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Presentation Outline

Recent attacks:

› Key reinstallation attacks in WPA2 (= KRACK)

› Side-channel leaks in WPA3 (= Dragonblood)

› Fragmentation issues in WPA* (= FragAttacks)

New defenses:

› Opportunistic wireless encryption (Wi-Fi Alliance)

› Beacon protection & channel validation (our work ☺)

› SAE-PK to protect hotspots (Wi-Fi Alliance)
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Advancements in Wi-Fi security
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2017 Key reinstallation attacks (KRACK)

› Flaw in various Wi-Fi handshake → all devices affected

› We will focus on the 4-way handshake

4-way handshake is to connect to any protected Wi-Fi network

› Provides mutual authentication

› Negotiates fresh Pairwise Transient Key (PTK) = session key



4-way handshake (simplified)
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4-way handshake (simplified)

7

› Once we have a PTK (= session key) all messages are 

protected using a Message Integrity Code (MIC) = MAC



4-way handshake (simplified)
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4-way handshake (simplified)
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keys are installed



4-way handshake (simplified)
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Frame encryption (simplified)

11

Plaintext data

→ This high-level construction is used in all WPA versions

Packet Number

MixPTK
(session key)

Packet 

Number (PN)

Packet key



4-way handshake (simplified)
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Installing PTK initializes the 

packer numbers to zero



Channel 1
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Reinstallation Attack

Channel 6

= Adversary establishes a Multi-Channel 

Machine-in-the-Middle position
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Reinstallation Attack
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Reinstallation Attack
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Reinstallation Attack

Block Msg4
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Reinstallation Attack
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Reinstallation Attack
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Reinstallation Attack

In practice Msg4 

is sent encrypted
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Reinstallation Attack

Key reinstallation! 

Packet number is reset
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Reinstallation Attack
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Reinstallation Attack

Same packet 

number is used!
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Reinstallation Attack

Keystream

Decrypted!



General impact
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Receive replay counter reset

Replay frames towards victim

Transmit packet number reset

Decrypt frames sent by victim



Root cause

› 4-way handshake proven secure

› Encryption protocol proven secure
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State machine was not proven secure!

Combined in a 

state machine



What about key reinstallations in other protocols?

What does reinstallation mean?

› Wi-Fi installs keys, then enables Rx and/or Tx for that 

key. Few protocols use this terminology or separation.

26

The attack technique does apply to other protocols:

› Narrow definition: replaying, or causing the retransmission of, 
a handshake message to trigger key/nonce reuse.

› Broader but more vague definition: manipulating the 
handshake to cause key/nonce reuse.

→ Similar flaws appear unlikely in other protocol standards



Key reinstallations in protocol implementations?

Key/nonce reuse in implementations is more common:

27

→ When fuzzing/auditing libraries, check for key/nonce reuse 

(that is possibly triggered by handshake manipulation)

Key reinstallation against Wi-Fi access points 

in IWD[CCS22] and MediaTek[OPCDE18]

Keystream reuse in VoLTE[RKHP20]

Nonce reuse in buggy TLS libraries[BZDSJ16]
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After KRACK we got a new handshake ☺
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Late 2018: release of Wi-Fi Protected Access 3 (WPA3)

› Uses a Password Authenticated Key Exchange (PAKE)

› Simultaneous Authentication of Equals (SAE)

Negotiates 

session key
Provides mutual 

authentication

Forward secrecy 
& prevents offline 
dictionary attacks

Protects against 

server compromise



After KRACK we got a new handshake ☺
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Late 2018: release of Wi-Fi Protected Access 3 (WPA3)

› Uses a Password Authenticated Key Exchange (PAKE)

› Simultaneous Authentication of Equals (SAE)

Also called the “Dragonfly” handshake

› Originally for mesh networks (2008 / 2011)

› Made part of WPA3 without academic feedback

› Vulnerable to Dragonblood side-channels



Dragonfly
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Convert password to 

group element P

Convert password to 

group element P

Commit phase

Confirm phase

Negotiate shared key

Confirm peer negotiated same key 



Dragonfly

32

Convert password to 

group element P

Convert password to 

group element P

Commit phase

Confirm phase

Supports two crypto groups:

1. MODP groups

2. Elliptic curves



Dragonfly
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Convert password to 

group element P

Convert password to 

group element P

Commit phase

Confirm phase

Supports two crypto groups:

1. MODP groups

2. Elliptic curves



What are MODP groups?

