ieee.org/
802.11/dcn/18/11-18-0616-00-000m-minutes-
revmd-may-2018-warsaw.docx, 2018.

[49] Flavia Salutari, Danilo Cicalese, and Dario J Rossi. A
closer look at IP-ID behavior in the wild. In Interna-
tional Conference on Passive and Active Network Mea-
surement. Springer, 2018.

[50] Domien Schepers, Aanjhan Ranganathan, and Mathy
Vanhoef. Practical side-channel attacks against WPA-
TKIP. In ASIA CCS, 2019.

[51] Rajiv Ranjan Singh, José Moreira, Tom Chothia, and
Mark Ryan. Modelling of 802.11 4-way handshake at-
tacks and analysis of security properties. In STM, 2020.

[52] Christopher McMahon Stone, Tom Chothia, and Joeri
de Ruiter. Extending automated protocol state learning
for the 802.11 4-way handshake. In ESORICS, 2018.

[53] Dr. Joseph D. Touch. Updated Specification of the IPv4
ID Field. RFC 6864, 2013.

[54] Mathy Vanhoef, Prasant Adhikari, and Christina Pöpper.
Protecting Wi-Fi beacons from outsider forgeries. In
WiSec, 2020.

[55] Mathy Vanhoef, Nehru Bhandaru, Thomas Derham, Ido
Ouzieli, and Frank Piessens. Operating channel val-
idation: Preventing multi-channel man-in-the-middle
attacks against protected Wi-Fi networks. In WiSec,
2018.

[56] Mathy Vanhoef and Frank Piessens. Advanced Wi-Fi
attacks using commodity hardware. In ACSAC, 2014.

[57] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in WPA2. In CCS, 2017.

[58] Mathy Vanhoef and Frank Piessens. Release the kraken:
new KRACKs in the 802.11 standard. In CCS, 2018.

[59] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyz-
ing the Dragonfly handshake of WPA3 and EAP-pwd.
In IEEE S&P, 2020.

[60] Wi-Fi Alliance. WPA3 specification version 2.0. Re-
trieved 24 May 2020 from https://www.wi-fi.org/
file/wpa3-specification, 2019.

A Driver and firmware modifications

Our test tool relies on Linux’s virtual interface support and
we used it with a TL-WN722N to inject frames. To avoid the
kernel function ieee80211_tx_h_sequence from overwrit-
ing sequence numbers when using multiple virtual interfaces,
we patched it to not modify non-zero sequence numbers. To
avoid the firmware from overwriting the sequence and frag-
ment number, we patched ath_tgt_tx_seqno_normal to
not modify wh->i_seq and wh->i_seq[0].

To prevent injected frames with a different QoS priority
from being reordered, we patched ath9k_htc_tx_data to
set tx_hdr.tidno to zero independent of the frame’s priority.

More details and other required workarounds, including
patches for other wireless network cards, can be found on [1].

17

mentor.ieee.org/802.11/dcn/03/11-03-0122-00-000i-simplifying-implementation-of-ccmp-mode.ppt
mentor.ieee.org/802.11/dcn/03/11-03-0122-00-000i-simplifying-implementation-of-ccmp-mode.ppt
mentor.ieee.org/802.11/dcn/03/11-03-0122-00-000i-simplifying-implementation-of-ccmp-mode.ppt
https://mentor.ieee.org/802.11/dcn/15/11-15-1132-02-000m-gcmp-decapsulation.docx
https://mentor.ieee.org/802.11/dcn/15/11-15-1132-02-000m-gcmp-decapsulation.docx
https://mentor.ieee.org/802.11/dcn/15/11-15-1132-02-000m-gcmp-decapsulation.docx
https://mentor.ieee.org/802.11/dcn/18/11-18-0616-00-000m-minutes-revmd-may-2018-warsaw.docx
https://mentor.ieee.org/802.11/dcn/18/11-18-0616-00-000m-minutes-revmd-may-2018-warsaw.docx
https://mentor.ieee.org/802.11/dcn/18/11-18-0616-00-000m-minutes-revmd-may-2018-warsaw.docx
https://www.wi-fi.org/file/wpa3-specification
https://www.wi-fi.org/file/wpa3-specification

B Non-consecutive packet number attack

Client Attacker AP (vulnerable)

Visit attacker’s website

Encn
k{Frag0(s)}

Encn+1
k {Frag1(s)}

Detect packet to
attacker’s server

Encn
k{Frag0(s)}

Decrypt & store fragment

St
ag

e
1©

Send sensitive data

Encn+d
k {Frag0(s

′)}

Encn+d+1
k {Frag1(s

′)} Detect packet with
sensitive data

Encn+d+1
k {Frag1(s)}

Reassemble frame

Packet with sensitive
data is sent to attacker

St
ag

e
2©

Figure 9: Attacking an AP that accepts fragments with non-
consecutive PNs. The first fragment is the start of an IP packet
to the attacker’s server, which is appended in stage 2© with
user data. The reassembled packet is sent to the attacker’s
server, exfiltrating the user data. Between stages 1© and 2©, the
attacker never uses sequence number s in forwarded frames.

