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Abstract
To perform successful remote timing attacks, an adversary
typically collects a series of network timing measurements
and subsequently performs statistical analysis to reveal a dif-
ference in execution time. The number of measurements that
must be obtained largely depends on the amount of jitter that
the requests and responses are subjected to. In remote tim-
ing attacks, a significant source of jitter is the network path
between the adversary and the targeted server, making it prac-
tically infeasible to successfully exploit timing side-channels
that exhibit only a small difference in execution time.

In this paper, we introduce a conceptually novel type of tim-
ing attack that leverages the coalescing of packets by network
protocols and concurrent handling of requests by applica-
tions. These concurrency-based timing attacks infer a relative
timing difference by analyzing the order in which responses
are returned, and thus do not rely on any absolute timing in-
formation. We show how these attacks result in a 100-fold
improvement over typical timing attacks performed over the
Internet, and can accurately detect timing differences as small
as 100ns, similar to attacks launched on a local system. We
describe how these timing attacks can be successfully de-
ployed against HTTP/2 webservers, Tor onion services, and
EAP-pwd, a popular Wi-Fi authentication method.

1 Introduction

When the execution time of an application or algorithm de-
pends on a secret, it may be possible to leak its contents
through a timing attack. Over the last few decades, tim-
ing attacks have been applied in various contexts, ranging
from extracting private keys by abusing SSL/TLS imple-
mentations [11, 12, 30] to revealing the browsing habits of
users [7, 20, 43]. In a typical timing attack, the adversary ob-
tains a series of sequential measurements and then performs a
statistical analysis in an attempt to infer the actual execution
time for varying inputs. The success of such an attack largely
depends on the signal-to-noise ratio: the more variation the

measurements exhibit, the harder it will be to correctly deter-
mine the execution time.

In remote timing attacks, i. e., over a network connection,
the measurements are affected by many different factors. Pre-
dominantly, the variations in network transmission time (jitter)
can render a timing attack impractical, or may require the ad-
versary to collect an extensive number of measurements. On
Internet connections, packets experience jitter that depends
on the load of the network connection at any given point in
time, for every hop along the network path. In cases where the
timing difference is on the order of 100’s of nanoseconds or a
few microseconds, this network jitter becomes a prohibitive
factor for performing an accurate timing attack.

In this paper we introduce a new paradigm for remote
timing attacks by exploiting multiplexing of network proto-
cols and concurrent execution by applications. Our proposed
concurrency-based timing attacks are completely unaffected
by network conditions, regardless of the distance between the
adversary and the victim server. In contrast to typical timing
attacks, where absolute measurements are obtained sequen-
tially, our novel attacks extract information from the order
in which two concurrent execution tasks are completed, and
in fact do not use any timing information (we therefore call
them timeless). For the attack to be successful, both tasks
must start executing immediately after one another, and the
delay between starting both tasks should be unaffected by the
network. To achieve this, we leverage several techniques that
trick various network protocols to coalesce different requests
in a single network packet. As a result, both requests arrive
simultaneously at the targeted server, and are processed con-
currently. We find that the performance of these concurrent
timing attacks over a remote connection is comparable to that
of a sequential timing attack on the local system.

Through a formal model, we show how concurrency-based
timing attacks are theoretically unaffected by jitter on the
network connection. We then show how these attacks can
be applied in practice in a variety of scenarios: web appli-
cations served over HTTP/2 or by Tor onion services, and
Wi-Fi authentication. Based on an extensive evaluation, our



measurements confirm that concurrency-based timing attacks
are indeed unaffected by variations in network delay. On web
servers hosted over HTTP/2, we find that a timing difference
as small as 100ns can be accurately inferred from the response
order of approximately 40,000 request-pairs. The smallest
timing difference that we could observe in a traditional tim-
ing attack over the Internet was 10µs, 100 times higher than
our concurrency-based attack. Based on the response order
of concurrent EAP-pwd authentication requests, whose tim-
ing side-channel was previously deemed infeasible to exploit
against a server, it is possible to perform a dictionary attack
with a success probability of 86%.

In summary, we make the following contributions:
• We introduce a model for timing attacks and show that,

in theory, concurrency-based attacks are unaffected by
network irregularities. Through various experiments we
confirm that this holds true in practice.

• We show how request and response multiplexing in
HTTP/2 can be leveraged to perform concurrency-based
timing attacks, both in direct as well as cross-site threat
scenarios. Our measurements indicate that concurrency-
based timing attacks significantly outperform sequential
attacks over the network and have a similar accuracy as
when attacks are performed on the local system.

• We discuss how network protocols can make applica-
tions susceptible to concurrency-based timing attacks, as
evidenced by a practical timing attack against Tor onion
services despite the high network jitter introduced by the
six relays between the adversary and the server.

• In addition to the attacks against web services, we de-
scribe how our novel exploitation techniques can be ap-
plied in other contexts: We perform a dictionary attack
with high success rate against EAP-pwd, a popular Wi-Fi
authentication method.

• Finally, we propose various defenses that reduce the per-
formance to sequential timing attacks performed over the
network, and evaluate their real-world overhead based
on an extensive dataset.

2 Background & Related work

Timing attacks have been known and extensively studied for
several decades [30]. They can be used to leak secret informa-
tion by exploiting a measurable difference in execution time.
As connectivity became more stable over time, it was shown
that timing attacks can also be launched over the network:
in 2005, Brumley and Boneh showed that it was possible to
extract an SSL private key over a local network by exploiting
a timing side-channel in OpenSSL [12].

2.1 Timing attacks against web applications
In 2007, Bortz and Boneh showed that timing attacks can be
applied to extract sensitive information from web applica-

tions [7]. They introduced two types of attacks: direct attacks,
where the adversary directly makes a connection with the
webserver, e. g., to test for the existence of an account on
the application, and cross-site timing attacks, where the at-
tacker tricks a victim to send requests, e. g., upon visiting an
attacker-controlled website.

In their research, Bortz and Boneh show how cross-site
timing attacks can be used to reveal whether a user is logged
in, or how many items the user has in their shopping basket.
More recently, in 2015, Gelernter and Herzberg revisited these
cross-site timing attacks and introduced two new techniques
to overcome the limitations imposed on the attack by the
potential instability of the victim’s connection [22]. Their
techniques rely on inflating either the size of the response
or the computation time required by the server. As a result,
the difference in response size or processing times becomes
significantly higher, and therefore the signal-to-noise ratio
of the measurements is increased. This work is orthogonal
to our research: We focus on making it feasible to detect
small timing differences in contrast to increasing these time
differences.

Other timing attacks in the web platform aimed to deter-
mine the size of responses, either by abusing side-channel
leaks in the browser [51] or by exploiting TCP windows [55].
Furthermore, it has been shown that the various high-
resolution timers that are available in modern browsers [45]
can be abused to leak information on which URLs have been
visited [47], activities of other tabs [56], and even to create
unique device fingerprints [44].

2.2 Other remote timing attacks

Outside of the context of web applications, remote timing
attacks have mainly been demonstrated on crypto protocols,
such as SSL/TLS. It has been shown that the private key of an
OpenSSL-based server could be extracted by exploiting tim-
ing side channels [37] in the implementation of RSA [1, 12],
AES [6], or ECDSA [11]. Furthermore, Meyer et al. [38] pre-
sented timing-based Bleichenbacher attacks on RSA-based
ciphersuites that could be exploited over a local network. An-
other timing attack that was shown to be feasible to exploit
over a local network is Lucky Thirteen [2], which leverages
timing differences in TLS and DTLS implementations. Since
timing attacks against crypto protocols mostly abuse timing
differences in operations that are sequential, e. g., during the
handshake, our concurrency-based timing attacks cannot be
straightforwardly applied. Nevertheless, as we show in Sec-
tion 5, attacks against crypto implementations can still be
applied if there exists an underlying network layer that coa-
lesces different packets.

In 2020, Kurth et al. introduced NetCAT, which targets
DDIO, a recent Intel feature that provides network devices
access to the CPU cache, to perform a PRIME+PROBE
attack that can exploit cache side-channels [32]. Remote mi-



croarchitectural attacks targeting the application layer have
been explored by Schwarz et al. [46], who showed that it is
feasible to perform Spectre attacks over a network connection.
They show that with approximately 100,000 measurements
over a local network it is possible to leak one bit from the
memory, resulting in 30 minutes per byte, or 8 minutes when
the covert channel based on AVX instructions is used. On a
cloud environment, leaking one byte took approx. 8 hours for
the cache covert channel and 3 hours when leveraging the
AVX-based channel. Since the NetSpectre attacks target appli-
cations above the network layer, an attacker could, in theory,
leverage our concurrency-based timing attacks to improve the
timing accuracy. One challenge may be that the concurrent
executions required by our attack introduce (microarchitec-
tural) noise or side-effects into the NetSpectre measurements,
making exploitation challenging. As such, we consider ex-
ploring concurrency in remote microarchitectural attacks an
interesting topic for future research.

