Security Testing of Network
Protocol Implementations

Prof. Mathy Vanhoef - @vanhoefm
Summer School on Security Testing and Verification
20 September 2022, Leuven, Belgium

“UMec DistriN=t

Introduction

Today we focus on stateful network protocols
» Code being executed depends on current & previous input:

void handle_packet(uint8 t *p, size t len) {
switch (current _state) {
case INIT: handle_init(p, len); break;
case AUTH: handle auth(p, len); break;

// ... other states here ...
case DATA: handle_data(p, len); break;
}

Security testing of stateful protocols

A common technique for security testing is fuzzing:
» Give unexpected or random input to the program

» Then monitor for crashes, failed assertions, memory leaks,...

Tested program is called the SUT (System Under Test)
» For us, the SUT Iis a network protocol implementation

» The tool/component that sends (in)valid messages to the
SUT will be called the test harness

Why fuzzing?

Why is fuzzing useful in practice?

» Programs often only undergo functional testing, I.e., they
are tested to handle expected inputs

» Want to test how programs will react to unexpected inputs,
since incorrectly handled input can cause vulnerabillities!

Fuzzing is frequently used in practice:
» AFL, LibFuzzer, Honggfuzz, Boofuzz, and many more...

Fuzzing recently had many successes

» Google discovered more than 25,000+ bugs in Chrome...
...and 36,000+ bugs in more than 550 open-source projects

» Using SAGE saved Microsoft millions of dollars while
creating Windows 7

» The 2016 DARPA Cyber Grand Challenge winner, Mayhem,
heavily relied on white-box fuzzing to find vulnerabilities

Sources:
* https://google.qithub.io/clusterfuzz/#trophies

 “Automated whitebox fuzz testing” by . P. Godefroid, M. Y. Levin, and D. Molnar
* http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html

* “Unleashing Mayhem on binary code” by S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley m

https://google.github.io/clusterfuzz/#trophies
http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html

Well-known example: American Fuzzy Lop (AFL)

|2

| Partly a “dumb” fuzzer:

N ;\.. » No model of input. Uses set of seed inputs.
~ » Given atest input, it changes random bits.

Partly a “smart” fuzzer:
» Tracks which code in the SUT was executed.
» Adds Input covering new code to the set of interesting inputs

= coverage-guided fuzzing = combination of dumb & smart

6
| KULEUVEN

Example: fuzzing jpeg

» Start with a single seed input: “hello”
» Using 7 cores for ~28 hours (i7 2.6 GHz)
» Interesting inputs are discovered, but not yet a valid jpeg file

$./djpeg id:002,0p:havoc,rep:32,+cov
Premature end of JPEG file
Not a JPEG file: starts with Oxff oOxff

$./djpeg id:003,+cov

Premature end of JPEG file
JPEG datastream contains no image

Example: fuzzing jpeg

$./djpeg 1d:000840,sync:fuzzero4d
Corrupt JPEG data: 50 extraneous bytes before marker 0xc4
Bogus Huffman table definition

$./djpeg 1d:001032,sync:fuzzero6
Corrupt JPEG data: 2 extraneous bytes before marker 0xc9
Quantization table 06x31 was not defined

Suddenly valid jpeg’s are generated!

WA

Downside: this can take a long time

2500
2000

1500

Unique
code 10
paths

500

0

/

7

S —
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Hours running

10

How does AFL achieve this?

PIEIE]

loc_482F81:

eax,
hhhhhhhhhhhhhhh

It monitors which code is executed @
» Doesn’t track the actual code path]
» Tracks how many times albranchwas taken

Example 1:

Path: Branches:
A->B>C->D=>E AB, BC, CD, DE
A->B->D—>C—->E AB, BD, DC, CE

11

How does AFL achieve this?

