
Security Testing of Network 

Protocol Implementations

Prof. Mathy Vanhoef - @vanhoefm

Summer School on Security Testing and Verification

20 September 2022, Leuven, Belgium



Introduction

Today we focus on stateful network protocols

› Code being executed depends on current & previous input:

void handle_packet(uint8_t *p, size_t len) {

switch (current_state) {

case INIT: handle_init(p, len); break;

case AUTH: handle_auth(p, len); break;

// ... other states here ...

case DATA: handle_data(p, len); break;

}

} 2



Security testing of stateful protocols

A common technique for security testing is fuzzing:

› Give unexpected or random input to the program

› Then monitor for crashes, failed assertions, memory leaks,…

Tested program is called the SUT (System Under Test)

› For us, the SUT is a network protocol implementation

› The tool/component that sends (in)valid messages to the 

SUT will be called the test harness

3



Why fuzzing?

Why is fuzzing useful in practice?

› Programs often only undergo functional testing, i.e., they 

are tested to handle expected inputs

› Want to test how programs will react to unexpected inputs, 

since incorrectly handled input can cause vulnerabilities!

Fuzzing is frequently used in practice:

› AFL, LibFuzzer, Honggfuzz, Boofuzz, and many more…

4



Fuzzing recently had many successes

› Google discovered more than 25,000+ bugs in Chrome...

…and 36,000+ bugs in more than 550 open-source projects

› Using SAGE saved Microsoft millions of dollars while 

creating Windows 7

› The 2016 DARPA Cyber Grand Challenge winner, Mayhem, 

heavily relied on white-box fuzzing to find vulnerabilities

5

Sources:

• https://google.github.io/clusterfuzz/#trophies

• “Automated whitebox fuzz testing” by . P. Godefroid, M. Y. Levin, and D. Molnar

• http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html

• “Unleashing Mayhem on binary code” by S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley

https://google.github.io/clusterfuzz/#trophies
http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html


Well-known example: American Fuzzy Lop (AFL)

Partly a “smart” fuzzer:

› Tracks which code in the SUT was executed.

› Adds input covering new code to the set of interesting inputs

= coverage-guided fuzzing = combination of dumb & smart
6

Partly a “dumb” fuzzer:

› No model of input. Uses set of seed inputs.

› Given a test input, it changes random bits.



Example: fuzzing jpeg

› Start with a single seed input: “hello”

› Using 7 cores for ~28 hours (i7 2.6 GHz)

› Interesting inputs are discovered, but not yet a valid jpeg file

$ ./djpeg id:002,op:havoc,rep:32,+cov

Premature end of JPEG file

Not a JPEG file: starts with 0xff 0xff

$ ./djpeg id:003,+cov

Premature end of JPEG file
JPEG datastream contains no image 7



Example: fuzzing jpeg

$ ./djpeg id:000840,sync:fuzzer04

Corrupt JPEG data: 50 extraneous bytes before marker 0xc4

Bogus Huffman table definition

$ ./djpeg id:001032,sync:fuzzer06

Corrupt JPEG data: 2 extraneous bytes before marker 0xc9

Quantization table 0x31 was not defined

8



Suddenly valid jpeg’s are generated!

9



Downside: this can take a long time

10



How does AFL achieve this?

It monitors which code is executed

› Doesn’t track the actual code path

› Tracks how many times a branch was taken

Example 1:

11

Path: Branches:

A → B → C → D → E AB, BC, CD, DE

A → B → D → C → E AB, BD, DC, CE



How does AFL achieve this?

It monitors which code is executed

› Doesn’t track the actual code path

› Tracks how many times a branch was taken

Example 2:

12

Path: Branches:

A → B → A → C AB, BA, AC

A → B → A→ B → A→ C AB, BA, AC

More hits = different path



How does AFL achieve this?

It monitors which code is executed

› Doesn’t track the actual code path

› Tracks how many times a branch was taken

Queue of “interesting” inputs:

› Take an input from this queue and mutate it

› If new path is taken, add mutation to the queue

→ AFL slowly “explores” functionality of program

13



What about network protocols?

What makes fuzzing stateful network protocols special?

› The code being executed depends on previous input

› This is in contrast with, e.g., image parsing tools

14

Initial 

state

ok ok crash

jpeg1
jpeg2

jpeg3

s1 S2

S3

S4 S5

Crash

m1
m2

m3

m4

m5’

m1



Fuzzing stateless protocols

There are effectively two input grammars to consider:

1. The grammar defining the allowed format of packets

2. The grammar defining the allowed order of packets

How to explore both aspects while fuzzing/testing?

