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Introduction

Today we focus on stateful network protocols

› Code being executed depends on current & previous input:

void handle_packet(uint8_t *p, size_t len) {

switch (current_state) {

case INIT: handle_init(p, len); break;

case AUTH: handle_auth(p, len); break;

// ... other states here ...

case DATA: handle_data(p, len); break;

}
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Security testing of stateful protocols

A common technique for security testing is fuzzing:

› Give unexpected or random input to the program

› Then monitor for crashes, failed assertions, memory leaks,…

Tested program is called the SUT (System Under Test)

› For us, the SUT is a network protocol implementation

› The tool/component that sends (in)valid messages to the 

SUT will be called the test harness
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Why fuzzing?

Why is fuzzing useful in practice?

› Programs often only undergo functional testing, i.e., they 

are tested to handle expected inputs

› Want to test how programs will react to unexpected inputs, 

since incorrectly handled input can cause vulnerabilities!

Fuzzing is frequently used in practice:

› AFL, LibFuzzer, Honggfuzz, Boofuzz, and many more…
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Fuzzing recently had many successes

› Google discovered more than 25,000+ bugs in Chrome...

…and 36,000+ bugs in more than 550 open-source projects

› Using SAGE saved Microsoft millions of dollars while 

creating Windows 7

› The 2016 DARPA Cyber Grand Challenge winner, Mayhem, 

heavily relied on white-box fuzzing to find vulnerabilities
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Sources:

• https://google.github.io/clusterfuzz/#trophies

• “Automated whitebox fuzz testing” by . P. Godefroid, M. Y. Levin, and D. Molnar

• http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html

• “Unleashing Mayhem on binary code” by S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley

https://google.github.io/clusterfuzz/#trophies
http://pages.cs.wisc.edu/~bart/fuzz/Foreword1.html


Well-known example: American Fuzzy Lop (AFL)

Partly a “smart” fuzzer:

› Tracks which code in the SUT was executed.

› Adds input covering new code to the set of interesting inputs

= coverage-guided fuzzing = combination of dumb & smart
6

Partly a “dumb” fuzzer:

› No model of input. Uses set of seed inputs.

› Given a test input, it changes random bits.



Example: fuzzing jpeg

› Start with a single seed input: “hello”

› Using 7 cores for ~28 hours (i7 2.6 GHz)

› Interesting inputs are discovered, but not yet a valid jpeg file

$ ./djpeg id:002,op:havoc,rep:32,+cov

Premature end of JPEG file

Not a JPEG file: starts with 0xff 0xff

$ ./djpeg id:003,+cov

Premature end of JPEG file
JPEG datastream contains no image 7



Example: fuzzing jpeg

$ ./djpeg id:000840,sync:fuzzer04

Corrupt JPEG data: 50 extraneous bytes before marker 0xc4

Bogus Huffman table definition

$ ./djpeg id:001032,sync:fuzzer06

Corrupt JPEG data: 2 extraneous bytes before marker 0xc9

Quantization table 0x31 was not defined
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Suddenly valid jpeg’s are generated!
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Downside: this can take a long time
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How does AFL achieve this?

It monitors which code is executed

› Doesn’t track the actual code path

› Tracks how many times a branch was taken

Example 1:
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Path: Branches:

A → B → C → D → E AB, BC, CD, DE

A → B → D → C → E AB, BD, DC, CE



How does AFL achieve this?

It monitors which code is executed

› Doesn’t track the actual code path

› Tracks how many times a branch was taken

Example 2:
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Path: Branches:

A → B → A → C AB, BA, AC

A → B → A→ B → A→ C AB, BA, AC

More hits = different path



How does AFL achieve this?

It monitors which code is executed

› Doesn’t track the actual code path

› Tracks how many times a branch was taken

Queue of “interesting” inputs:

› Take an input from this queue and mutate it

› If new path is taken, add mutation to the queue

→ AFL slowly “explores” functionality of program
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What about network protocols?