It monitors which code is executed @
» Doesn’t track the actual code path]
» Tracks how many times albranchwas taken

Example 2: More hits = different path
Path: Branches:
A->B->A->C AB| BA, AC

A>B2>A>B->A->C (AB, BA AC

12

How does AFL achieve this?

loc_482F81:
sub

u eax, 88810
jz short loc_482Fn7

It monitors which code is executed @ e — =
» Doesn't track the actual code pathsy i
» Tracks how many times albranchwas taken

Queue of “interesting” inputs:
» Take an input from this queue and mutate it
» If new path is taken, add mutation to the queue

- AFL slowly “explores” functionality of program

13

What about network protocols?

What makes fuzzing stateful network protocols special?
» The code being executed depends on previous input
» This is in contrast with, e.g., image parsing tools

Initial
State

Fuzzing stateless protocols

There are effectively two input grammars to consider:
1. The grammar defining the allowed format of packets

2. The grammar defining the allowed order of packets

How to explore both aspects while fuzzing/testing?

» Assume one grammar is known & explore the other
» For instance: using state inference tools

» Many other options exists as well...

15

Fuzzers for stateful systems: an overview?!

S A o A o

Grammar-based (generational) A
Grammar learner

Evolutionary

Evolutionary grammar-based
Evolutionary grammar-learner
Machine learning-based

.

Man-in-the-middle based y

1 Source: “An overview of Stateful Fuzzing” by Seyed Andarzian, Cristian Daniele, and Erik Poll.

Typical components:
» Test harness

» SUT

» Anomaly detector

16

https://www.cristiandaniele.com/files/Slides/Stateful_Fuzzing_survey_(INTERSECT).pdf

Fuzzers for stateful systems: an overview?!

N O Ok wwbdhRE

Grammar-based (generational)\
Grammar learner

Evolutionary

Evolutionary grammar-based
Evolutionary grammar-learner
Machine learning-based

>

Man-in-the-middle based y

1 Source: “An overview of Stateful Fuzzing” by Seyed Andarzian, Cristian Daniele, and Erik Poll.

Typical components:
» Test harness

» SUT

» Anomaly detector

17

https://www.cristiandaniele.com/files/Slides/Stateful_Fuzzing_survey_(INTERSECT).pdf

Grammar-based fuzzing

Define packet layout and state machine
» Fuzzer then sends valid packets to reach a target state
» When In the target state, send malformed/mutated packets

Example:

» Send packets to reach each
state, will eventually test state S

» Then send mutations of m.

e__)@ » Will eventually detect the crash?
m, :
Mg 18

Simple example: early Wi-Fi fuzzing

Unauthenticated,
unassociated

|
Authentication

Authenticated,
unassociated

|
Association

Authenticated,

Associated

Option 1: fuzz each state

» Must define state machine and
packet formats to mutate

Option 2: only fuzz the first state
» 15t state can be reached by attackers

» Makes fuzzing easier: only need to
define packet formats to mutate...

» ...but doesn’t cover all the code

19

Simple example: early Wi-Fi fuzzing

Butti and Tinnes fuzzed the first state

unassociated » Fuzzed probe responses & beacons:
' these are processed while scanning

Authentication _ _ _ _
» Basic packet layout is defined in Scapy
Authenticated, > Random fields are mutated

Unauthenticated

unassociated

|
Association Discovered multiple crashes

_ > Remote code execution in the kernel!
Authenticated,

Associated 20

Source: “Discovering and exploiting 802.11 wireless driver vulnerabilities” by Laurent Butti and Julien Tinnés. m

Simple example: early Wi-Fi fuzzing

. _ .
Unauthenticated. Keil and Kolbitsch fuzzed the 2"9 state
unassociated » Let the client authenticate but not yet

o associate
Authentication _ _
» Then transmitted fuzzed frames, i.e.,
Authenticated send fuzzed association responses
unassociated
| . .y
Association Discovered one new vulnerability

> No remote code execution though
Authenticated,
Associated ”

Source: “Stateful Fuzzing of Wireless Device Drivers in an Emulated Environment” at Black Hat Japan (2007). m

Side-note: these issues were very common (2007)