3 Concurrency-based Timing Attacks

In contrast to classical timing attacks, where an adversary
obtains a number of independent measurements over the net-
work and then uses statistical methods to infer the processing
time of the request, the concurrency-based timing attacks we
introduce in this paper rely on the relative timing difference
between two requests that are concurrently executed.

3.1 Classical timing attack model
Before explaining how concurrency-based timing attacks can
be executed in practice, we first introduce a theoretical model
of timing attacks to show how they can benefit from exploiting
concurrency. Inspired by the work of Crosby et al. [15], our
model splits the measured response time R into the processing
time T and propagation time B, resulting in R = T +B. The
processing time T is defined as the time required by the server
to process the request and form a response, and the propaga-
tion time B denotes the latency incurred by transmitting the
request and response packets (including, e. g., encryption over-
head). Due to dynamic workloads on the server and variations
in network conditions, both T and B are random variables.
Let t = E[T ] and b = E[B], then we can write

R = t +b+ J, (1)

where J represents the sum of the random jitter associated to
both the processing and propagation times. To differentiate
between requests to different processing tasks m ∈ {1..M}
on the same server we write Rm = tm + b+ Jm. Here b is
independent of m because we assume the propagation time
between a specific client and server is independent of the
task m being executed, and because the arrival time of the first
byte of the response is independent of the response length.

So far, we treated the propagation time as an aggregate over
the entire request-response operation. However, this aggregate
operation consists of a number of sub-operations, e. g., the
routing operations for every hop encountered on the network
path, encoding the network packets, decrypting the payload,
passing the request to the correct processing unit, etc. As such,
we can model the propagation time for a request as the sum
of all sub-operations k ∈ {1..K}. The formula then becomes:

Rm = tm +
K

∑
k=1

(bk + Jm,k) , (2)

where the random jitter associated to the processing time tm is
modeled by Jm,p for some p ∈ {1..K} with bp equal to zero .

As an adversary, we have access to the response times for
two different requests, and we want to know under which
conditions this leaks the order of processing times. That is, if
the response time of request x is larger than that of request y,
we want to know under which conditions this means that the
processing time of x was also higher than that of y. To derive
these conditions, we construct the following equivalences:

Rx > Ry⇔ tx +
K

∑
k=1

(bk + Jx,k)> ty +
K

∑
k=1

(
bk + Jy,k

)
(3)

⇔ tx− ty >
K

∑
k=1

(
Jy,k− Jx,k

)
. (4)

From this we can see that the order of response times correctly
leaks the order of processing times if their difference is higher
than the combined jitter of both requests. The probability of
this being the case decreases in function of the sum of jitter
variances (assuming the jitter distributions are statistically
independent and normally distributed).1 In practice we can
perform multiple measurements to reduce the impact of the
random jitter over the difference in processing times.

3.2 Model for concurrency timing attacks
We consider two requests to be concurrent when they are
initiated at the same time, and where the relative difference of
the response times, or their order, reveals information on the
execution times. As we will show in the following sections,
this allows us to significantly reduce the impact of jitter on
our measurements. More concretely, in many cases we can
force the jitter values for a subset of sub-operations to be the
same for two concurrent requests, e. g., by aggregating the
requests in a single network packet. As such, the jitter for
the first S sub-operations, i. e., those related to sending the
requests from the client to the server, is the same between the
two concurrent requests x and y:

∀s ∈ {1..S} : Jx,s = Jy,s (5)

1This is because Var[Jy,k + Jx,k] =Var[Jy,k− Jx,k] =Var[Jy,k]+Var[Jx,k].



where 1≤ S < K, and such that the server starts processing
the request starting from sub-process S+1. When we apply
this optimization to the equivalence defined in (4) we get:

Rx > Ry⇔ tx− ty >
K

∑
k=S+1

(
Jy,k− Jx,k

)
. (6)

As such, by leveraging the aggregation of two concurrent
requests in a single network packet, an adversary can observe
a difference in processing time if this difference is greater than
the jitter incurred by the requests after they arrive at the server.
Consequently, the probability that the difference in response
timing correctly reflects the difference in processing time is
higher for concurrency-based timing attacks, and therefore
fewer measurements are needed to infer secret timing-based
information. If we assume that the jitter of (certain) operations
is directly related to the average propagation time, i. e., the
longer an operation takes, the higher the absolute jitter values
will be (our measurements in Section 4 confirm this), our
concurrency-based timing attacks provide the most advantage
on (relatively) slow network connections.

Most systems and applications do not support complete
concurrency: a network card will read a packet byte by byte
from the physical layer, encrypted packets need to be de-
crypted sequentially in the correct order, etc. Consequently,
the processing of the second request will be slightly delayed
by operations on the first request. We represent this additional
delay before processing the second request using the random
variable Dy. Similar to other operations, we define dy = E[Dy],
and we let Jy,d represent the random jitter associated to this
delay. Note that this delay only exists for the second request.
Considering this additional delay, the equivalence becomes:

Rx > Ry = tx− ty >
K

∑
k=S+1

(
Jy,k− Jx,k

)
+
(
dy + Jy,d

)
. (7)

Since many network protocols, for example TCP, include
monotonically increasing sequence numbers in all transmit-
ted packets, we can make another improvement to our model
by leveraging the order of responses instead of their differen-
tial timing. Specifically, the request that the server finished
processing first will have a response with a sequence number
lower than the later response. As a result, jitter incurred after
a request has been processed will have no effect on the order
of the responses. If we let SNy be the sequence number of the
response associated to request y we get:

SNx > SNy ⇔ tx− ty > Jy,p− Jx,p +dy + Jy,d . (8)

Recall that we defined Jy,p as the jitter associated with the pro-
cessing of request y. From this we can see that the sequence
numbers of the responses correctly leak the order of process-
ing times if their difference is higher than the combined jitter
of processing both requests plus the total delay (average +
jitter). Recall that the delay here refers to the time difference
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Figure 1: Threat models for web-based attacks.

between when the server started processing each of the two
concurrent requests. Importantly, Equation 8 shows that net-
work jitter does not affect concurrency-based timing attacks
at all, neither on the upstream nor downstream path. However,
a downside of only considering the order of responses is that
it may provide less granular information, making statistical
analysis less efficient. In the following sections we explore
how this affects attacks in practice.

4 Timing attacks on the web

Timing attacks on the web have been studied for well over a
decade [7]. To date, researchers have focused on uncovering
applications that may leak sensitive data by obtaining several
timing measurements and then performing a statistical analy-
sis. Crosby et al. found that the Box Test performs best, and
were able to measure a timing difference of 20µs over the In-
ternet and 100ns over the LAN [15]. In the concurrency-based
timing attacks of this section, we show that, regardless of the
network conditions, it is possible to achieve a performance
similar to traditional timing attacks that are launched from
the local system.

4.1 Threat model

For web-based timing attacks, we consider two threat models:
direct and cross-site attacks [7], as depicted in Figure 1. In
a direct timing attack, the adversary will connect directly to
the targeted server and obtain measurements based on the
responses that it returns. As the adversary is sending packets
directly to the server, this provides them with the advantage
that they can craft these packets as needed. In the cross-site
attack model, the attacker will make the victim’s browser
initiate requests to a targeted server by executing JavaScript,
e. g., through a malicious advertisement or tricking the victim
into visiting an attacker-controlled web page. Although the
same-origin policy prevents the attacker from extracting any



content from the responses, timing is one of the metadata
that is still available. More concretely, the adversary could
leverage the Fetch API to initiate a request to the targeted
website. This will return a Promise object, which will resolve
as soon as the first byte of the response has been received [52].

It is important to note that the victim’s cookies will be
included in the request (assuming the adversary passes the
{"credentials": "include"} option to the Fetch API).
As such, the requests are performed under the identity of the
victim, effectively allowing the adversary to extract sensitive
information that the user has shared with the targeted website.
In contrast to the direct timing attack, in which the adversary
can choose from which server to launch the attack, preferably
one in close vicinity of the targeted server, the network condi-
tions between the victim and server are out of the control of
the attacker. For example, the victim could have an unreliable
wireless connection, or be located in a different country than
the origin server, thereby introducing a significant amount of
jitter to the timing measurements in a classical timing attack.

