Dragonblood: Analyzing the <=V
Dragonfly Handshake of 0
WPA3 and EAP-pwd '

Mathy Vanhoef and Eyal Ronen
Real World Crypto, New York, 10 January 2020.

KATHOLIEKE UNIVERSITEIT ((/
LEUVEN 2 NEW YORK UNIVERSITY
TEL AVIV UNIVERSITY '

Background: Wi-FI Security

» 1999: Wired Equivalent Privacy (WEP)
» Broken in 2001 [FMSO01]

» 2003: Wi-Fi Protected Access (WPA)

» 2004: Wi-Fi Protected Access 2 (WPA2)

» Allows offline password brute-force
» KRACK and Kraken attack [VP][2017-8]

Background: Dragonfly in WPA3 and EAP-pwd

= Password Authenticated Key Exchange (PAKE)

& “\ Provide mutual =@® Negotiate
%0 authentication IE’ session key

o— Prevent offline
dictionary attacks

Dragonfly

|
Pick random r, and my, Pick random rz and mg
Sy = (ry + my) mod g sg = (rg + mg) mod q
EA = —MmMy P EB = —Mmgy P

Convert password to
group element P

Dragonfly

Pick random r, and my, Pick random rz and mg

Sy = (ry + my) mod g sg = (rg + mg) mod q

EA=—mA-P EB=—mB-P
Commit(sy, Ey) -

B Commit(sg, Eg)

4] N\ 4] N\
Verify s and Ep Verify s, and E,
K:TA'(SB‘P‘l‘EB) K:rB'(SA'P‘l‘EA)

k = Hash(K) k = Hash(K)
tr = (SAJEAJSBJEB) tr = (SB»EBISA'EA)
cy, = HMAC(k, tr) cg = HMAC(k, tr)
L J L J

Dragonfly

Pick random r, and my, Pick random rz and mg
Sy = (ry + my) mod g sg = (rg + mg) mod q
EA=—mA-P EB=—mB-P

Commit(sy, E4)

. Negotiate shared key

\ 4

Verify s and Ep Verify s, and E,
K:TA'(SB’P‘l‘EB) K:rB'(SA'P‘l‘EA)

k = Hash(K) k = Hash(K)
tr = (SA'EA'SB'EB) tr = (SB»EBISA!EA)
¢y, = HMAC(k, tr) cg = HMAC(k, tr)

Dragonfly

r

Verify sp and Ep) (Verify s, and E,)
K=1ry-(sg-P+Eg) K=1rg-(sq-P+E,)
k = Hash(K) k = Hash(K)
tr = (Sa, Ea, Sp, Ep) tr = (sp, Ep, Sa, E4)
| Ca = HMAC(k, tr)) | B = HMAC(k, tr)

Confirm(cy)

\ 4

Confirm(cg)

P

\ Confirm peer negotiated same key

Dragonfly

I\/erify sg and Ex Verify s, and_E, |
_‘ (K:rA-(sB-P--EB)] (K:rg-(sA-P--EA)]
| x = Hash(K) k = Hash(K)
> How to derive P from a password?
1. MODP groups
2. Elliptic curves

Dragonfly

I\/erify sp and Ex Verify s, and_E, |
_‘ (K:rA-(sB-P--EB)] (K:rB-(sA-P--EA)]
- x = Hash(K) k = Hash(K)
> How to derive P from a password?
1. MODP groups
2. Elliptic curves

Hash-to-curve: EAP-pwd

x = hash(pw, addrl, addr2,

return (x, vx3+ax+b)

10

Hash-to-curve: EAP-pwd

X = hash(pw, addrl, addr2,)

return (x, [Vx3+ax+b]

Half of x values aren’t on the curve

11

Hash-to-curve: EAP-pwd

for (counter = 1; counter++)

x = hash(pw, addrl, addr2, counter)

if square root exists(x)

return (x, vx3+ax+b)

12

Hash-to-curve: EAP-pwd

for (counter = 1; counter++)
= hash addrl, addr2, counter)

#iterations depends on password
(and public MAC addresses)

I WU 11 \I\, VA I WA | U/

i

13

Hash-to-curve: EAP-pwd

for (counter = 1; counter++)
= hash addrl, addr2, counter)

#iterations depends on password
(and public MAC addresses)

I WU 11 \I\, VA I WA | U/

i

No timing leak countermeasures,
despite warnings by IETF & CFRG!