Off-by-one buffer overflow in the parse_elements function in the 802.11 printer code (print-802_11.c) for tcpdump
(PARSER) 3.9.5 and earlier allows remote attackers to cause a denial of service (crash) via a crafted 802.11 frame. NOTE: this

was originally referred to as heap-based, but it might be stack-based.
CVE-2007-0933 | Will be released today
(DRIVER/WIN)

The Intel 2200BG 802.11 Wireless Mini-PCI driver 9.0.3.9 (w29n51.sys) allows remote attackers to cause a denial of
(DRIVER/WIN) service (system crash) via crafted disassociation packets, which triggers memory corruption of "internal kernel

structures," a different vulnerability than CVE-2006-6651. NOTE: this issue might overlap CVE-2006-3992.

Unspecified vulnerability in the IEEE 802.11 dissector in Wireshark (formerly Ethereal) 0.10.14 through 0.99.4 allows
(PARSER) remote attackers to cause a denial of service (application crash) via unspecified vectors.

Race condition in W29N51.5YS in the Intel 2200BG wireless driver 9.0.3.9 allows remote attackers to cause memory
(DRIVER/WIN) corruption and execute arbitrary code via a series of crafted beacon frames. NOTE: some details are obtained solely

from third party information.

Stack-based buffer overflow in net80211/ieee80211 wireless.c in MadWifi before 0.9.2.1 allows remote attackers to
(DRIVER/LIN) execute arbitrary code via unspecified vectors, related to the encode_ie and giwscan_cb functions.

Heap-based buffer overflow in the wireless driver (WG311ND5.5YS) 2.3.1.10 for NetGear WG311vl wireless adapter
(DRIVER/WIN) allows remote attackers to execute arbitrary code via an 802.11 management frame with a long SSID.

Buffer overflow in MA521nd5.SYS driver 5.148.724.2003 for NetGear MA521 PCMCIA adapter allows remote attackers
(DRIVER/WIN) to execute arbitrary code via (1) beacon or (2) probe 802.11 frame responses with an long supported rates information

element. NOTE: this issue was reported as a "memory corruption" error, but the associated exploit code suggests that

it is a buffer overflow.

Stack-based buffer overflow in ASAGU.SYS 1.0.1.41 for the D-Link DWL-G132 wireless adapter allows remote attackers
(DRIVER/WIN) to execute arbitrary code via a 802.11 beacon request with a long Rates information element (IE).

Stack-based buffer overflow in WG111v2.5YS in NetGear WG111v2 wireless adapter (USB) allows remote attackers to
(DRIVER/WIN) execute arbitrary code via a long 802.11 beacon request.

22

Side-note: these issues were very common (2007)

(DRIVER/WIN)

Stack-based buffer overflow in the Broadcom BCMWL5.SYS wireless device driver 3.50.21.10, as used in Cisco Linksys
WPC300N Wireless-N Notebook Adapter before 4.100.15.5 and other products, allows remote attackers to execute
arbitrary code via an 802.11 response frame containing a long SSID field.

(DRIVER/OSX)

The Airport driver for certain Orinoco based Airport cards in Darwin kernel 8.8.0 in Apple Mac OS X 10.4.8, and possibly
other versions, allows remote attackers to execute arbitrary code via an 802.11 probe response frame without any
valid information element (IE) fields after the header, which triggers a heap-based buffer overflow.

(DRIVER/WIN)

Unspecified vulnerability in the Centrino (1) w22n50.sys, (2) w22n51.sys, (3) w29n50.sys, and (4) w29n51.sys
Microsoft Windows drivers for Intel 2200BG and 2915ABG PRO/Wireless Network Connection before 10.5 with driver
9.0.4.16 allows remote attackers to execute arbitrary code via certain frames that trigger memory corruption.

(DRIVER/OSX)

Integer overflow in the API for the AirPort wireless driver on Apple Mac OS X 10.4.7 might allow physically proximate
attackers to cause a denial of service (crash) or execute arbitrary code in third-party wireless software that uses the
API via crafted frames.