4.2 HTTP/1.1

The most popular protocol on the web is HTTP; for a long
time HTTP/1.1 was the most widely used version. Classical
timing attacks presented in prior work [7, 15, 19, 22, 51] ex-
clusively targeted this protocol, since HTTP/2 only recently
became widely adopted. A major limitation of HTTP/1.1 is
its head-of-line (HOL) blocking, causing all requests over the
same connection to be handled sequentially. Thus the only
way to perform a concurrent timing attack is to use multiple
connections.

To evaluate whether concurrency would improve the accu-
racy of timing attacks, we performed several experiments. We
found that concurrently launching requests over two connec-
tions increases the jitter on the network path from the attacker
to the server. Network interfaces can only transmit one packet
at the time; when the attacker sends two concurrent requests
in 2 TCP packets, the second one will be delayed until the first
one is sent. As such, the jitter that the packets observe during
transmission is independent from each other, similarly as with
a sequential timing attack. There is a possibility that the two
packets would experience jitter such that at the last network
hop on the path between the attacker and target server, both
packets are buffered and will arrive almost simultaneously at
the server. However, as this does not happen consistently, the
attacker has no way of knowing that this in fact occurred.

In Appendix A we report on an experiment where two
HTTP/1.1 requests were sent concurrently over two different
connections. We find that this does not improve the perfor-
mance of timing attacks, validating our assumption that the
jitter observed on the two connections is independent. As
such, we conclude that simply sending HTTP requests at the
same time over different connections does not improve the
performance of a timing attack. Note that this does not mean

that servers using HTTP/1.1 are unaffected by concurrency-
based timing attacks (in Section 4.4 we show how Tor onion
services running an HTTP/1.1 server can be attacked), but
rather that the protocol cannot be abused to coalesce multiple
requests in a single network packet.

4.3 HTTP/2

In this section we show how the request and response multi-
plexing of HTTP/2 can be leveraged to perform concurrency-
based timing attacks that allow an adversary to observe a
timing difference as small as 100ns, providing a 100-fold
improvement over classical timing attacks over the Internet.

4.3.1 Background

A key advantage of HTTP/2 is the removal of the restrictions
imposed by HOL blocking. To achieve this, HTTP/2 intro-
duces the concept of streams, a bidirectional flow of data with
a unique identifier that is typically associated with a request
and response pair. Data is sent in the form of frames; the
request and response bodies are sent in DATA frames whereas
the headers are sent in HEADERS frames. Headers are com-
pressed using the HPACK algorithm [40], which uses a static
and dynamic table to refer to header keys and values.

Since every frame contains a stream identifier, the web
server can process different requests concurrently, despite hav-
ing only a single TCP connection. Similarly, responses can be
sent as soon as they are generated by the server. By default, the
web server will prioritize requests equally, although it is also
possible to explicitly define a priority for a specific stream, or
by declaring dependencies on other streams. However, at the
time of this writing, many web servers and browsers either do
not support prioritization at all, or only provide limited func-
tionality [18, 35]. Moreover, in our concurrency-based tim-
ing attacks, the requests will ideally be handled by the same
processing resources, such that their execution time solely
depends on the secret information that the adversary aims to
infer. The execution of the concurrent requests will typically
be performed on different CPU cores/threads; thus the execu-
tion of one request will not affect that of the other. Note that
if the execution of the request makes use of a shared resource
that does not support parallelism, there can be an influence in
execution time between the two requests. Depending on the
application, this could reduce the timing side-channel leak,
or it might amplify it, e. g., when the access to the shared
resource occurs after the operation that leaks sensitive timing
information and the “slowest” request is delayed further by
waiting to access the shared resource.

4.3.2 Direct attacks

As discussed in our formal model of Section 3, the goal of
an attacker is to ensure that the server starts processing two
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Figure 2: Distribution of the difference in response time for
two concurrently launched requests for the same processing
task, with and without additional URL parameters.

requests at exactly the same time, such that the order of the
responses reveals which request finished processing first. One
request is for a known baseline processing task, and the other
for a task that would either take the same or a different amount
of processing time, depending on some secret information.
Thanks to HTTP/2’s request multiplexing, multiple requests
that are sent at the same time will be processed in parallel, and
in contrast to HTTP/1.1, responses are sent as soon as possi-
ble independent of the request order. To abuse this behavior,
an attacker can embed two HEADERS frames containing two
HTTP/2 requests in a single TCP packet to ensure they arrive
at the same time. As headers are compressed, their size is
typically on the order of 100-150 bytes, and thus the result-
ing TCP packet size is significantly lower than all Maximum
Transmission Units (MTUs) observed on the Internet [17].

In our measurements, we made use of the nghttp2 C li-
brary [50] and used the TCP_CORK option [5, 33] to ensure
that the two concurrent requests are added to the same TCP
segment2. As most browsers only allow HTTP/2 connections
over TLS, all measurements that we performed were over a se-
cure connection. In summary, a single TCP segment contains
two TLS records that each contain a HTTP/2 HEADERS frame.
As soon as the TCP segment arrives at the server, the two
TLS records are decrypted sequentially, and the server starts
processing each immediately after decryption. The dy + Jy,d
factor from the equivalence defined in (8) reflects the average
duration and jitter of the decryption of the TLS record con-
taining the second request. This forms a problem if we want
to leverage the order in which responses are returned: For
two requests that have the same processing time, the former
will be returned first if the decryption time is higher than the
difference in jitter. To measure this impact, we sent one mil-
lion request-pairs for the same processing task (idle sleep for
100µs) to an HTTP/2-enabled nginx server hosted on Amazon
EC2 and captured the difference in response time. In Figure 2,
we show the distribution of the differences in response time.

2Our custom HTTP/2 client is available at https://github.com/
DistriNet/timeless-timing-attacks

Positive values indicate that the order in which the responses
were received is the same as the order in which the requests
were sent, and negative values indicate a reversed order. We
can clearly see that when two identical requests are sent (blue
distribution on the graph), these are virtually always returned
in the same order. Note that there is a high peak close to 03,
which represents the cases where both responses were sent
back in a single TCP packet, which may happen when the
responses are sent in quick succession.

To overcome this limitation, the processing of the first re-
quest needs to be slightly delayed, i. e., for the duration of
decrypting the second request. For this, we leverage the fact
that the request handler needs to parse the URL to extract
the parameters and associated values, and make these acces-
sible to the processing language. Since the execution time
of this parsing is directly related to the number of URL pa-
rameters, an adversary could arbitrarily extend this execution
time by including more parameters. In 2007, Wälde and Klink
showed how this mechanism could be abused by including
many URL parameters that would result in a hash collision in
the hashtable that was constructed in PHP, leading to a Denial-
of-Service [29]. In contrast to these DoS attacks, which to
date have largely been mitigated, e. g., by reducing the num-
ber of allowed parameters to 1,000, we only require a short
execution time. In an attack scenario, the adversary can first
empirically determine the number of additional URL parame-
ters that need be included in the first request such that both
requests are processed at the same time. We found that this
value remains stable over time, and depends on the web server
application that is used; Figure 2 shows the distribution of
the difference in response timing for two requests where the
first one contains 40 additional URL parameters (orange dis-
tribution). This results in a better balance in the order of the
responses; adding fewer parameters causes more responses to
be received in the same order as the requests, and when more
parameters are included, the second request is more likely to
finish first.

In our formal model, this means that we introduce another
factor, ux (and associated jitter value Jx,u), that can be sub-
tracted from dy:

tx− ty > Jx,p + Jy,p +(dy−ux)+ Jy,d + Jx,u (9)

To evaluate the performance of concurrency-based timing
attacks in HTTP/2, we perform a series of measurements.
In our measurements, we create a set of (baseline, baseline)
request-pairs, where both requests were for a PHP endpoint
that would perform time_nanosleep(100000), i. e., idle
sleep for 100µs. Additionally, we created a set of (baseline,
target) request-pairs, where the target requests are for an end-
point that would perform an idle sleep for 100µs+∆, for mul-
tiple values of ∆, ranging from 75ns to 50µs. All requests

3These values are not equal to 0 as we measure the response time after
decryption of the response.