What makes fuzzing stateful network protocols special?

› The code being executed depends on previous input

› This is in contrast with, e.g., image parsing tools
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Fuzzing stateless protocols

There are effectively two input grammars to consider:

1. The grammar defining the allowed format of packets

2. The grammar defining the allowed order of packets

How to explore both aspects while fuzzing/testing?

› Assume one grammar is known & explore the other

For instance: using state inference tools

› Many other options exists as well…
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Fuzzers for stateful systems: an overview1

1. Grammar-based (generational)

2. Grammar learner

3. Evolutionary

4. Evolutionary grammar-based

5. Evolutionary grammar-learner

6. Machine learning-based

7. Man-in-the-middle based

161 Source: “An overview of Stateful Fuzzing” by Seyed Andarzian, Cristian Daniele, and Erik Poll.

Typical components:

› Test harness

› SUT

› Anomaly detector

https://www.cristiandaniele.com/files/Slides/Stateful_Fuzzing_survey_(INTERSECT).pdf
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Grammar-based fuzzing

Define packet layout and state machine

› Fuzzer then sends valid packets to reach a target state

› When in the target state, send malformed/mutated packets
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Example:

› Send packets to reach each 

state, will eventually test state S5

› Then send mutations of m5

› Will eventually detect the crash?



Simple example: early Wi-Fi fuzzing

Option 1: fuzz each state

› Must define state machine and 

packet formats to mutate

Option 2: only fuzz the first state

› 1st state can be reached by attackers

› Makes fuzzing easier: only need to 

define packet formats to mutate…

› …but doesn’t cover all the code
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Simple example: early Wi-Fi fuzzing

Butti and Tinnès fuzzed the first state

› Fuzzed probe responses & beacons: 

these are processed while scanning

› Basic packet layout is defined in Scapy

› Random fields are mutated

Discovered multiple crashes

› Remote code execution in the kernel! 
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Source: “Discovering and exploiting 802.11 wireless driver vulnerabilities” by Laurent Butti and Julien Tinnès.



Simple example: early Wi-Fi fuzzing

Keil and Kolbitsch fuzzed the 2nd state

› Let the client authenticate but not yet

associate

› Then transmitted fuzzed frames, i.e., 

send fuzzed association responses

Discovered one new vulnerability

› No remote code execution though
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Source: “Stateful Fuzzing of Wireless Device Drivers in an Emulated Environment” at Black Hat Japan (2007).



Side-note: these issues were very common (2007)
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Side-note: these issues were very common (2007)
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Source: “Wi-Fi Advanced Fuzzing” by Laurent Butti at BlackHat Europe 2007.



Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)

1. The structure of each message is first defined

user = Request("user", children=(

String("key", "USER"),

Delim("space", " "),

String("val", "anonymous"),

Static("end", "\r\n")

))
24

Name of the field

Default field value

Name of the message

Field type: impacts mutation during fuzzing



Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)

1. The structure of each message is first defined

passw = Request("pass", children=(

String("key", "PASS"),

Delim("space", " "),

String("val", "james"),

Static("end", "\r\n"),

))
25

Note: these block-based grammars are inspired 

by the (underdocumented?) SPIKE fuzzer



Other grammar-based fuzzers

BooFuzz protocol fuzzer (fork/successor of Sulley)

2. State machine is defined by connecting messages

session.connect(user)

session.connect(user, passw)

session.connect(passw, stor)

session.connect(passw, retr)

→ user is sent before fuzzing passw, user and passw is sent 

before fuzzing stor or retr. Doesn’t fuzz order of messages. 26

user
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Other grammar-based fuzzers

Peach network protocol fuzzer

› Like Sulley/BooFuzz, but uses XML for the grammar

› Initially an open-source project.