→ All operations are MODulo the Prime (= MODP)
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Operations performed on integers x where:

› x < 𝑝 with 𝑝 a prime

› 𝑥𝑞 mod 𝑝 = 1 must hold

› 𝑞 = #elements in the group



Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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Convert value to a MODP element



Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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Problem for groups 22-24: 

high chance that value >= p



Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: ???

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)
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No timing leak countermeasures,

despite warnings by IETF & CFRG!

#iterations depends on password



IETF mailing list in 2010
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“[..] susceptible to side channel (timing) attacks 

and may leak the shared password.”

“not so sure how important that is [..] doesn't leak 

the shared password [..] not a trivial attack.”



Leaked information: #iterations needed
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Client address addrA

Measured



Leaked information: #iterations needed
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Client address addrA

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed
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Client address addrA

Measured

Password 1

Password 2

Password 3



What information is leaked?

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞
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What information is leaked?

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞
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Spoof client address to obtain 

different execution & leak new data



Leaked information: #iterations needed
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Client address addrA addrB

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed
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Client address addrA addrB

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed
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Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed
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Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Forms a signature of the password

Need ~17 addresses to determine 

password in RockYou password dump



Raspberry Pi 1 B+: differences are measurable
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Hostap AP: ~75 measurements / address



What about elliptic curves?

Similar algorithm to convert password to point (x,y):

› EAP-PWD: vulnerable to the same timing attack.

› WPA3: always does 40 loops. But variance of the execution 

time may still leak info & cache attacks are possible.
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Operations performed on points (x, y) where:

› x < 𝑝 and y < 𝑝 with 𝑝 a prime

› 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 must hold



Fixing the root cause

Newly certified devices must implement hash-to-element

› Still called WPA3 → not easy to tell what a device supports

› WPA3 > WPA2 so you should always switch to WPA3!
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Improve password conversion algorithm

› Use hash-to-element conversion instead

Simplified Shallue-Woestijne-Ulas (S-SWU)

› Easier to implement in constant time
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Background

Large frames have a high chance of being corrupted:

54

header fragment1 ACK ...

Avoid by fragmenting & only retransmitting lost fragments:

header packet ACK

header fragment2 ACK



Background

Large frames have a high chance of being corrupted:
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header fragment1 ACK ...

Avoid by fragmenting & only retransmitting lost fragments:

header packet ACK

→ Protected header info defines place in original frame

header fragment2 ACK



Mixed key design flaw

Fragments decrypted with different keys are reassembled:
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Refresh session key from 𝒌 to 𝐦

𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔0)𝐸𝑛𝑐𝒌 𝐹𝑟𝑎𝑔0 , 𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔1)

𝐸𝑛𝑐𝒎(𝐹𝑟𝑎𝑔1)
𝐸𝑛𝑐𝒎 𝐹𝑟𝑎𝑔0 , 𝐸𝑛𝑐𝒎(𝐹𝑟𝑎𝑔1)

→ Can mix fragments of different frames



Root cause: bad managing of security contexts

› Receiver doesn’t securely handle 

security context changes.

› Can sometimes also mix plaintext 

with encrypted frames
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𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔0)

𝐸𝑛𝑐𝒎(𝐹𝑟𝑎𝑔1)

Update keys

We also discovered various implementation flaws:

› Can sometimes mix plaintext with encrypted fragments

› Devices accept specially-constructed plaintext frames

For instance, fragmented plaintext frames, … 
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How does a transmitter handle security contexts?
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Queued frames still get transmitted. Two variants:

1. Frames get encrypted using an all-zero key[RSA20]

2. Frames have security header but plaintext data[BH20]

Kr00k attack discovered by ESET during KRACK tests

› Send disassociation to make station delete security context

→ Need to securely manage security context changes 

throughout the whole network stack.
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Security for open networks?

Problem: open networks don’t use encryption.

→ Wi-Fi Alliance solution: Diffie-Hellman to negotiate 

keys without authentication of the network.