› Assume one grammar is known & explore the other

For instance: using state inference tools

› Many other options exists as well…

15



Fuzzers for stateful systems: an overview1

1. Grammar-based (generational)

2. Grammar learner

3. Evolutionary

4. Evolutionary grammar-based

5. Evolutionary grammar-learner

6. Machine learning-based

7. Man-in-the-middle based

161 Source: “An overview of Stateful Fuzzing” by Seyed Andarzian, Cristian Daniele, and Erik Poll.

Typical components:

› Test harness

› SUT

› Anomaly detector

https://www.cristiandaniele.com/files/Slides/Stateful_Fuzzing_survey_(INTERSECT).pdf


Fuzzers for stateful systems: an overview1

1. Grammar-based (generational)

2. Grammar learner

3. Evolutionary

4. Evolutionary grammar-based

5. Evolutionary grammar-learner

6. Machine learning-based

7. Man-in-the-middle based

171 Source: “An overview of Stateful Fuzzing” by Seyed Andarzian, Cristian Daniele, and Erik Poll.

Typical components:

› Test harness

› SUT

› Anomaly detector

https://www.cristiandaniele.com/files/Slides/Stateful_Fuzzing_survey_(INTERSECT).pdf


Grammar-based fuzzing

Define packet layout and state machine

› Fuzzer then sends valid packets to reach a target state

› When in the target state, send malformed/mutated packets

18

s1 S2

S3

S4

S5
Crash

m1
m2

m3

m4
m5’

m1

Example:

› Send packets to reach each 

state, will eventually test state S5

› Then send mutations of m5

› Will eventually detect the crash?



Simple example: early Wi-Fi fuzzing

Option 1: fuzz each state

› Must define state machine and 

packet formats to mutate

Option 2: only fuzz the first state

› 1st state can be reached by attackers

› Makes fuzzing easier: only need to 

define packet formats to mutate…

› …but doesn’t cover all the code
19

Unauthenticated, 

unassociated

Authenticated, 

unassociated

Authentication

Authenticated, 

Associated

Association



Simple example: early Wi-Fi fuzzing

Butti and Tinnès fuzzed the first state

› Fuzzed probe responses & beacons: 

these are processed while scanning

› Basic packet layout is defined in Scapy

› Random fields are mutated

Discovered multiple crashes

› Remote code execution in the kernel! 

20

Unauthenticated, 

unassociated

Authenticated, 

unassociated

Authenticated, 

Associated

Authentication

Association

Source: “Discovering and exploiting 802.11 wireless driver vulnerabilities” by Laurent Butti and Julien Tinnès.



Simple example: early Wi-Fi fuzzing

Keil and Kolbitsch fuzzed the 2nd state

› Let the client authenticate but not yet

associate

› Then transmitted fuzzed frames, i.e., 

send fuzzed association responses

Discovered one new vulnerability

› No remote code execution though

21

Unauthenticated, 

unassociated

Authenticated, 

unassociated

Authenticated, 

Associated

Authentication

Association

Source: “Stateful Fuzzing of Wireless Device Drivers in an Emulated Environment” at Black Hat Japan (2007).



Side-note: these issues were very common (2007)

22



Side-note: these issues were very common (2007)

23
Source: “Wi-Fi Advanced Fuzzing” by Laurent Butti at BlackHat Europe 2007.



Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)

1. The structure of each message is first defined

user = Request("user", children=(

String("key", "USER"),

Delim("space", " "),

String("val", "anonymous"),

Static("end", "\r\n")

))
24

Name of the field

Default field value

Name of the message

Field type: impacts mutation during fuzzing



Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)

1. The structure of each message is first defined

passw = Request("pass", children=(

String("key", "PASS"),

Delim("space", " "),

String("val", "james"),

Static("end", "\r\n"),

))
25

Note: these block-based grammars are inspired 

by the (underdocumented?) SPIKE fuzzer



Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)

2. State machine is defined by connecting messages

session.connect(user)

session.connect(user, passw)

session.connect(passw, stor)

session.connect(passw, retr)

→ user is sent before fuzzing passw, user and passw is sent 

before fuzzing stor or retr. Doesn’t fuzz order of messages. 26

user

passw

stor retr



Other grammar-based fuzzers

Peach network protocol fuzzer

› Like Sulley/BooFuzz, but uses XML for the grammar

› Initially an open-source project.