Commercial edition received updates and features

› There (was) a community edition, but it lacked such updates

› GitLab open-sourced core engine of commercial Peach (2021)

Known as the GitLab Protocol Fuzzer Community Edition

The commercial version is no longer available…?
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https://web.archive.org/web/20200504072909/https:/www.peach.tech/
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce


Other grammar-based fuzzers

Peach network protocol fuzzer

› Like Sulley/BooFuzz, but uses XML for the grammar

Main mutation strategies of Peach:

1. Random: selects n fields from the data model. These fields 

are modified using a random mutator function.

2. Sequential: all fields are mutated in order using all possible 

mutator functions.

Limitation: the order of messages isn’t fuzzed.
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Grammar learning: state machine inference

Downsides of previous fuzzers:

› Need to specify packet formats and state machine

› The state machine itself isn’t fuzzed (i.e., order of packets)

This can be improved by inferring the state machine

› Will still need to specify packet formats, but the state 

machine of the implementation is automatically inferred.

› Can manually inspect the inferred state machine and then 

use it for stateful fuzzing.
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Black-box state inference

Common method is to use algorithms for automata learning

› Actively interact with the SUT to learn its behavior

› Send packets in a random order and inspect the responses

Infer the state machine based on the responses

› We can then inspect & use the state machine

› Successfully applied to discover bugs in TLS, SSH, WPA2,…
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Intuitive intro to state machine inference

Start with traces of length one:

› ClientHello / ServerHello

› Update state machine

› Other packets / FatalAlert+Close

› Update state machine

Traces of length two:

› ClientHello / Server Helo, ClientHello / FatalAlert+Close

› Update state machine to handle this case
31

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.

ClientHello /

ServerHello

Other messages /

FatalAlert+Close

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
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This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.
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Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty
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This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.
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https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty

› ClientHello / ServerHello,

ClientKeyExchange / empty

› ClientHello / ServerHello,

Other messages / FatalAlert+Close
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This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.
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ClientKeyExchange /

emtpy

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty

› ClientHello / ServerHello,

ClientKeyExchange / empty

› ClientHello / ServerHello,

Other messages / FatalAlert+Close

Continue with traces of length 3 & update state machine

35

This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.
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Intuitive intro to state machine inference

Continue with traces of length two:

› Other messages / FatalAlert+Close,

Any message / empty

› ClientHello / ServerHello,

ClientKeyExchange / empty

› ClientHello / ServerHello,

Other messages / FatalAlert+Close

Continue with traces of length 3 & update state machine
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This example is based on “Protocol State Fuzzing of TLS Implementations” by Joeri de Ruiter and Erik Poll, USENIX Security 2015.
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…

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter


The real learning setup

› What do we learn? A deterministic Mealy machine.

› How to learn? Use libraries such as LearnLib.

They use L* or TTT to from a hypothesis for the state machine.

› Must be able to perform three actions:

1. Reset the SUT

2. Send message to SUT & get the output

3. Check whether the hypothesis (= current state machine) is correct

› Performing action 2 & 3 is non-trivial!
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Challenge: sending messages to the SUT (1)

State machine uses abstract messages, e.g., “ClientHello”

› Must be converted to concrete messages = actual bytes!

› A test harness is used for this conversion:
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Challenge: sending messages to the SUT (2)

The state harness must be able to send packets in any order

› Must consider previous messages that were sent/received

Example: random nonces that were part of the handshake

Example: currently negotiated session key

› In certain cases, it’s unclear which values to use in requests

Example: how to send an encrypted TLS record before a key was 

negotiated? Use a random key? Use an all-zero key?

› And we must be able to receive packets in any order

Example edge case: we receive an encrypted packet before a key 

was negotiated. Do we try to decrypt it? With which key?
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Challenge: is the state machine correct?

Learning algorithms need a way to check if their current 

hypothesis for the sate machine is correct

› But we don’t know the state machine…

Two typical solutions:

1. Random traces: send some fixed number of random 

traces and see if the responses match the state machine

2. Chow’s W-method: guarantees correctness of the state 

machine given an upper bound on the number of states
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Why is state inference useful?

