Framing Frames:
Bypassing Wi-Fi Encryption by
Manipulating Transmit Queues

D. Schepers, A. Ranganathan, and M. Vanhoef
Real-World-Crypto 2023, Tokyo, Japan

Paper accepted at USENIX Security ‘23

EEEEIDistriN=t

History of Wi-FI

» WEP (1999): quickly broken [FMS01]
» WPAL/2 (~2003)

» Offline password brute-force
» KRACK & Kraken [VP17.VP18]

» WPA3 (2018):

» Dragonblood side-channels [VR20]

Background: KrOOk implementation flaw
AP (vulnerable)

Attacker

Deauthenticate

Hardware

Daemon

Buffer :

<€

Leak buffered frames in plaintext

>

>

Remove keys

Research question: how are security contexts managed?

New attack 1.
leaking frames

Attack 1:

eaking frames

Client

Attacker

AP (Vulnerable)

Attack 1: leaking frames AP (Vulnerable)

Client || Attacker ' Kernel || Daemon |

______________ |
}6 --=- l -------- Connection ——------ }~ ------)l

Attack 1: leaking frames

Power-Save (Sleep=True)

AP (Vulnerable)
Client || Attacker i Kernel || Daemon
K————q4—==-=-=—=-=-= Connection ——-------pF------ %

AN
7

Novelty 1: controllec

Buffer

buffering

Attack 1: leaking frames AP (Vulnerable)

Client || Attacker '| Kernel

Power-Save (Sleep=True)

AN

Novelty 2: connect to remove client’s

Auth. / Association Request

>
7

k‘eys

d

{Remove Pairwise Key

Auth. / Association Response L

A

-~ Stage Q)- - :

| -

Attack 1: leaking frames

Auth. / Association Request

>
7

s

[Remove Pairwise Key]

Auth. / Association Response

Wake-Up

AN
P

[Dequeue without Key

Leak Queued Frames

- Stage Q)--

- Stage 3)--

Attack 1: leaking frames

Auth. / Association Request

Auth. / Association Response

N
Novelty 3: frames leaked under
undefined security context

‘ Leak Queued Frames ‘
| |

10

Undefined security context: FreeBSD example

How the frame Is leaked depends on kernel version & driver:

driver (vendor)

13.0 run (Ralink) Plaintext

13.1 run (Ralink) WEP with all-zero key
13.1 rum (Ralink) CCMP with group key
13.1 rtwn (Realtek) CCMP with group key

» Malicious insiders know the group key!
» Linux, NetBSD, open Atheros firmware also affected

11

RoOoOt cause

Standard isn’t explicit on how to manage buffered frames
» Should drop buffered frames when refreshing/deleting keys

Lesson: include transmit queue in formal Wi-FiI models
» Because buffered frames are not yet encrypted (unlike TLS)
y [CKM20Imodelled transmit queue but not key deletion!

12
[CKM20]: A Formal Analysis of IEEE 802.11’'s WPA2 by C. Cremers, B. Kiesl, and N. Medinger (USENIX Security)

New attack 2:

Bypassing client isolation

Attack 2: bypassing WI-FI client isolation

Target is networks that use client isolation. Examples:
» Company network with malicious/compromised clients
» Public hotspots that require authentication

-

Wi-Free

e(i uroam

—> Adversary can connect to the network, but can’t attack others

14

Client isolation bypass

Client || Attacker

e

AP (Vulnerable)

Connection -----------—---)~

15

] _ : Internet
Client isolation bypass AP (Vulnerable)

Client || Attacker

K--—-—d-=-=—=-=-=-=-- Connection ~------------- % Router

>1

E.g., DNS or HTTP request

16

] _ : Internet
Client isolation bypass AP (Vulnerable)

Client || Attacker

K-—--—-J--—-——-—-——-- Connection ——------------- % Router

Request

[Spoof Client MAC Address}
}é ———————— Connect with the AP-------- >|

17

Client isolation bypass

et

o

AP (Vulnerable)
Client || Attacker
K-—-—q--—=-—------ Connection ~—------------- %
Request ;) T
[Spoof Client MAC Address]