61

Goal: prevent passive attacks. Inspired by:

› RFC 7258: “Pervasive Monitoring Is an Attack”

› RFC 7434: “Opportunistic Security: Some 

Protection Most of the Time”



Opportunistic Wireless Encryption (OWE)

Based on RFC 8110 by D. Harkins & W. Kumari:

› Perform a Diffie-Hellman key exchange to negotiate 

pairwise master key (PMK). Use this in 4-way handshake.

› Clients can reconnect using previous PMK if the AP still 

remembers the PMK of the client (likely easy to DoS).

› Mandates usage of Management Frame Protection (MFP), 

which prevents common disconnection attacks.
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Analysis of OWE

Reasons to use:

› Clients are harder to disconnect due to usage of MFP

› Requires active attacks to intercept traffic

Is it worth the effort?

› It’s unknown who is passively monitoring Wi-Fi. How do we 

know they won’t move to active attacks?

→ Cost/benefit seems open to discussion
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Background: beacons

› Wi-Fi networks use beacons to announce their presence

› They are sent every ~100 ms by an Access Point

65

Contains properties of the network:

Name of the network

Supported bitrates (e.g. 11n or 11ac)

Regulatory constraints (e.g. transmission power)

...



Beacons are not protected

› WPA version & channel: verified when connecting

› All other fields can be spoofed by an adversary
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Defense: authenticate beacons [WiSec’20]

We defend against outsider attacks

› Adversary doesn’t possess network credentials

› Similar to protection of broadcast Wi-Fi traffic
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Rely on symmetric encryption

› Reuse existing crypto primitives of Wi-Fi

› Makes it easiers for vendors to adopt the defense



Beacon protection: new element

We add a new type-length-value element to beacons:
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Element ID Length Key ID Nonce MIC

› Clients that do not recognize this element will ignore it

› Nonce: incremental number to prevent replay attacks

› Message Integrity Check: CMAC or GMAC over the beacon

Existing crypto primitive of management frame protection

All WPA3-capable devices already support it



Key management

Key used to generate/verify the authenticity tag?

› AP generates a fresh beacon protection key when booting

› AP always sends the beacon key when a client connects

Older clients will ignore this key

New clients will enable beacon protection

→ Adversary can’t manipulate handshake that transports the 

beacon key, preventing downgrade attacks.
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Pre-authentication behavior
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Client cannot verify beacon 

before connecting (no key!)

Periodic beacons



Pre-authentication behavior
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Store 1 beacon as reference 

& extract info from it

Connect to network and receive

beacon protection key

Verify authenticity reference 

beacon (disconnect if invalid)

Send data

Periodic beacons



Reporting forged beacons

› Clients can report forged beacons to the AP

› Can now detect far away rouge APs

72

1. Detect forged

beacon

2. Report

rogue AP

Out of range



Specification

› Collaborated with industry to standardize our defense (Intel, 

Broadcom, Qualcomm and Huawei)

› Now part of the 2020 update to the IEEE 802.11 standard
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Specification

› Collaborated with industry to standardize our defense (Intel, 

Broadcom, Qualcomm and Huawei)

› Now part of the 2020 update to the IEEE 802.11 standard
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› Optional feature of WPA3

› Wi-Fi 7 APs must support 

beacon protection



Implementation & demo

Has been independently (!) implemented by Linux

› Beacon signature calculated in hardware

› Requires firmware updates of Wi-Fi radios: beacons are 

usually generated in hardware.

DEMO
75
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Recent attacks use multi-channel MitM

› Network is cloned on different channel

› Allows adversary to reliably block, delay, or modify packets

› Used as the basis for advanced crypto attacks:
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Attacks used special multi-channel MitM

AP is cloned on different channel

79

AP Client

Attacker

Connection succeeds &

can reliably manipulate frames!



Preventing multi-channel MitM [WiSec’18]

Verify operating channel when connecting to a network

Also need to handle some edge cases

› After the clients wakes up from sleep mode

› When the network switches channel due to radar detection

→ Implemented on Linux in wpa_supplicant and hostapd
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Specification

› Collaborated with industry to standardize defense (with 

Broadcom and Intel)

› Now part of the 2020 update to the IEEE 802.11 standard
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Specification

› Collaborated with industry to standardize defense (with 

Broadcom and Intel)

› Now part of the 2020 update to the IEEE 802.11 standard
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› Recognized as an optional 

feature of WPA3

› Good initial step, hopefully 

becomes mandatory in future



Open questions

How to prevent a repeater MitM when devices are out of range?