(DRIVER/OSX)

Heap-based buffer overflow in the AirPort wireless driver on Apple Mac OS X 10.4.7 allows physically proximate
attackers to cause a denial of service (crash), gain privileges, and execute arbitrary code via a crafted frame that is not
properly handled during scan cache updates.

(DRIVER/OSX)

Multiple stack-based buffer overflows in the AirPort wireless driver on Apple Mac 0S X 10.3.9 and 10.4.7 allow
physically proximate attackers to execute arbitrary code by injecting crafted frames into a wireless network.

(PARSER)

Stack-based buffer overflow in the parseTaggedData function in WavePacket.mm in KisMAC R54 through R73p allows
remote attackers to execute arbitrary code via multiple SSIDs in a Cisco vendor tag in a 802.11 management frame.

(DRIVER/BSD)

Integer overflow in IEEE 802.11 network subsystem (ieee80211_ioctl.c) in FreeBSD before 6.0-STABLE, while scanning
for wireless networks, allows remote attackers to execute arbitrary code by broadcasting crafted (1) beacon or (2)
probe response frames.

Source: “Wi-Fi Advanced Fuzzing” by Laurent Butti at BlackHat Europe 2007.

23

Other grammar-based fuzzers

BooFuzz protocol fuz7nr (fAarl//lciirracenr nf |||n\/)
1. The structure of e N@me Of the message

user = Request children=(

Field type: impacts mutation during fuzzin 24
yp P 9 9 —

Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)
1. The structure of each message is first defined

passw = Request("pass", children=(
String("key", "PASS"),
Delim("space", " "),

String("val", "james"),
Static("end", "\r\n"),

)) Note: these block-based grammars are inspired
by the (underdocumented?) SPIKE fuzzer 25

Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)
2. State machine is defined by connecting messages

user
session.connect(user) l
session.connect(user, passw) bassw
session.connect(passw, stor) k///“\\\s
session.connect(passw, retr) stor retr

- user Is sent before fuzzing passw, user and passw Is sent
before fuzzing stor or retr. Doesn’t fuzz order of messages. ,,

E

Other grammar-based fuzzers Cop PEACH

Peach network protocol fuzzer
» Like Sulley/BooFuzz, but uses XML for the grammar
> Initially an open-source project.

Commercial edition received updates and features
» There (was) a community edition, but it lacked such updates

» GitLab open-sourced core engine of commercial Peach (2021)
» Known as the GitLab Protocol Fuzzer Community Edition

» The commercial version is no longer available...?

27

https://web.archive.org/web/20200504072909/https:/www.peach.tech/
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce

Other grammar-based fuzzers Co PEACH

FU Z Z ER

Peach network protocol fuzzer
» Like Sulley/BooFuzz, but uses XML for the grammar

Main mutation strategies of Peach:

1. Random: selects n fields from the data model. These fields
are modified using a random mutator function.

2. Sequential: all fields are mutated in order using all possible
mutator functions.

Limitation: the order of messages isn’t fuzzed.

28

Grammar learning:. state machine inference

Downsides of previous fuzzers:
> Need to specify packet formats and state machine
» The state machine itself isn’t fuzzed (i.e., order of packets)

This can be improved by inferring the state machine

» WIll still need to specify packet formats, but the state
machine of the implementation is automatically inferred.

» Can manually inspect the inferred state machine and then
use it for stateful fuzzing.

29

Black-box state inference

Common method is to use algorithms for automata learning
» Actively interact with the SUT to learn its behavior
» Send packets in a random order and inspect the responses

Infer the state machine based on the responses

» We can then inspect & use the state machine
» Successfully applied to discover bugs in TLS, SSH, WPAZ2,...