New key Is associated with
the victim’s MAC address

18

Client isolation bypass AP (Vulnorablo)

Client || Attacker

K-—=—=——-=—=—=-=-=-==-- Connection ~-------------- >

Request

Internet

Router

[Spoof Client MAC Address]
K-------- Connect with the AP -------- 2

[Generate New Key

Router forwards
reply to victim’s
MAC address

19

Client isolation bypass pmrmm—rs m
Client || Attacker m
K-—=——q-—--—-—----- Connection —-------------)

Request ;) T
[Spoof Client MAC Address]
K-------- Connect with the AP -------- 2l |Router forwards
[Generate New Key rﬁ/lp'létc;gidcrir::
[Encrypt Response with New Key I
2 Response

20

Clientisolation bypass = TS @
Client || Attacker
K-—=—=——d-=-=-=-=-=-=--- Connection —~------------- %
Request ;) T
[Spoof Client MAC Address |
I The attacker receives Rrouter forwards

| reply to victim’s
the DNS response! MAC address

[Encrypt Response with New Key |«

Response

21

: : : Internet
Client isolation bypass AP (Vulnerablo)

Client || Attacker

K- - - - —| ————————— Connection ~—------------ >~ Router

Note: must connect before I
| response arrives

Router forwards
reply to victim’s
MAC address

[Generate New Key\

[Encrypt Response with New Key |«

Response

22

Experiments: home APs

All tested professional & home APs were vulnerable

- Design flaw in Wi-Fi client isolation!

23

Fast security context override

Technique to quickly reconnect. Experiments:
> Minimum reconnect time: ~12 ms

» Average UDP response time; [verizon]
» Transatlantic connections: ~70 ms

» Connections within Europe: ~13 ms

» TCP responses are retransmitted - trivial to intercept

[Verizon] Verizon IP latency statistics

24

Client identity not authenticated across the network stack:
Wi-Fi security: 802.1X identity (username) Not bound to
Packet routing: IP/MAC addresses each other

- Wi-Fi attacker can spoof client’s identity on other layers

Other observation: client isolation was “bolted on” by vendors
Not part of IEEE 802.11 standard - less studied

25

Disallow recently-used MAC address unless:
Certain amount of time has passed (incomplete defense)
We're sure it's the same user as before (complete defense)

» Based on 802.1X identity or cached keys (not always available)

Currently unclear what vendors will adopt
Don’t rely on client isolation for security
Alternative: use VLANS to isolate groups

26

Conclusion

Standard is vague on how to manage buffered frames
» Can leak frames under different security context
» Important to model/define transmit queues

Can bypass client isolation
» All devices vulnerable - design flaw
» Hard to fully prevent

27

	Default Section
	Slide 1: Framing Frames: Bypassing Wi-Fi Encryption by Manipulating Transmit Queues

	Intro
	Slide 2: History of Wi-Fi
	Slide 3: Background: Kr00k implementation flaw

	Leaking frames
	Slide 4: New attack 1: leaking frames
	Slide 5: Attack 1: leaking frames
	Slide 6: Attack 1: leaking frames
	Slide 7: Attack 1: leaking frames
	Slide 8: Attack 1: leaking frames
	Slide 9: Attack 1: leaking frames
	Slide 10: Attack 1: leaking frames
	Slide 11: Undefined security context: FreeBSD example
	Slide 12: Root cause

	Security Override
	Slide 13: New attack 2: Bypassing client isolation
	Slide 14: Attack 2: bypassing Wi-Fi client isolation
	Slide 15: Client isolation bypass
	Slide 16: Client isolation bypass
	Slide 17: Client isolation bypass
	Slide 18: Client isolation bypass
	Slide 19: Client isolation bypass
	Slide 20: Client isolation bypass
	Slide 21: Client isolation bypass
	Slide 22: Client isolation bypass
	Slide 23: Experiments: home APs

	Fast Security Override
	Slide 24: Fast security context override
	Slide 25: Root cause
	Slide 26: Fixing client isolation

	Conclusion
	Slide 27: Conclusion