Defense based on channel randomness & reciprocity?

› Could verify the “channel signature” between both devices

83

Channel 1 Channel 1
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WPA3 For Hotspots: SAE-PK

The Wi-Fi Alliance released SAE-PK in late 2020

› Extension of the SAE “Dragonfly” handshake

› Goal is to secure hotspots using a password…

› …but that password should not allow someone to create a 

rogue clone of the network!
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Background: design history

They first requested comments from the community!

› https://www.wi-fi.org/security-development on July 2020:
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https://www.wi-fi.org/security-development


Background: design history

They first requested comments from the community!

› https://www.wi-fi.org/security-development on July 2020

› This is an excellent step forward!

On the other hand, who knew about this?

› Getting the word out is still difficult

› Want to inspect drafts? Configure an e-mail warning when 

this page changes. Or follow me on Twitter @vanhoef ☺
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https://www.wi-fi.org/security-development


High-level overview of SAE-PK

Based on public key crypto:

1. The Access Point (AP) generates a public/private key pair

2. The Wi-Fi password is derived from the public key

3. The public key is sent to the client when connecting

4. Clients use the password to verify the public key of the AP

5. AP proves possession of the corresponding private key

→ The password forms a signature of the public key
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The SAE-PK password

The SAE-PK password is the truncated output of:

Hash(SSID || Modifier M || public key)

› SSID (Service Set Identifier): name of the Wi-Fi network

› Modifier M: starts from a random value and is incremented 

until the output starts with 3 or 5 zero bytes.

Number of required zero bytes is controlled by a security parameter

› Public key: point on an elliptic curve
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The SAE-PK password

The SAE-PK password is the truncated output of:

Hash(SSID || Modifier M || public key)

Output is converted into a human-readable form

› Example password: 2udb-slxf-3ijn-dbu3

› Password length is variable and decided by administrator

› Shortest allowed password length encodes 52 bits of the 

hash output (excluding the leading 3 or 5 zero bytes)
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Attack: creating a rogue clone of the network?

Find a modifier M & public key that result in the same password

Hash(SSID || Modifier M || public key)

What is the complexity of this in the best case?

› Hash output must start with at least 3 zero bytes → 224

› Remaining output must equal the password → 252

Total time complexity of 276 to perform a naïve attack
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Time-memory trade-off attack

An attacker is essentially inverting the hash function:

› We can construct rainbow tables to optimize the attack.

› The SSID is part of the hash input, so every table only will work 

against a specific network name.

› On verge of practicality based on theoretical estimates.

E.g., a table of ~6TB can break a password in ~2 weeks on AWS.

More research is needed, these are very rough estimates.

→ Mitigate attacks using a long password or by making the 

truncated output start with at least 5 zero bytes.
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Is SAE-PK secure?

Open questions:

› Is some kind of security proof feasible?

› Are other attacks possible?

› Are there risks when implementing SAE-PK?
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When not using the weakest security configuration:

› There are no known practical attacks…

› …on the other hand, there is no formal analysis/proof.



Major remaining issues & problems

The biggest issue: how to make Wi-Fi less complex?

› There are so many edge cases you will forget something…

› Backwards-compatibility at the price of security?

Complexity has further consequences:

› How to secure the network stack as a whole? User space, 

kernel, driver, firmware, hardware,… must interact securely.

› Modelling of protocols is inherently limited. But still useful!
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How to access standards?

› 802.11 spec: https://standards.ieee.org/ieee/802.11/7028/

› Wi-Fi Alliance: https://www.wi-fi.org/security-development

› Draft IEEE docs: https://mentor.ieee.org/802.11/documents

Searchable using Google, use “search keywords site:mentor.ieee.org”

Other advice:

› Send an e-mail to ask for access to draft standards?

› Hostap implements many protocols: https://w1.fi/cvs.html

› Use mac80211_hwsim on Linux for virtual Wi-Fi interfaces
95

https://standards.ieee.org/ieee/802.11/7028/
https://www.wi-fi.org/security-development
https://mentor.ieee.org/802.11/documents
https://w1.fi/cvs.html


Thank you!

Questions?
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