30

Intultive intro to state machine inference

Start with traces of length one: Other messages /
» ClientHello / ServerHello FatalAlert+Close gentrielo
» Update state machine
» Other packets / FatalAlert+Close
» Update state machine

Traces of length two:
» ClientHello / Server Helo, ClientHello / FatalAlert+Close
» Update state machine to handle this case

31
This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015. m

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

Intultive intro to state machine inference

Start with traces of length one:

Other messages /

: ClientHello /
» ClientHello / ServerHello FatalAlert+Close ServerHello
» Update state machine
ClientHello /
» Other packets / FatalAlert+Close FatalAlertsClose

» Update state machine

Traces of length two:
» ClientHello / Server Helo, ClientHello / FatalAlert+Close
» Update state machine to handle this case

32
This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015. m

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

Intuitive intro to state machine inference

Continue with traces of length two: 4., messages /
ClientHello /

» Other messages / FatalAlert+Close, Fat@lAlert+Close ServerHello

Any message / empty

ClientHello /
FatalAlert+Close

33
This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015. m

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

Intultive intro to state machine inference

]] Other messages /
Continue with traces of length two: FatalAlert+Close

» Other messages / FatalAlert+Close,
Any message / empty

ClientHello /
ServerHello

» ClientHello / ServerHello, ClientHello /
] FatalAlert+Close
ClientKeyExchange / empty _/
» ClientHello / ServerHello, * | empty ClientkeyExchange /
Other messages / FatalAlert+Close emtpy

34
This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015. m

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

Intultive intro to state machine inference

]] Other messages /
Continue with traces of length two: FatalAlert+Close

» Other messages / FatalAlert+Close,
Any message / empty

ClientHello /
ServerHello

» ClientHello / ServerHello, Other messages /
] FatalAlert+Close
ClientKeyExchange / empty _/
» ClientHello / ServerHello, * | empty ClientkeyExchange /
Other messages / FatalAlert+Close emtpy

Continue with traces of length 3 & update state machine

35
This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015. m

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

Intultive intro to state machine inference

]] Other messages /
Continue with traces of length two: FatalAlert+Close

» Other messages / FatalAlert+Close,
Any message / empty

» ClientHello / ServerHello, . Other messages /
] FatalAlert+Close
ClientKeyExchange / empty _/

» ClientHello / ServerHello, * | empty
Other messages / FatalAlert+Close

ClientHello /
ServerHello

ClientKeyExchange /
emtpy

Continue with traces of length 3 & update state machine

36
This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015. m

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

The real learning setup

> What do we learn? A deterministic Mealy machine.

» How to learn? Use libraries such as LearnLib.
» They use L* or TTT to from a hypothesis for the state machine.

» Must be able to perform three actions:
1. Resetthe SUT
2. Send message to SUT & get the output
3. Check whether the hypothesis (= current state machine) is correct

» Performing action 2 & 3 is non-trivial!

37

Challenge: sending messages to the SUT (1)

State machine uses abstract messages, e.g., “ClientHello”
» Must be converted to concrete messages = actual bytes!
» A test harness is used for this conversion:

Abstract Concrete
request request
Learner
<€ Harness 33
Abstact Concrete
response response

38

Challenge: sending messages to the SUT (2)

The state harness must be able to send packets in any order

» Must consider previous messages that were sent/received
» Example: random nonces that were part of the handshake
» Example: currently negotiated session key

» In certain cases, it's unclear which values to use in requests

» Example: how to send an encrypted TLS record before a key was
negotiated? Use a random key? Use an all-zero key?

> And we must be able to receive packets in any order

» Example edge case: we receive an encrypted packet before a key
was negotiated. Do we try to decrypt it? With which key?

39

Challenge: Is the state machine correct?

Learning algorithms need a way to check if their current
hypothesis for the sate machine is correct

» But we don’t know the state machine...

Two typical solutions:

1. Random traces: send some fixed number of random
traces and see if the responses match the state machine

2. Chow’s W-method: guarantees correctness of the state
machine given an upper bound on the number of states

40

Why Is state inference useful?