Timing difference

75ns 100ns 150ns 200ns 500ns 1µs 2µs 5µs 10µs 20µs 50µs

Client-server connection Concurrency-based timing attack (HTTP/2)

Miscellaneous (Internet) - 39,342 24,016 9,917 1,610 466 161 52 11 6 6

Sequential timing attack
Europe - Europe - - - - - - - - 23,220 2,926 333
Europe - East US - - - - - - - - - 16,820 4,492
Europe - South-East Asia - - - - - - - - - - 7,386
VM - VM (LAN) - - 50,463 40,587 14,755 3,052 2,165 498 126 41 20
localhost - - 16,031 17,533 3,874 856 220 42 20 16 14

Concurrency-based timing attack (HTTP/1.1 over Tor)
Client to onion service - - - - - 43,848 3,125 386 96 22 6

Table 1: The average number of requests or request-pairs required to perform a successful timing attack with at least 95%
accuracy. If the attack was unsuccessful, or required more than 100k requests, this is indicated with a dash (-).

were made from our university’s network (located in Belgium,
using a 1Gbit connection), and for every ∆, we obtained 1 mil-
lion measurements from nine Amazon EC2 servers that ran
an nginx web server. We launched three C5.large instances
in three geographically distributed datacenters: EU, East US,
South-East Asia (nine instances in total); the connection of
these instances is 10Gbit. We used a minimal program that
only calls a sleep function to minimize the jitter related to
program execution. It should be noted, however, that even this
minimal program still produces a non-neglibile amount of
jitter. In particular, when evaluating the accuracy of the sleep
function on the server itself using a high-resolution timer,
we still needed 411 measurements to correctly distinguish a
timing difference of 75ns.

To compare concurrency-based attacks to traditional timing
attacks, we also computed the number of requests needed
to perform a classical timing attack, using the Box Test for
the statistical analysis [15]. The Box Test considers three
distributions of timing measurements: the baseline, that of
a negative result (timing matches baseline), and that of a
positive result (with a different processing time due to a timing
side-channel leak). A timing attack is considered successful
if a pair of i, j ∈ [0,100] with i < j can be found such that
the interval determined by the ith and jth percentile of the
distribution of the baseline measurements, overlaps with the
interval (determined by the same i and j) of the negative result
measurements distribution, while at the same time does not
overlap with the interval of the positive result. That is, an
overlap indicates that the measurements come from requests
with the same processing time, whereas a measurements of
requests with a different processing time should not have an
overlapping interval. If no values for the pair i, j can be found
that fulfill these conditions, the timing attack is considered

infeasible to exploit.
For this experiment, requests were again launched from our

university’s network. Additionally, we performed experiments
from a VM located in the same datacenter as the server (LAN),
as well as a timing attack to localhost. The results of our mea-
surements are shown in Table 1; for the concurrency-based
attacks, this table indicates the minimum required number
of request-pairs to perform an attack with 95% accuracy (av-
eraged over the nine servers). For the classical (sequential)
timing attack we show the total number of requests. Note
that the total number of requests that will be launched for
the concurrency-based attack is twice the reported number
of request-pairs. However, because the pairs are sent simulta-
neously, it takes approximately the same amount of time to
process a request-pair in the concurrency-based timing attack,
as to process a single request in the sequential timing attack.
If an attack was unsuccessful, i. e., would require more than
100,000 requests, on at least one server, we mark it with a
dash (-). Note that because our experiments were performed
in a real-world setting, some of the measurements may be
affected by temporal variations of load on the network or on
the machines that hosted the VMs.

We find that concurrency-based timing attacks provide a
significant advantage compared to any sequential timing at-
tack over the Internet: Even for the EU-EU connection, which
had the lowest latency (average: 24.50ms) and jitter (standard
deviation: 1.03ms), the sequential timing attack can only dis-
tinguish an execution time of 10µs, whereas our concurrent
timing attack can distinguish a difference of 100ns (2 orders of
magnitude more precise). Moreover, our concurrency-based
attacks even outperform sequential timing attacks over the
local network, which had an average latency between 0.5ms
and 1.5ms, and standard deviation of jitter between 15µs and



45µs (depending on the datacenter). Finally, we can see that
our novel attacks are comparable to executing a sequential
timing attack on the local system, which confirms that, as we
determined in our formal model, concurrency-based timing
attacks are not affected by network conditions.

In addition to the measurements on nginx, we performed
a similar set of experiments against an Apache2 web server,
using the same experimental setup. We find that, in general,
timing attacks targeting web applications served by Apache2
require more requests compared to nginx, especially in opti-
mal network settings, such as localhost or the local network.
This can be attributed to the request handling mechanism
of Apache2, which is more computationally expensive com-
pared to that of nginx. Correspondingly, we find that the
concurrency-based attacks are also slightly affected by this,
as the variation in the computation increases. Nevertheless,
we find that the concurrency-based attacks still allow the ad-
versary to distinguish timing differences as small as 500ns.
The complete results of these experiments can be found in
Appendix B. As web servers need to handle more and more
requests, and become increasingly performant, we believe
the accuracy of (concurrent) timing attacks will continue to
improve.

4.3.3 Cross-site attacks

A key requirement of our concurrency-based timing attacks
against HTTP/2 is that we can manipulate the TCP socket
in such a way that both HTTP requests are sent in a single
packet. For cross-site attacks, where the requests are sent
from a victim’s browser, this is no longer possible, as the
browser handles all connections. To overcome this limita-
tion, we introduce another technique that leverages TCP’s
congestion control [3] and Nagle’s algorithm [8, §4.2.3.4].
The congestion control mechanism determines the number of
unacknowledged packets that a host can send, which is ini-
tially set to 10 on most operating systems and is incremented
with every received acknowledgment, as per TCP’s slow start
mechanism [48]. Furthermore, Nagle’s algorithm ensures that,
if there is unacknowledged data smaller than the maximum
segment size (MSS), user data is buffered until a full-sized
segment can be sent. For example, if an application would
consecutively send two small chucks of data, e. g., 20 bytes,
these will be combined and only a single packet of 40 bytes
will be sent. Consequently, as an attacker we can initiate a
bogus POST request with a sufficiently large body that exactly
fills the congestion window. Immediately after this POST re-
quest the attacker triggers the two concurrent requests, which
will be buffered and thus coalesced in a single packet when it
is eventually sent to the target website.

An important caveat is that the sending TCP window is
incremented with every ACK that is received. Consequently,
when (rapidly) performing multiple concurrency-based timing
measurements, an attacker would need to send an increasingly

large POST request to fill the sending TCP window. To over-
come this limitation, the adversary has two options. First, the
request-pairs could be padded such that two requests exactly
fit in a single packet. In virtually all cases the exact size of
the request can be predicted (the browser will always send
the same headers).4 After sending the first bogus POST re-
quest to fill the initial TCP window, the attacker launches
several request-pairs, and every pair will be contained in a
single packet. As such, for every ACK that is received, two
new request-pairs will be sent. In our experiments, we found
that on low-latency connections, the ACKs would arrive very
rapidly, and thus the server would eventually become over-
loaded with requests, introducing jitter to the measurements.
As a workaround, the attacker could, instead of the initial large
bogus POST request, instead send 10 (= initial congestion
window) smaller requests with a delay of RTT/10 in between
the requests. As a result, the initial TCP window will still
be filled and ACKs would only arrive at a rate of RTT/10.
Ironically, this means that this technique (and thus the timing
measurements) works better on slower network connections.

An alternative technique to overcome the hurdles imposed
by the increasing TCP window, is to force the browser to close
the connection. Browser have an upper bound on the number
of active concurrent connections; if this limit is reached, it will
close the least recently used ones. For instance, in Chrome
this limit is set to 256 [42], and thus an attacker could make
the victim’s browser initiate connections to as many IP ad-
dresses, forcing it to close the connection to the targeted
server. On Firefox, this limit was increased to 900, except for
the Android-based browser applications, which remained at
256 [34]. We found that it is feasible to use this technique to
close an active connection; other mechanisms may also be
abused to do this (e. g., Firefox imposes a limit of 50 concur-
rent idle connections, and will close active connections when
this limit is reached). It should be noted that this technique
can be used in conjunction with the first one, if it is required
to reset the TCP window.

As the requests are coalesced in a single packet, the perfor-
mance of these cross-site timing attacks is the same as with
the direct attacks. To defend against this type of attack, the
webserver could set the SameSite attribute on cookies [36],
preventing it to be sent along in the cross-site requests, al-
though certain violations have been discovered [21, 41]. As
of February 2020, Google Chrome is gradually rolling out
changes that mark cookies as SameSite by default [49].