14

Attacking Clients

15

Attacking Access Points

.-

NE
av

=

16

Leaked information: #iterations needed

Client address addrA

.
Measured D

17

Leaked information: #iterations needed

Client address addrA

Measured

Password 1

Password 2

Password 3

18

Leaked information: #iterations needed

Client address addrA

Measured

Password 2

Password 3

19

What information is leaked?

for (counter = 1; counter++)

= hash(pw, [addrl, addr2| counter)

Spoof client address to obtain
d|fferent executlon & leak new data

1f s«

20

Leaked information: #iterations needed

Client address addrA addrB
Measured = .
o 1 GD

Password 2 =

Password 3 =

21

Leaked information: #iterations needed

Client address addrA addrB
D D
Measured D
D
Password-1
D
Password-2 D
D
Password 3 .

22

Leaked information: #iterations needed

Client address

addrA addrB addrC

Measured

Password 3

23

Leaked information: #iterations needed

Client address

Measured

... Forms a signature of the password

. Ay D
Need ~17 addresses to determine
r=s password in RockYou (~107) dump

24

Raspberry Pi 1 B+: differences are measurable

0.8 - — 1 iteration ~ ---:- 4 iterations
g ——~- 2 iterations - 5 iterations
w© 0.6 - — = 3 jterations
9
> 0.4-
w
-
Q
=)

5 10 15 20
Response time (ms)

25

Raspberry Pi 1 B+: differences are measurable

©
o0
. —

_ — 1 iteration ~ ---:- 4 iterations
¢
EAP-pwd client:
(
> ~30 measurements / address
: Using Crosby’s box test
C
|/ | 7 sl ‘\' Tl
0.0 | — —— '
5 10 15 20

Response time (ms)

26

Hash-to-curve: EAP-pwd

for (counter = 1; counter++)

X = hash(pw, counter, addrl, addr2)

if square root exists(x)

return (x, vx3+ax+b)

27

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

X = hash(pw, counter, addrl, addr2)

if square root exists(x) and not P:

P=(x, Vx3+ax+Db)

return P WPA3: always do 40
loops & return first P

28

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)

if Isquare root exists(x)| and not P:

Blinded constant time
square root test

return P

29

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addrl, addr2)

if square root exists(x) and not P:
P=(x, Vx3+ax+Db)
pw = rand()

return P) i
Extra iterations based

on random password

30

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

='hash(pw, counter, addrl, addr2)

Truncate to size of prime P

=i 1 _)v|uu \— 1 VW O \—I\-L—)\-J\I\/ CAI LA 1 Po

P=(x, Vx3+ax+Db)
pw = rand()

return P

31

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

= hash(pw, counter, addrl, addr2)

if square root exists(x) and not P:

N _ /- S arR 1 s 1 LA\

Brainpool: p = OXA9FB57DBA1EEA9BC. ..

r - High chance that x >=p

32

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)
X = hash(pw, counter, addrl, addr2)
if x >= p: continue =rejection sampling
if square root exists(x) and not P:
P=(x, Vx3+ax+b)
pw = rand()

return P

33

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)
if x >= p: continue

if square root exists(x) and not P:

P=(x, Vx3+ax+b)
pw = rand()

return P Code may be skipped

34

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)
if x >= p: continue

if square root exists(x) and not P:

P=(x, Vx3+ax+b)

pw = rand()

return 4Times skipped depends on password

35

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)
if x >= p: continue

if square root exists(x) and not P:

P=(x, Vx3+ax+b)

pw = rand()

return u4Times skipped depends on password
& random password in extra itreations

36

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)
if x >= p: continue

if square root exists(x) and not P:

P=(x, Vx3+ax+b)

pw = rand()

"€Variance ~ when password element was found

37

Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)
if x >= p: continue

if square root exists(x) and not P:

P=(x, Vx3+ax+b)

pw = rand()

"€Variance ~ when password element was found
Average ~ when found & #iterations code skipped

38

Raspberry Pi 1 B+

—_— 12/19 iter.
~ 0:06 1/1 iter.
IS —.= 4/4 iter.
f{ 0.044 L e 0/2 iter.
>
&

C 0.02 -
a
000 o e = et T LT ™ w2 v o,

180 200 220 240 260
Response time (ms)

Raspberry Pi 1 B+

005 1271 ter
% N WPA3 AP (Hostap):

> —300 measurements / address

§ 0.l Using Crosby’s box test

‘.
N
il
»
n oy

180 200 220 240
Response time (ms)

260

40

> Cache
® Attacks

Threat Model

Threat Model

Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)
X = hash(pw, counter, addrl, addr2)

if x >= p: continue

NIST: p = OXOxFFFFFFFFO0000001000...
-> Negligible chance that x >=p

return P

44

Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)
X = hash(pw, counter, addrl, addr2)
if x >= p: continue
if square root exists(x) and not P:
P=(x, Vx3+ax+b)
pw = rand()

return P NIST curves: use Flush+Reload to
detect when code is executed

45

h kon NIST cvmion
Cache attack o Monitor using Flush+Reload to

for (counter = 1; c¢ know In which iteration we are

x =lhash(pw, counter, addrl, addr2)

if x >= p: continue

if square_root exists(x) and not P:
P=(x, Vx3+ax+b)
pw = rand()

return P NIST curves: use Flush+Reload to
detect when code Is executed

46

Attacking client: Intel Core i7-7500

N

"
"

(N

Z
i
f
4

O

- -

- NN

[

/|

e nQR
mw QR

.
— b "L

12 13 14

47

Attacking client: Intel Core i7-7500

" =
G 05 . _
2 04 WPAS client (Hostap):

~20 measurements / address
Using Linear Classifier

n N PN N SR o

6 7 8 9 10 11 12 13 14

obabilit
.