Commercial edition received updates and features

› There (was) a community edition, but it lacked such updates

› GitLab open-sourced core engine of commercial Peach (2021)

Known as the GitLab Protocol Fuzzer Community Edition

The commercial version is no longer available…?

27

https://web.archive.org/web/20200504072909/https:/www.peach.tech/
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce


Other grammar-based fuzzers

Peach network protocol fuzzer

› Like Sulley/BooFuzz, but uses XML for the grammar

Main mutation strategies of Peach:

1. Random: selects n fields from the data model. These fields 

are modified using a random mutator function.

2. Sequential: all fields are mutated in order using all possible 

mutator functions.

Limitation: the order of messages isn’t fuzzed.
28



Grammar learning: state machine inference

Downsides of previous fuzzers:

› Need to specify packet formats and state machine

› The state machine itself isn’t fuzzed (i.e., order of packets)

This can be improved by inferring the state machine

› Will still need to specify packet formats, but the state 

machine of the implementation is automatically inferred.

› Can manually inspect the inferred state machine and then 

use it for stateful fuzzing.

29



Black-box state inference

Common method is to use algorithms for automata learning

› Actively interact with the SUT to learn its behavior

› Send packets in a random order and inspect the responses

Infer the state machine based on the responses

› We can then inspect & use the state machine

› Successfully applied to discover bugs in TLS, SSH, WPA2,…

30



Intuitive intro to state machine inference

Start with traces of length one:

› ClientHello / ServerHello

› Update state machine

› Other packets / FatalAlert+Close

› Update state machine

Traces of length two:

› ClientHello / Server Helo, ClientHello / FatalAlert+Close

› Update state machine to handle this case
31

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.

ClientHello /

ServerHello

Other messages /

FatalAlert+Close

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Intuitive intro to state machine inference

Start with traces of length one:

› ClientHello / ServerHello

› Update state machine

› Other packets / FatalAlert+Close

› Update state machine

Traces of length two:

› ClientHello / Server Helo, ClientHello / FatalAlert+Close

› Update state machine to handle this case
32

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.

ClientHello /

ServerHello

ClientHello /

FatalAlert+Close

Other messages /

FatalAlert+Close

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty

33

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.

ClientHello /

ServerHello

ClientHello /

FatalAlert+Close

Other messages /

FatalAlert+Close

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty

› ClientHello / ServerHello,

ClientKeyExchange / empty

› ClientHello / ServerHello,

Other messages / FatalAlert+Close

34

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.

* / empty

ClientHello /

ServerHello

Other messages /

FatalAlert+Close

ClientHello /

FatalAlert+Close

ClientKeyExchange /

emtpy

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty

› ClientHello / ServerHello,

ClientKeyExchange / empty

› ClientHello / ServerHello,

Other messages / FatalAlert+Close

Continue with traces of length 3 & update state machine

35

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.

* / empty

ClientHello /

ServerHello

Other messages /

FatalAlert+Close

Other messages /

FatalAlert+Close

ClientKeyExchange /

emtpy

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty

› ClientHello / ServerHello,

ClientKeyExchange / empty

› ClientHello / ServerHello,

Other messages / FatalAlert+Close

Continue with traces of length 3 & update state machine

36

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.

* / empty

ClientHello /

ServerHello

Other messages /

FatalAlert+Close

ClientKeyExchange /

emtpy

Other messages /

FatalAlert+Close

…

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


The real learning setup

› What do we learn? A deterministic Mealy machine.

› How to learn? Use libraries such as LearnLib.

They use L* or TTT to from a hypothesis for the state machine.

› Must be able to perform three actions:

1. Reset the SUT

2. Send message to SUT & get the output

3. Check whether the hypothesis (= current state machine) is correct

› Performing action 2 & 3 is non-trivial!

37



Challenge: sending messages to the SUT (1)

State machine uses abstract messages, e.g., “ClientHello”

› Must be converted to concrete messages = actual bytes!

› A test harness is used for this conversion:

38

Learner
Test 

Harness
SUT

Abstract 

request
Concrete 

request

Concrete 

response

Abstact

response



Challenge: sending messages to the SUT (2)

The state harness must be able to send packets in any order

› Must consider previous messages that were sent/received

Example: random nonces that were part of the handshake

Example: currently negotiated session key

› In certain cases, it’s unclear which values to use in requests

Example: how to send an encrypted TLS record before a key was 

negotiated? Use a random key? Use an all-zero key?