Manually inspect the state machine for flaws

› Identified flaws in TLS, DTLS, WPA2, and 4G/LTE

Use the inferred state machine in BooFuzz or similar

› You will now fuzz the actual states of the implementation

› This may be more/other/different states than in the standard!

State machine may form a fingerprint of the implementation

› Use unique behavior to detect implementation being used

41



Evolutionary protocol fuzzers

Previous approach are black-box fuzzers

› What if we have access to the binary and/or source code?

We can use coverage-guided fuzzing!

› = detect interesting inputs that execute new code

› Recent approach is to modify AFL to fuzz network protocols

Examples: SNPSFuzzer, AFLNet, SnapFuzz, and so on.

› We will discuss their high-level strategies
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How to use AFL on network services?

Write unit-level tests that interact with the software using their 

(public or internal) APIs

› Used by Google’s OSS-Fuzz. Requires a lot of manual effort.

› Usually only a single state is fussed in each unit-level test

Need to handle side-effects

› Some protocols, such as FTP, write data to the file system or 

exchange network messages.

› Need to reset these side-effects on every new input
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Desired properties of the fuzzer

We want to avoid writing unit-level tests

› Avoid manual overhead of modifying the SUT

Automatically detect and explore states

› Fuzzer should be able to (heuristically) detect new states

Our solution should be fast and efficient

› The more input we can test/second, the more bugs we found
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High-level: the stateful grey-box fuzzing loop

1. Select the most interesting state from a state chain queue

to be fuzzed → the fuzzer model the state machine.

2. Select a message from the message queue to mutate.

3. Pick a mutating strategy to mutate the message.

4. Put the SUT in the desired state & send mutated message

5. Check if new a new state is reach or new code is executed. 

If so, update the state chain or message queue.

6. Go back to step 1!

45

Based on “SNPSFuzzer: A Fast Greybox Fuzzer for Stateful Network Protocols using Snapshots” by Junqiang Li et al. (2022).



Question: how to detect new states?

AFLNet and SnapFuzz

› Use response code in the protocol to infer the SUT’s state

› Example: FTP, IRC, or HTTP status codes

Stateful Greybox Fuzzing (USENIX Security 2022)

› Detected state variables in the source code (e.g., enum’s)

StateInspector (CCS 2023) and StateAFL (arXiv)

› Grey-box method to detected state-defining memory
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Remaining problem: fuzzing is slow

SNPSFuzzer by Junqiang Li et al.

› Dumps process context when the SUT is in a specific state

› Can now quickly restore this state without sending packets

SnapFuzz by Andronidis and Cadar:

› Use an in-memory filesystem to easily clean-up side-effects

› Further improve efficiency of the forkserver to more quickly 

reach the point at which mutated packets can be input
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How to find logical vulnerabilities?

› Test if program behaves according to some abstract model

› Proved successful against TLS and Wi-Fi

→ We will focus on Wi-Fi work (AsiaCCS’17)
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Model-based testing!



Successful connection?

Test generation rules

Model-based testing: our approach

Handshake 

model

Set of test 

cases

Normal 

handshake

Correct & incorrect 

modifications Set of test 

cases

Expert determines exploitability!

Execute 

test case

For every test 

case

A test case defines:

1. Messages to send

2. Expected replies

3. Results in successful 
or failed connection?

Inspect failed tests

Yes
Reset

Test failed
Unexpected reply

Expected result?

No
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Test generation rules

Test generation rules manipulating messages as a whole:

1. Drop a message

2. Inject/repeat a message

Test generation rules that modify fields in messages:

› Can use various mutating strategies depending on the 

protocol that is being tested!
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Evaluation on 12 access points

› Open source: OpenBSD, Linux’s Hostapd

› Leaked source: Broadcom, MediaTek (home routers)

› Closed source: Windows, Apple, Telenet

› Professional equipment: Aerohive, Aironet
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Can discover logical flaws:

› Two downgrade attacks

› Multiple denail-of-Service flaws

› Several fingerprinting methods



Thank you!

Questions?