4.3.4 Limitations

According to HTTPArchive’s annual report, which takes into
account data obtained from over 3 million regularly vis-
ited websites, 37.46% desktop homepages are served over

4When the cookie constantly changes in length and content, the HPACK
algorithm will not be able to refer to it with an entry in the dynamic table,
and thus the request length varies along with the length of the cookie.



HTTP/2 [26]. For websites that support HTTPS, a require-
ment that browsers impose for using HTTP/2, this is per-
centage is even higher: 54.04%. Although this makes many
websites susceptible to our concurrency-based timing attacks,
it should be noted that a significant number of websites are
using a content delivery network (CDN), such as Cloudflare.
HTTPArchive reports 23.76% of all HTTP/2 enabled websites
to be powered by Cloudflare. For most CDNs, the connection
between the CDN and the origin site is still over HTTP/1.1,
and HTTP/2 may not even be supported (as it does not provide
performance improvements). Nevertheless concurrency-based
timing attacks may still outperform classical timing attacks in
this case, as requests are not affected by jitter on the network
path between the attacker and the CDN. This is especially
valid for cross-site attacks, where the requests are sent by the
victim who may have an unreliable Internet connection.

4.3.5 Use-case

To demonstrate the impact of our concurrency-based tim-
ing attacks over HTTP/2, we describe how it can be applied
in a cross-site attack scenario. More specifically, we found
and reported a cross-site timing attack against HackerOne5, a
popular bug-bounty platform where security researchers can
report vulnerabilities to a wide range of bug bounty programs.
In the dashboard, security researchers and managers of the
bounty program can search through the reported bugs; this
triggered a GET request where the text_query parameter
was set to the searched keyword. We found that requests that
did not yield any results were processed faster compared to
requests where at least one result was returned. As such, a XS-
Search attack [22] could be launched against this endpoint:
by tricking a manager of a bug bounty program in visiting a
malicious web page, the adversary could find out specific key-
words that were mentioned in the private, ongoing reports, and
potentially reveal information about unfixed vulnerabilities.

After reporting our findings, we were told that a timing
attack to this endpoint had been reported a total of eight times.
However, our report was the only to qualify for a reward, as it
was “the first one to demonstrate a feasible attack”. Indeed,
with less than 20 request-pairs we could accurately determine
if a search query had at least one result. In the meantime, the
vulnerability has been mitigated by changing it to a POST
request, and requiring a valid CSRF token.

4.4 Tor Onion Services
Tor is a well-known low-latency anonymity network. When a
client wants to send a request over Tor to a public web server,
this request is first encoded as a Tor cell, which has a fixed
length of 514 bytes. These cells are then encrypted once for
every relay on the circuit. Most circuits consist of 3 hops,
where the last one is the exit node, which sends the request to

5https://hackerone.com/

the public web server. In addition to protecting the identity
of the user when sending outgoing traffic, Tor also provides
a feature that hides the identity of the server. To connect to
one of these so-called onion services, the client performs a
handshake involving the introduction points chosen by the
onion service, and a rendezvous point chosen by the client.
Upon a successful handshake, a circuit between the client and
onion service is created, consisting of 6 intermediate relays.

Due to the extended network path that a request has to
traverse to reach a hidden service, the jitter renders almost
all sequential timing attacks impractical. Based on 100,000
measurements, we determined an average RTT of 251.23ms
to our onion service, with a standard deviation of 32.47ms
(approximately 30 times as high as what we observed over a
regular Internet connection). If the web server would support
HTTP/2, the concurrency-based timing attacks presented in
Section 4.3 can be used straightforwardly (the attacker can
simply construct a packet containing both requests). However,
because of how network packets are transported over the Tor
network, it is also possible to perform attacks against onion
services that only support HTTP/1.1 (or any other type of
service). More specifically, an attacker can create two Tor
connections to the onion service, and then simultaneously
send a request on each of the connections. This will trigger
the attacker’s Tor client to create two Tor cells and send these
over the 6-hop circuit to the onion service. Because a single
Tor cell is only 514 bytes (+ 29 bytes of TLS overhead),
two cells will fit in a single TCP segment for virtually every
network [17]. Consequently, if the two cells are placed in the
same packet on the last hop of the circuit, i. e., between the
relay and the onion service, the requests will be processed
simultaneously by the server.

Based on our experiments on the live Tor network, we
found that when the first request of a request-pair is suffi-
ciently large6, e. g., by adding padding in the headers, and
requests are sent in relatively quick succession, the TCP buffer
between the onion service and the last relay becomes filled.
Consequently, because of Nagle’s algorithm, the last two cells
will be joined in a single packet. We found that this would
reliably cause an inter-request delay on the order to 10µs, and
because the first request was larger, and thus took slightly
longer to process, no additional URL parameters had to be
added to offset the inter-request delay. Note that the webserver
will only start processing a request when the entire request
has been received.

We set up several Tor onion services on geographically
distributed Amazon EC2 datacenters, these ran an nginx
HTTP/1.1 server. The (unmodified) Tor clients were set up
on virtual machines on our university’s private cloud, using a
1Gbit connection, and used the real Tor network to connect to
the web servers. The results of our concurrency-based timing
attacks that leverage Tor are shown in Table 1. Again, we

6In our tests, we found 1500 bytes to be sufficient.
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find a significant increase in the precision by which a timing
difference can be distinguished. With 43,848 requests, it is
possible to measure a timing difference of 1µs; this is within
the range of what is required to perform attacks against crypto
protocols (e. g., the Bleichenbacher attack by Meyer et al. ex-
ploited a timing difference ranging from 1-23µs). As such, by
making a service available as an onion service, it may become
possible to perform timing attacks that would not be feasible
to exploit over a normal Internet connection.

5 Wi-Fi attacks

In this section we present concurrency-based timing attacks
against the EAP-pwd authentication method of Wi-Fi. By
abusing concurrency, we exploit a timing leak that was previ-
ously considered infeasible to exploit. We also demonstrate
how the leaked information can be abused to launch dictionary
and password brute-force attacks.

5.1 Background
In enterprise WPA2 and WPA3 networks, the most frequently
used authentication methods include EAP-PEAP and EAP-
TTLS. Unfortunately, both rely on certificates, which in prac-
tice causes security issues because clients often fail to vali-
date server certificates [4, 9]. An authentication method that
is based on solely on passwords and avoids certificates, and
hence is easier to use and configure, is EAP-pwd [24]. Note
that EAP-pwd is almost identical to the Dragonfly handshake
of WPA3 [57], and both these protocols were recently shown
to be affected by side-channel leaks [54].

With EAP-pwd, the Dragonfly handshake is executed be-
tween an authentication server (e. g., FreeRADIUS) and a
supplicant (client). During this authentication the Access
Point (AP) forwards messages between them. This setup
is illustrated in Figure 3, where the AP is called the authen-
ticator. Before initiating the Dragonfly handshake, the AP
first sends an EAP identity request, and the supplicant replies
with an identity response, which in turn is forwarded by the
AP to the authentication server. The server then initiates the
Dragonfly handshake by sending a PWD-Id identity frame,

Listing 1: Hash-to-Curve (H2C) method for EAP-pwd [24].
1 def hash_to_curve(password, id1, id2, token):
2 for counter in range(1, 256):
3 seed = Hash(token, id1, id2, password, counter)
4 value = KDF(seed, "EAP-pwd Hunting and Pecking", p)
5 if value >= p: continue
6 if is_quadratic_residue(value^3 + a * value + b, p):
7 y = sqrt(x^3 + a * x + b) mod p
8 P = (x, y) if LSB(seed) == LSB(y) else (x, p - y)
9 return P

and the supplicant replies using a PWD-Id response. Then
Commit frames are exchanged, and finally Confirm frames
are exchanged. By default, RADIUS is used to transport all
handshake messages between the authenticator and server.
However, because RADIUS has design flaws [25], it is often
tunneled inside TLS. This tunnel is commonly called RadSec
and its precise operation is defined in RFC 6614 [39, 58].
Although FreeRADIUS directly supports RadSec, most APs
have to use a proxy that forwards all RADIUS messages over
TLS (see Figure 3). In the remainder of this section, we will
use the notation RadSec(packet) to denote that a packet is
encapsulated in a RadSec TLS record.