Password Brute-force Cost

Group / Dictionary $ for MODP 22§ for
Dictionary Size Brainpool 28 P-256
RockYou [20] 1.4 - 107 21-107% 44-.1071
HavelBeenPwned [45] 5.5 - 108 8.0-107> 1.7-1072
Probable Wordlists [12] 8.0 - 10’ 1.2-107° 2.5-1071
8 Low Case 2.1-10!1 3.0 - 1077 6.5

8 Letters 5.3-101° 7.8 1.7 -10°
8 Alphanumerics 2.2-101 3.2- 101 6.7 - 10°
8 Symbols 4.6-10" 6.7 - 10" 1.4-10*

49

Implementation
Inspection

Other Implementation Vulnerabillities

aolcom

www.dilbert.com scottadams@;

NINE NINE
NINE NINE
NINE NINE

Bad randomness:
» Can recover password element P
> With WPA2 bad randomness has lower impact!

Invalid curve attack:
» Attacker sends point not on curve
> Recover session key & bypass authentication

51

"\ WI-FI Specific
‘.’ Attacks

Denial-of-Service Attack

| |
Convert password to Convert password to
group element P group element P é
‘ AP converts password to EC ‘
point when client connects

» Conversion is computationally expensive (40 iterations)
» Forging 8 connections/sec saturates AP’s CPU

53

Downgrade Attacks

Transition mode: WPA2/3 use the same password
» WPA2's handshake detects downgrades
» Performing partial WPA2 handshake - dictionary attacks

Handshake can be performed with multiple curves
» Initiator proposes curve & responder accepts/rejects
» Spoof reject messages to downgrade used curve

54

Q Disclosure

Disclosure process

Notified parties early with hope to influence WPA3
Reaction of the Wi-Fi Alliance
» Privately created backwards-compatible security guidelines

» 2"d disclosure round to address Brainpool side-channels
» Nov 2019: Updated guidelines now prohibit Brainpool curves

56

Latest Wi-Fi Alliance guidelines (Nov 2019)

e SAE implementations must avoid differences in code execution that allow side channel information collection
through the cache (see Cache-Based Elliptic Curve Side-Channels),

e |f WPA3-Personal Transition Mode does not meet the security requirements for a deployment,
WPA3-Personal and WPA2"-Personal should be deployed on individual service set identifiers (SSIDs) using
unique passwords and logically separated/isolated network segments (see WPA3-Personal Transition Mode).

Failure to implement these recommendations correctly may expose the vendor implementation to
attack and/or compromise the network.

» “implementations must avoid [..] side-channels”

» If WPA3-Transition “doesn’t meet security requirements”,
then seperate passwords

» “Failure to implement...” = how can it be checked?

57

Fundamental issue still unsolved

» Hard to implement in constant time

» On lightweight devices, doing 40 iterations is too costly

Draft IEEE 802.11 standard has been updated

» Exclude MAC addresses from hash2curve
» Allows offline computation of password element

> Now uses constant-time hash2curve
» Explicitly prohibit use of weak EC & MODP groups
» Prevent crypto group downgrade attack

58

Remaining issues

Message transcript is not included in key derivation
> Prevents formal proof of protocol

» High risk of implementation issues
» E.g. prevention of crypto group downgrade attack

Downgrade to WPA2
» Not addressed in the standard

» Up to vendor whether to implement trust-on-first-use
> Done by Android & NetworkManager of Linux

59

Issue 2: not backwards-compatible

Might lead to WPA3.1?
> Not yet clear how Wi-Fi Alliance will handle this
» Risk of downgrade attacks to original WPA3

Should you switch to WPA3?
» WPAZ2 is trivial to attack... so yes.

60

Conclusion

» WPA3 vulnerable to side-channels
» Countermeasures are costly
» Draft 802.11 standard updated

y Issues could have been avoided!

https://wpa3.mathyvanhoef.com

61

https://wpa3.mathyvanhoef.com/

Thank you! Questions?

» WPA3 vulnerable to side-channels
» Countermeasures are costly
» Draft 802.11 standard updated

y Issues could have been avoided!

https://wpa3.mathyvanhoef.com

62

https://wpa3.mathyvanhoef.com/