C Advanced Aggregation (A-MSDU) attacks

In our aggregation attack, we used IPv4 packets with an at-
tacker-controlled IP identification value and payload. How-
ever, it may be infeasible to send such IPv4 packets to a victim.
Instead, an adversary may wish to abuse devices that send
IPv4 packets with an IP ID value of zero. This is useful when
combined with the fragmentation bug of Section 6.3 to control
a second plaintext fragment containing injected packets, or to
attack an AP using a client in the BEAST threat model.

When setting the A-MSDU flag of an encrypted frame that
transports an IPv4 packet with an ID value of zero, the last
two bytes of the destination IP address become the length
field of the second A-MSDU subframe. Depending on the
IP addresses used by the network, this results in a short sub-
frame, allowing an adversary to control the content of the
third A-MSDU subframe. For instance, when using the subnet
192.168.1.0/24, the length of the second subframe is between
256 and 512 bytes, leaving enough space to inject frames by
controlling the content of the third subframe. When targeting
IPv4 packets sent to the internet that have an identification
value of zero, we conjecture that traffic analysis can be used
to detect which server a user is connecting to, and based on
this the adversary can predict when the last two bytes of the
IP address result in a short A-MSDU subframe.

D Plaintext fragment injection against Linux

Client Attacker AP (vulnerable)

Encn
k{Frag0(s)} Encn

k{Frag0(s)}

Decrypt & store fragment

Encn+1
k {Frag1(s)} Encn+1

k {Frag1(s’)}

Update latest received PN

St
ag

e
1©

Frag1(s)

Reassemble frameSt
ag

e
2©

Figure 10: Tricking Linux into accepting plaintext fragments.
In stage 1© the attacker forwards a legitimate encrypted Frag0.
The second fragment is forwarded under a different sequence
number so it will not be combined with Frag0. However, Linux
does update the session variable containing the latest received
PN to n+1. In stage 2© the attacker injects a plaintext frag-
ment with sequence number s. The PN in the session variable
is now consecutive to the one of Frag0, and since the plain-
text fragment has the same sequence number s as Frag0, the
encrypted and plaintext fragment will be combined. The re-
sulting frame will then be processed (or forwarded) by Linux.

E Fragmentation attacks against FreeBSD

The default mixed key and fragment cache attack do not work
against FreeBSD, because it rejects fragments if an unrelated
frame (of the same sender) is received in-between these frag-
ments.

This can be overcome by realizing that broadcast frames
do not influence the defragmentation process of FreeBSD. An
adversary can use this to forward 4-way handshake frames
without affecting the defragmentation process by encapsulat-
ing them inside an A-MSDU frame with a broadcast receiver
address, where the destination MAC address in the A-MSDU
subframe equals the unicast address of the receiver.

To use this technique in an attack, the other station has
to send plaintext 4-way handshake messages. This is the de-
fault behavior of devices in the cache attack, but not during
the rekey handshake in the mixed key attack. Nevertheless,
the RT-AC51U AP does send 4-way handshake frames in
plaintext during a rekey. Therefore, when a FreeBSD client is
connected to such an AP, an adversary can capture the plain-
text 4-way handshake messages, and encapsulate them into
broadcast A-MSDU frames. This causes FreeBSD to renew
the pairwise session key without affecting the defragmenta-
tion process, allowing an adversary to perform a mixed key
attack against FreeBSD. We successfully tested this technique
against FreeBSD 12.1 when connected to our RT-AC51U. We
also performed a fragment cache attack against a FreeBSD
AP when it was using an TL-WN725N as a network card.

18

	Introduction
	Background
	Frame layout and packet aggregation
	Frame fragmentation
	Authentication and encryption
	Attack techniques and scenarios

	Abusing Frame Aggregation
	Threat model
	Injecting frames by spoofing A-MSDUs
	Practical impact
	Applicability to short A-MSDUs
	Spoofing A-MSDUs as normal frames
	Experiments
	Discussion

	Mixed Key Attack against Fragmentation
	Fragmentation design flaws
	Threat model
	Exfiltrating sensitive data
	Attack variations
	Applicability to WEP and TKIP
	Experiments
	Discussion

	Poisoning the Fragment Cache
	Threat model
	Exfiltrating client data
	Packet injection
	Experiments
	Discussion

	Experiments and Implementation Flaws
	Experimental setup
	Non-consecutive packet numbers
	Mixed plaintext and encrypted fragments
	Broadcast plaintext fragments
	Cloaking A-MSDUs as handshake frames
	EAPOL forwarding & fragmentation
	Skipping the TKIP authenticity check
	Treating fragments as full frames

	Related Work & Discussion
	Related work
	Countermeasures for the design flaws
	Overall discussion

	Conclusion
	Driver and firmware modifications
	Non-consecutive packet number attack
	Advanced Aggregation (A-MSDU) attacks
	Plaintext fragment injection against Linux
	Fragmentation attacks against FreeBSD