Before sending Commit and Confirm frames, the shared
password is converted to an elliptic curve point (x,y) using
the Hash-to-Curve (H2C) method in Listing 1. This method
takes as input the identity of the client and server, the pass-
word, and a token that is randomly generated by the server.
Note that this random token is sent to the client in the PWD-
Commit response. In the H2C method, all four parameters
are hashed together with a counter, and the resulting value is
treated as a candidate x coordinate. If a corresponding value
for y exists on the elliptic curve, the resulting point P is re-
turned. Otherwise, the counter is incremented so a new value
for x can be calculated. Several flaws were discovered in this
algorithm, with the most critical one that the number of itera-
tions (i. e., for-loops) needed to find P leaks information about
the password [54]. It was shown how to exploit this timing
leak against EAP-pwd clients. However, attacking a server
is harder and deemed practically infeasible. This is because
the jitter over Wi-Fi is too high to determine which of two
(unique) requests had the highest processing time. Moreover,
this jitter cannot be averaged out over multiple handshakes
because the server generates a new random token in every
handshake, resulting in different H2C executions. Using our
classical timing model of Section 3, over Wi-Fi the variance
of the jitter components Jx,k and Jy,k in equivalence (4) are
too high to reliably determine whether Rx > Ry holds.

Finally, to quickly reconnect to a previously-used Wi-Fi
network, clients can use the Fast Initial Link Setup (FILS)
handshake. This handshake is mainly supported in enterprise
Wi-Fi networks, and can internally use several authentication
methods. We will use it with the EAP Reauthentication Pro-
tocol (ERP) [14], which requires that the network contains a
central authentication server such as FreeRADIUS.
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5.2 Attacking an EAP-pwd Server

To exploit the unpatched timing leak in EAP-pwd servers, we
will trigger two concurrent executions of the hash-to-curve
method. The order of replies then reveals which execution
was faster, and this information can be used to recover the
password (see Section 5.5). Using our concurrency timing
model of Section 3, this means we send concurrent requests x
and y, eliminating most of the jitter components as shown in
Equation 8. This enables us to determine which execution
took longer based on a single concurrent measurement.

Figure 4 illustrates how we trigger two concurrent H2C
executions. This is done by impersonating two clients, let-
ting both of them associate to the network, and then replying
to the EAP identity requests of the authenticator (stage 1©).
The authenticator forwards the identity information to the
authentication server using RADIUS, which we assume is
tunneled over RadSec (i. e., over TLS/TCP). In response, the
server initiates the EAP-pwd handshake by sending PWD-Id
requests. To trigger two concurrent H2C executions, we now
send two PWD-Id frames that arrive at the server simultane-
ously. This is non-trivial to accomplish, because by default
every handshake message is encapsulated into separate Rad-
Sec packets, and these will arrive at (slightly) different times.
To overcome this, we will induce the authenticator into coa-
lescing two RadSec packets in one TCP packet, assuring both
PWD-Id requests arrive simultaneously at the server.

Similar to our previous attacks, we abuse the fact that Na-

gle’s TCP algorithm coalesces data if there is unacknowl-
edged transmitted data. To do this, we spoof a third client
that sends a FILS authentication request to the authenticator
(stage 2©). The FILS request contains an EAP reauthenti-
cation payload that is forwarded by the authenticator to the
server over RadSec. As a result, there will be unacknowledged
outstanding data in the RadSec TLS/TCP connection. The
adversary now continues the EAP-pwd handshake by sending
two PWD-Id frames (stage 3©). To assure these packets arrive
simultaneously at the authenticator, they are encapsulated in
one aggregated Wi-Fi frame (see Section 5.3). Because there
is unacknowledged RadSec data due to the FILS request, the
two RadSec packets that encapsulate the PWD-Id messages
will be queued until a TCP ACK is received. Once the TCP
ACK arrives, both RadSec(PWD-Id) records are sent in a
single TCP packet.

When the TCP packet with both PWD-Id’s arrives at the
server, they are processed immediately after one another. As-
suming the server is multi-threaded, this processing is done in
separate threads that execute concurrently (stage 4©). In each
thread the server generates a random token and runs the H2C
method. The order or PWD-Commit replies now depends on
which H2C execution finishes first. The adversary determines
this order based on which client receives a PWD-Commit
first. In Section 5.5 we show how this information allows an
adversary to bruteforce the password.

5.3 Exploiting Frame Aggregation

In our attack, two PWD-Id frames are sent as one aggregated
Wi-Fi frame (recall stage 3© in Figure 4). This assures both
frames arrive at the same time at the AP. Otherwise the second
PWD-Id might arrive after the authenticator received the TCP
ACK, meaning the two RadSec(PWD-Id) records would not
be aggregated in a single TCP packet. To aggregate Wi-Fi
frames one can either use A-MSDU or A-MPDU aggregation.

An Aggregate MAC Service Data Unit (A-MSDU) aggre-
gates frames at the MAC layer, where all subframes must have
the same destination and sender address [27, §9.3.2.2.2]. This
makes A-MSDU unsuitable for our purpose, because we want
to aggregate two frames with different sender addresses. In
contrast, an Aggregate MAC Protocol Data Unit (A-MPDU)
aggregates frames at the physical layer, where only the re-
ceiver address of all subframes must be the same. This means
we can use it to aggregate two frames that come from different
clients. Moreover, all 802.11n-capable devices are required
to support the reception of A-MPDU frames.

Because A-MPDU aggregation happens close to the physi-
cal layer, and is commonly implemented in hardware, we can-
not easily inject A-MPDU frames using traditional tools. In-
stead, we extended the ModWiFi framework [53] and patched
the firmware of Atheros chips to inject A-MPDU frames.7

7This code is available at https://github.com/vanhoefm/modwifi
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Figure 5: Results of 5000 concurrent requests against our
EAP-pwd server. The x-axis shows the difference in the num-
ber of executed H2C iterations, the y-axis the number of time
this occurred, and the color indicates the order of responses.

Our firmware modifications force the Atheros radio to ag-
gregate selected Wi-Fi frames into a single A-MPDU. Note
that the adversary has full control over their own hardware,
meaning these firmware changes do not limit the applicability
of the attack. Moreover, we conjecture that the built-in rate
control algorithm of Wi-Fi devices can also be abused to force
the aggregation of frames into a single A-MPDU.

5.4 Concurrency Experiments
To perform the attack, we wrote a Python script that controls
two modified wpa_supplicant instances. These two instances
associate to the AP and execute the EAP-pwd handshake
until they have to send the PWD-Id message. When both
instances are ready to send the PWD-Id message, the script
first injects the FILS authentication request, and then sends
both PWD-Id messages in a single A-MPDU. We used a
TP-Link TL-WN722N to inject this A-MPDU frame.

We tested the attack against an OpenWRT AP and an Ama-
zon EC2 c5.xlarge instance running FreeRADIUS 3.0.16. The
OpenWRT AP was running RadSec 1.6.8 and Hostapd v2.7-
devel. Figure 5 shows the results of 5000 concurrent requests
against this setup when using EAP-pwd with curve P-256. We
let i1 and i2 denote the number of for-loops executed in the
H2C method corresponding to the first and second request,
respectively. We can see that if the order of the responses
matches the order of the requests, then i1 ≤ i2, or in other
words then the H2C execution in the second request executed
at least as many iterations as the H2C execution in the first
request. Otherwise, if the order of responses is reversed and
we first receive a response to the second request, then we learn
that i1 ≥ i2. All combined, we learn which request needed the
most number of iterations. In our experiments the probability
that this deduction is incorrect, was below 0.38%.

During our tests we encountered a denial-of-service vul-
nerability in FreeRADIUS caused by unsynchronized access
to a global variable. This can lead to a crash when perform-
ing concurrent EAP-pwd handshakes. The flaw was assigned

identifier CVE-2019-17185 and has meanwhile been patched.

5.5 Bruteforcing Passwords
We now perform a dictionary attack by filtering passwords
based on the leaked information. Recall that for a single con-
current measurement, the server executes two H2C methods
that each use a different random token. For every password,
we simulate both H2C methods locally, and reject the pass-
word if the difference in executed iterations does not match
our concurrent measurement. Based on simulations with el-
liptic curve P-256 and P-521, on average one concurrent mea-
surement can be used to filter 33% of passwords. To further
filter the remaining passwords we can perform the same filter-
ing using another concurrent measurement. This is because
the server will use new random tokens in both H2C methods,
effectively leaking new information about the password. This
means we can perform multiple concurrent measurements,
such that in a dictionary of size d, all wrong passwords will
eventually be filtered.