› And we must be able to receive packets in any order

Example edge case: we receive an encrypted packet before a key 

was negotiated. Do we try to decrypt it? With which key?
39



Challenge: is the state machine correct?

Learning algorithms need a way to check if their current 

hypothesis for the sate machine is correct

› But we don’t know the state machine…

Two typical solutions:

1. Random traces: send some fixed number of random 

traces and see if the responses match the state machine

2. Chow’s W-method: guarantees correctness of the state 

machine given an upper bound on the number of states

40



Why is state inference useful?

Manually inspect the state machine for flaws

› Identified flaws in TLS, DTLS, WPA2, and 4G/LTE

Use the inferred state machine in BooFuzz or similar

› You will now fuzz the actual states of the implementation

› This may be more/other/different states than in the standard!

State machine may form a fingerprint of the implementation

› Use unique behavior to detect implementation being used

41



Evolutionary protocol fuzzers

Previous approach are black-box fuzzers

› What if we have access to the binary and/or source code?

We can use coverage-guided fuzzing!

› = detect interesting inputs that execute new code

› Recent approach is to modify AFL to fuzz network protocols

Examples: SNPSFuzzer, AFLNet, SnapFuzz, and so on.

› We will discuss their high-level strategies

42



How to use AFL on network services?

Write unit-level tests that interact with the software using their 

(public or internal) APIs

› Used by Google’s OSS-Fuzz. Requires a lot of manual effort.

› Usually only a single state is fussed in each unit-level test

Need to handle side-effects

› Some protocols, such as FTP, write data to the file system or 

exchange network messages.

› Need to reset these side-effects on every new input

43



Desired properties of the fuzzer

We want to avoid writing unit-level tests

› Avoid manual overhead of modifying the SUT

Automatically detect and explore states

› Fuzzer should be able to (heuristically) detect new states

Our solution should be fast and efficient

› The more input we can test/second, the more bugs we found

44



High-level: the stateful grey-box fuzzing loop

1. Select the most interesting state from a state chain queue

to be fuzzed → the fuzzer model the state machine.

2. Select a message from the message queue to mutate.

3. Pick a mutating strategy to mutate the message.

4. Put the SUT in the desired state & send mutated message

5. Check if new a new state is reach or new code is executed. 

If so, update the state chain or message queue.

6. Go back to step 1!

45

Based on “SNPSFuzzer: A Fast Greybox Fuzzer for Stateful Network Protocols using Snapshots” by Junqiang Li et al. (2022).



Question: how to detect new states?

AFLNet and SnapFuzz

› Use response code in the protocol to infer the SUT’s state

› Example: FTP, IRC, or HTTP status codes

Stateful Greybox Fuzzing (USENIX Security 2022)

› Detected state variables in the source code (e.g., enum’s)

StateInspector (CCS 2023) and StateAFL (arXiv)

› Grey-box method to detected state-defining memory

46



Remaining problem: fuzzing is slow

SNPSFuzzer by Junqiang Li et al.

› Dumps process context when the SUT is in a specific state

› Can now quickly restore this state without sending packets

SnapFuzz by Andronidis and Cadar:

› Use an in-memory filesystem to easily clean-up side-effects

› Further improve efficiency of the forkserver to more quickly 

reach the point at which mutated packets can be input

47



How to find logical vulnerabilities?

› Test if program behaves according to some abstract model

› Proved successful against TLS and Wi-Fi

→ We will focus on Wi-Fi work (AsiaCCS’17)

48

Model-based testing!



Successful connection?

Test generation rules

Model-based testing: our approach

Handshake 

model

Set of test 

cases

Normal 

handshake

Correct & incorrect 

modifications Set of test 

cases

Expert determines exploitability!

Execute 

test case

For every test 

case

A test case defines:

1. Messages to send

2. Expected replies

3. Results in successful 
or failed connection?

Inspect failed tests

Yes
Reset

Test failed
Unexpected reply

Expected result?

No

49



Test generation rules

Test generation rules manipulating messages as a whole:

1. Drop a message

2. Inject/repeat a message

Test generation rules that modify fields in messages:

› Can use various mutating strategies depending on the 

protocol that is being tested!

50



Evaluation on 12 access points

› Open source: OpenBSD, Linux’s Hostapd

› Leaked source: Broadcom, MediaTek (home routers)

› Closed source: Windows, Apple, Telenet

› Professional equipment: Aerohive, Aironet

51

Can discover logical flaws:

› Two downgrade attacks

› Multiple denail-of-Service flaws

› Several fingerprinting methods



Thank you!

Questions?


