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History of Wi-FI

» WEP (1999): quickly broken [FMS01]
» WPAL/2 (~2003)

» Offline password brute-force
» KRACK & Kraken [VP17.VP18]

» WPA3 (2018):

» Dragonblood side-channels [VR20]



Background: KrOOk implementation flaw
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Research question: how are security contexts managed?




New attack 1.
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Attack 1: leaking frames
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Undefined security context: FreeBSD example

How the frame Is leaked depends on kernel version & driver:

driver (vendor)

13.0 run (Ralink) Plaintext

13.1 run (Ralink) WEP with all-zero key
13.1 rum (Ralink) CCMP with group key
13.1 rtwn (Realtek) CCMP with group key

» Malicious insiders know the group key!
» Linux, NetBSD, open Atheros firmware also affected

11



RoOoOt cause

Standard isn’t explicit on how to manage buffered frames
» Should drop buffered frames when refreshing/deleting keys

Lesson: include transmit queue in formal Wi-FiI models
» Because buffered frames are not yet encrypted (unlike TLS)
y [CKM20Imodelled transmit queue but not key deletion!
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[CKM20]: A Formal Analysis of IEEE 802.11’'s WPA2 by C. Cremers, B. Kiesl, and N. Medinger (USENIX Security)



New attack 2:

Bypassing client isolation



Attack 2: bypassing WI-FI client isolation

Target is networks that use client isolation. Examples:
» Company network with malicious/compromised clients
» Public hotspots that require authentication
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Client isolation bypass
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Experiments: home APs

All tested professional & home APs were vulnerable

- Design flaw in Wi-Fi client isolation!
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Fast security context override

Technique to quickly reconnect. Experiments:
> Minimum reconnect time: ~12 ms

» Average UDP response time; [verizon]
» Transatlantic connections: ~70 ms

» Connections within Europe: ~13 ms

» TCP responses are retransmitted - trivial to intercept

[Verizon] Verizon IP latency statistics
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Client identity not authenticated across the network stack:
Wi-Fi security: 802.1X identity (username) Not bound to
Packet routing: IP/MAC addresses each other

- Wi-Fi attacker can spoof client’s identity on other layers

Other observation: client isolation was “bolted on” by vendors
Not part of IEEE 802.11 standard - less studied
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Disallow recently-used MAC address unless:
Certain amount of time has passed (incomplete defense)
We're sure it's the same user as before (complete defense)

» Based on 802.1X identity or cached keys (not always available)

Currently unclear what vendors will adopt
Don’t rely on client isolation for security
Alternative: use VLANS to isolate groups
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Conclusion

Standard is vague on how to manage buffered frames
» Can leak frames under different security context
» Important to model/define transmit queues

Can bypass client isolation
» All devices vulnerable - design flaw
» Hard to fully prevent
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