We implemented a proof-of-concept of our brute-force algo-
rithm. Since on average a concurrent measurement filters 33%
of passwords, we need roughly n= log1.51(d) concurrent mea-
surements to uniquely identify the password in a dictionary
of size d. Taking the RockYou password dump as a refer-
ence [16], which contains roughly 1.4 ·107 passwords, on av-
erage 40 measurements must be made to uniquely recover the
password. Since the probability of a concurrent measurement
being wrong is 0.0038, the success probability of this attack
against the RockYou dictionary equals (1−0.0038)40 ≈ 86%.

We now estimate the computational cost of our dictionary
attack. First observe that filtering a wrong password requires
on average 1/0.33 ≈ 3 concurrent measurements. For each
measurement we need to simulate two H2C executions, where
each execution on average performs 2 iterations. Since we
can expect the first candidate password to be found halfway
throughout the search, in total 6 ·d iterations have to be simu-
lated until a candidate password is found. The computational
cost of simulating each iteration is dominated by SHA256
operations, since the quadratic residue check can be done
efficiently using the Jacobi symbol and the law of quadratic
reciprocity. In total three SHA256 operations are executed in
every iteration, and based on Hashcat benchmarks we can eval-
uate 7.48 ·109 hashes per second on an NVIDIA V100 GPU.
This means that 2.49 · 109 passwords can be checked per
second, and that the estimated cost for various dictionaries
matches that of the MODP attack against WPA3’s Dragonfly
handshake [54, §7.4]. For instance, brute-forcing even the
largest public dictionaries costs less than one dollar.

5.6 Countermeasures
A backward compatible defense against the timing leak in
EAP-pwd is always performing 40 iterations in the H2C



method, and returning the first valid password element P. The
probability of needing more iterations equals 2−40, which is
considered acceptable in practice [28]. However, this change
is non-trivial to implement without introducing other side-
channels [54]. As a result, only the development version of
FreeRADIUS adopted this defense, and at the time of writing
the stable version was still vulnerable to our attack.

A more secure but backward incompatible defense is us-
ing a constant-time hash-to-curve method such as Simplified
Shallue-Woestijne-Ulas [10]. A specification of this for EAP-
pwd has been worked out by Harkins [23].

6 Discussion

Throughout this paper we have shown that our concurrency-
based timing attacks are not affected by network jitter and
therefore perform significantly better than sequential timing
attacks. For the attacks leveraging HTTP/2, we found that the
performance is comparable to running them locally from the
system the web server is hosted on. Moreover, for the attack
on the EAP-pwd authentication method, the concurrency-
based timing attacks allow us to abuse a timing leak that was
considered infeasible to exploit. Motivated by these impactful
findings, in this section we discuss the prerequisites that, when
present, can make applications susceptible to concurrency-
based timing attacks. Finally, we propose and evaluate various
generic defenses.

6.1 Attack prerequisites

Based on our evaluations that were presented throughout this
paper, we determine three factors that indicate whether an
application may be susceptible to concurrent timing attacks.
1. Simultaneous arrival The first prerequisite is that there
needs to be a mechanism available that can be leveraged to
ensure that two requests arrive simultaneously at the server.
Typically, this will require both requests to be coalesced into
a single network packet either directly, e. g. two requests in a
single TCP packet for HTTP/2, or by means of an intermediate
carrier, such as Tor. We believe that several other network pro-
tocols can enable this prerequisite: for instance, HTTP/3 also
supports multiplexing of requests and responses, but works
over UDP instead of TCP (we did not evaluate this protocol as
it is not yet widely deployed or implemented). Furthermore,
network tunnels such as VPN and SOCKS may encapsulate
packets, allowing packets on two different connections to be
coalesced into a single packet on a single connection, similar
to the technique we applied to Tor onion services.
2. Concurrent execution As soon as two requests arrive at
the target server, they need to be processed concurrently, ide-
ally with as little time in between them as possible. For the
protocols, this means that either multiplexing needs to be sup-
ported, as is the case with HTTP/2, or multiple connections

need to be used, as we did in case of Tor.
3. Response order An adversary launching concurrency-
based timing attacks will leverage the order in which the
responses are returned. As such, the order needs to correctly
reflect the difference in execution time: if the first request
takes longer to process than the second, its response should
be generated last. Furthermore, this implies that the difference
in execution time of a request-pair reveals information about a
secret. Throughout this paper we leveraged a baseline request,
which has a known execution time (e. g., a search query for
a bogus term); by determining the difference (or similarity)
in execution time, we can directly infer information about a
secret.

We consider it an interesting avenue for future work to per-
form a comprehensive survey of network protocols to evaluate
whether they provide or enable these prerequisites, and thus
make applications susceptible to concurrency-based timing
attacks.

6.2 Limitations
In the concurrency-based timing attacks, the adversary relies
solely on the order in which responses are returned. This re-
duces the granularity of timing information that is obtained,
compared to sequential timing attacks where absolute tim-
ing is used, and thus could pose certain restrictions on the
attacks that can be executed. For instance, consider the attack
scenario where the timing of a search query is related to the
number of returned results. In a sequential timing attack, the
adversary would observe higher measurements (barring jitter)
for queries returning more results, and from this may be able
to estimate the number of search results. Achieving the same
with concurrency-based timing attacks is more complicated:
instead of inferring the number of search results directly from
the timing measurements, the adversary would need to lever-
age several baseline queries that return a known number of
results. When the (target, baseline) request-pair is returned
in an equally distributed order, i. e. the target response is re-
ceived as many times before the baseline response as it is
received after, this indicates that the target query returns the
same number of results as for the specific baseline request
that was used. Note that if the adversary is unable to construct
baseline requests that return a given number of search results,
it would be infeasible to perform the timing attack by levering
concurrency.

For operations that need to be performed sequentially, e. g.
the different steps of a cryptographic handshake or the deci-
phering of a block that depends on the outcome of the previous
block, there is no concurrency at the protocol level. In such
cases, the adversary would need to leverage the coalescence
of packets at the transport layer. For example, for TLS it is
not possible to initiate multiple concurrent handshakes over
a single TCP connection. As such, to exploit a (hypotheti-
cal) timing side-channel leak in the TLS handshake using



concurrency-based attacks, an adversary would need to start
two separate TCP connections. Additionally, to ensure that
these arrive simultaneously, the requests with the payload
should be encapsulated and coalesced at the network layer,
e. g. as we showed with the attacks against Tor hidden services
and over Wi-Fi.

6.3 Defenses
The most effective counter-measure against timing attacks
is to ensure constant time execution. However, this can be
very difficult to implement, or virtually impossible, especially
for complex applications that rely on third-party components.
In this section we propose various defenses that focus on re-
ducing the performance of concurrency-based timing attacks
to the that of sequential timing attacks. The defenses that
we describe are generic, and can be applied regardless of the
application domain.

A straightforward defense is adding a random delay on
incoming requests. To mimic network conditions where the
standard deviation of the jitter is 1ms (comparable to what
we found on a EU-EU network connection), this delay can
be sampled uniformly at random from the range [0,

√
12]ms8,

resulting in an average delay of ≈1.73ms for every request.
However, only requests that arrive simultaneously at the

server need to be padded because all others are subjected to
network jitter. To evaluate what percentage of requests would
thus need to be delayed in a real-world setting, we performed
a simulation based on the crawling data of HTTPArchive. This
dataset contains detailed information on 403 million requests
that were made while visiting over 4 million web pages with
the Chrome browser. For our simulation, we only considered
HTTP/2 requests, in total 237 million (58.82%), made to over
2 million different hosts. We considered two requests to be
concurrent if they were made within 10ms. Note that this is
an overestimation, as we wanted to account for requests that
may be coalesced on the network layer. If the server has more
knowledge on how the request was transported, the length of
the timeframe in which requests are considered concurrent
can be significantly reduced. With this improvement, a ran-
dom padding would still need to be added to 90.95% of the
incoming requests according to our simulation. This means
that websites are making extensive use of the multiplexing
capabilities of HTTP/2.