Manually inspect the state machine for flaws
» ldentified flaws in TLS, DTLS, WPA2, and 4G/LTE

Use the inferred state machine in BooFuzz or similar
» You will now fuzz the actual states of the implementation
» This may be more/other/different states than in the standard!

State machine may form a fingerprint of the implementation
» Use unigque behavior to detect implementation being used

41

Evolutionary protocol fuzzers

Previous approach are black-box fuzzers
» What if we have access to the binary and/or source code?

We can use coverage-guided fuzzing!
» = detect interesting inputs that execute new code
» Recent approach is to modify AFL to fuzz network protocols

Examples: SNPSFuzzer, AFLNet, SnapFuzz, and so on.
> We will discuss their high-level strategies

42

How to use AFL on network services?

Write unit-level tests that interact with the software using their
(public or internal) APIs

» Used by Google’'s OSS-Fuzz. Requires a lot of manual effort.
» Usually only a single state is fussed in each unit-level test

Need to handle side-effects

» Some protocols, such as FTP, write data to the file system or
exchange network messages.

» Need to reset these side-effects on every new input

43

Desired properties of the fuzzer

We want to avoid writing unit-level tests
» Avoid manual overhead of modifying the SUT

Automatically detect and explore states
» Fuzzer should be able to (heuristically) detect new states

Our solution should be fast and efficient
» The more input we can test/second, the more bugs we found

44

High-level: the stateful grey-box fuzzing loop

1. Select the most interesting state from a state chain queue
to be fuzzed - the fuzzer model the state machine.

Select a message from the message gueue to mutate.
Pick a mutating strategy to mutate the message.
Put the SUT In the desired state & send mutated message

Check if new a new state is reach or new code is executed.
If so, update the state chain or message queue.

Go back to step 1!

ok W

o

45
Based on “SNPSFuzzer: A Fast Greybox Fuzzer for Stateful Network Protocols using Snapshots” by Jungiang Li et al. (2022). m

Question: how to detect new states?

AFLNet and SnapFuzz
» Use response code in the protocol to infer the SUT'’s state
» Example: FTP, IRC, or HTTP status codes

Stateful Greybox Fuzzing (USENIX Security 2022)
» Detected state variables in the source code (e.g., enum’s)

Statelnspector (CCS 2023) and StateAFL (arXiv)
» Grey-box method to detected state-defining memory

46

Remaining problem: fuzzing is slow

SNPSFuzzer by Jungiang Li et al.
» Dumps process context when the SUT is in a specific state
» Can now quickly restore this state without sending packets

SnapFuzz by Andronidis and Cadar:
» Use an in-memory filesystem to easily clean-up side-effects

» Further improve efficiency of the forkserver to more quickly
reach the point at which mutated packets can be input

47

How to find logical vulnerabilities?

Model-based testing!

» Test if program behaves according to some abstract model
> Proved successful against TLS and Wi-Fi

- We will focus on Wi-Fi work (AsiaCCS’'17)

48

Model-based testing: our approach

SElecevee | Test generation rules Faiigii=s
model II cases

I I Correct & incorrect I I

Normal modifications Set of test
handshake cases

case

Expected result?

== FOr every test - = e e e e e e e e e e e e e e
Unexpected reply

A test case defines:
Messages to send
Expected replies

Results in successful
or failed connection?

Execute
test case

Successful connection?

Inspect failed tests -{ Expert determines exploitability!

N
©

Test generation rules

Test generation rules manipulating messages as a whole:
1. Drop a message
2. Inject/repeat a message

Test generation rules that modify fields in messages:

» Can use various mutating strategies depending on the
protocol that is being tested!

50

Evaluation on 12 access points

» Open source: OpenBSD, Linux’s Hostapd

» Leaked source: Broadcom, MediaTek (home routers)
» Closed source: Windows, Apple, Telenet

» Professional equipment: Aerohive, Aironet

Can discover logical flaws:

» Two downgrade attacks

> Multiple denail-of-Service flaws
» Several fingerprinting methods

51

Thank you!
Questions?