A further improvement that can be made is to only add
padding to concurrent requests to the same endpoint, or to
endpoints that have a similar processing time. To estimate
the percentage of requests that would be affected by this, we
first compute the average processing time for all endpoints
on every host by determining the timing difference between
sending the request and the arrival of the first byte of the
response. This reduces the number of requests that require

8The standard deviation of a uniform distribution [a,b] is (b−a)/
√

12.
So to simulate a jitter of 1ms we can uniformly pick a delay from [0,

√
12].

padding to 69.81%. By further exploring the requests, we
find that most requests with a similar processing time are to
static resources.We determined a resource to be static based
on the Cache-Control and Expires headers. With these
three improvements, we found that in our simulation in total
20.86% of the requests require padding. Note that this should
be considered an upper bound, as not all requests that we
considered as concurrent will actually be coalesced in a single
packet. When all improvements were applied, we find that
67.53% of the hosts had to apply padding on at most 5% of
their requests. For completeness, in Appendix C we show a
CDF with the percentage of requests that need to be padded.

Finally, to defend browser users against concurrency-based
timing attacks, e. g., in a cross-site attack scenario, a possible
defense is to ensure that different requests are not coalesced
in a single packet. In a practical setting, this would mean that
although the TCP sending window may cause the network
stack to buffer data sent by the application, the packets that
are sent out never contain more data than what was sent by
the application. Essentially, this comes down to disabling
Nagle’s algorithm. As a result, every request would be sent
in a separate TCP packet. Alternatively, packets containing
a single request could be padded to the MTU to prevent the
network stack and any intermediaries on the path between the
client and the server from coalescing two requests in a single
packet. Another option is to ensure that the order in which the
responses are received, is not observable by the attacker code
in the browser, e. g., by leveraging deterministic timing, as
proposed by Cao et al. [13]. Note that approaches that limit
the accuracy of timers available in the browser [31, 45], are
ineffective in defending against concurrency-based timing
attacks.

7 Conclusion

With classical timing attacks, an adversary sequentially col-
lects a series of measurements and then applies statistical
analysis to try to infer secret information. In this paper, we in-
troduce a new paradigm of performing remote timing attacks
that infers secrets based on the order in which two concur-
rently executed tasks finish. By using a combination of request
multiplexing and coalescing of packets, we show how it is pos-
sible to ensure that two requests arrive simultaneously at the
targeted server. As a direct result, the difference in time when
the requests are processed is completely unaffected by net-
work conditions. As we describe in our theoretical model and
later show through practical measurements, our concurrency-
based remote timing attacks are not subjected to network jitter
and thus have a performance comparable to that of an attacker
on the local system.
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A Negative result: concurrent timing attacks
against HTTP/1.1

The most popular communication protocol used on the web
is HTTP. Over the several decades that it has existed, many
improvements have been made, for instance keeping connec-
tion alive since HTTP/1.1, allowing multiple requests to be
made over the same connection. However, version 1.1 still
suffered from a significant performance drawback, namely
head-of-line (HOL) blocking, which prevented user agents
from sending multiple concurrent requests over the same TCP
connection. As a result, the sequence of responses will always
be the same sequence as those of the associated requests. The
primary way to overcome the consequences of HOL blocking
is to initiate multiple TCP connections to the server. Although
this allows multiple requests to be processed concurrently,
there is no guarantee that when the requests are sent at the
same time, i. e., in very rapid succession, these will also ar-
rive at the server at the same time. The jitter values incurred
when sending the different requests are largely independent
from each other, and thus both affect the time at which the
server starts processing them, which in turn affects the order
in which they are returned.

To evaluate the impact of network-based jitter and the po-
tential improvements of measuring the timing of two con-
current requests, we performed several measurements. We
set up two HTTP/1.1 web servers on two Amazon EC2 C5
instances, one in central Europe, and one on the US east coast.
In Figure 6, we show the distribution of how much the timing
of each request to the same endpoint differs from the mean,
for both instances, based on two million measurements per
instance. This clearly shows that the variance is significantly
higher for the requests targeting the web server in the US
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Figure 7: Distribution of response times of baseline (100µs)
and target (150µs) requests to the EU server.

(average RTT: 118.11ms, standard deviation: 1.71ms), com-
pared to the requests to the EU server (average RTT: 24.50ms,
standard deviation: 1.03ms).

To evaluate how this variance of response times affects the
capabilities of an adversary to infer secret information based
on the execution time of a request, we made requests to a
PHP file, which would idle for a defined period before return-
ing a response, using the time_nanosleep() function. We
used a baseline of 100µs, and then obtained measurements
for increments of the baseline ranging from 50ns to 50µs,
using the Python aiohttp library; we measured the elapsed
timing using time.time_ns, which has nanosecond resolu-
tion. We altered between a baseline request and a request with
an increased timing. For each increment value, we obtained
160,000 measurements. Next we applied the box test [15],
to determine the number of requests an attacker would need
to distinguish a difference in execution time for the varying
increments compared to the baseline, with an accuracy of at
least 95%. We found that for the EU server, a timing differ-
ence of 20µs could be determined with 4,333 requests; for the
US-based server,the attack was unsuccessful (based on the
10,000 upper bound we imposed). A timing difference of 50µs
required at least 1,580 requests for the EU-server, and 3,198
measurements for the server based in the US. Figure 7 shows
the distribution of the requests with a 50µs timing difference
to the EU server, indicating a large overlap with the baseline
request, but still an observable shift.

Finally, we evaluated whether concurrency using multiple
connections in HTTP/1.1 could be used to improve the mea-
surements. For this, we set up two concurrent connections to
the targeted server, again using the Python aiohttp package,
and sent two requests at the same time, one to the baseline
endpoint, and one alternating between the baseline and the
endpoint with increased processing time. We then subtracted
the timing of each pair of concurrent requests. Interestingly,
we found that this differential timing technique leveraging
concurrency performed worse than the basic attack: for the
EU server, it was no longer possible to distinguish a timing
difference of 20µs. Moreover, a timing difference of 50µs re-
quired at least 4,752 measurements to this server, consisting of



Timing difference

Attack type Connection 200ns 500ns 1µs 2µs 5µs 10µs 20µs 50µs

Concurrent Misc. (Internet) - 45,192 33,394 20,022 2,382 980 313 34

Sequential

Europe - Europe - - - - - - - 2,711
Europe - East US - - - - - - - 12,588
Europe - South-East Asia - - - - - - - -
VM-VM (LAN) - - 29,935 2,333 93 39 33 23
localhost - 26,104 6,500 1,087 158 35 22 17

Table 2: The average number of requests or request-pairs required to perform a successful timing attack with at least 95%
accuracy against an Apache webserver.
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Figure 8: Distribution of the difference in response time for
concurrently launched requests to the baseline (100µs) and
target (150µs) endpoints hosted on the EU server.

two requests each, a six-fold increase compared to the typical
attack. The distribution of these measurements is displayed in
Figure 8, showing that the two distributions are more difficult
to distinguish, compared to the distributions shown in Fig-
ure 7. For the US server, the attack only achieved an accuracy
of 82.14% for the imposed upper limit of 10,000 requests. We
believe that the reason for this degraded performance is that
the jitter values are no longer independent, but are affected
by the concurrent request. More precisely, requests can not
be sent completely concurrently on the network along the
same path: only a single request can be put on the wire at
once. Consequently, the request that is sent last will also be
subjected to the jitter incurred when sending the first request.

B HTTP/2 measurements for Apache

In Table 2, we show the number of requests or request-pairs
that are needed to perform a timing attack against an Apache2
web server with at least 95% accuracy. For smaller timing dif-
ferences (500ns - 1µs), we can see that the concurrency-based
timing attacks perform similarly to a sequential attack on the
local network. For timing differences between 2µs and 20µs,
the concurrency-based attacks require more requests. This
can be attributed to the increased processing time required to

handle requests in Apache2 (as compared to nginx), result-
ing in higher jitter values. Presumably, this is amplified for
concurrency-based attacks because here two requests arrive
(instead of just one with the sequential attacks).

C Overhead of defenses per host
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Figure 9: CDF of the percentage of requests that had to be
padded for the three defenses discussed in Section 6.3.

In Figure 9, we show the cumulative distribution function
(CDF) for the three variations of defenses that were intro-
duced in Section 6.3: 1) padding all requests that arrived
concurrently at the server, 2) only padding requests when
within the set of concurrent requests, there is a request with a
similar processing time, and 3) using the same optimization
but not adding padding to requests for static resources. The
CDF shows that for the third defense, more than half of the
hosts would not incur any overhead from the defense. The
other two defenses perform significantly worse: for half of the
hosts random padding needs to be added to at least 90.91%
and 62.16% of the requests, respectively.


