
Mathy Vanhoef and Eyal Ronen

Real World Crypto, New York, 10 January 2020.

Dragonblood: Analyzing the 

Dragonfly Handshake of 

WPA3 and EAP-pwd



Background: Wi-Fi Security

› 1999: Wired Equivalent Privacy (WEP)

Broken in 2001 [FMS01]

› 2003: Wi-Fi Protected Access (WPA)

› 2004: Wi-Fi Protected Access 2 (WPA2)

Allows offline password brute-force

KRACK and Kraken attack [VP][2017-8]

2



Background: Dragonfly in WPA3 and EAP-pwd

3

Negotiate 

session key
Provide mutual 

authentication

Prevent offline 

dictionary attacks

= Password Authenticated Key Exchange (PAKE)



Dragonfly

4

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Convert password to 

group element P



Dragonfly

5

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)



Dragonfly

6

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 +𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 +𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Negotiate shared key



Dragonfly

7

Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Confirm peer negotiated same key 



Dragonfly

8

Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)How to derive P from a password?

1. MODP groups

2. Elliptic curves



Dragonfly

9

Confirm(𝑐𝐴)

Confirm(𝑐𝐵)

Verify 𝑠𝐴 and 𝐸𝐴
𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴
𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

Verify 𝑠𝐵 and 𝐸𝐵
𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵
𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵
𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)How to derive P from a password?

1. MODP groups

2. Elliptic curves



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

10



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

11

Half of x values aren’t on the curve



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

12



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

13

#iterations depends on password
(and public MAC addresses)



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

14

#iterations depends on password
(and public MAC addresses)

No timing leak countermeasures,

despite warnings by IETF & CFRG!



Attacking Clients

15



Attacking Access Points

16



Leaked information: #iterations needed

17

Client address addrA

Measured



Leaked information: #iterations needed

18

Client address addrA

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

19

Client address addrA

Measured

Password 1

Password 2

Password 3



What information is leaked?

for (counter = 1; counter < 40; counter++)

x = hash(pw, addr1, addr2, counter)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

20

Spoof client address to obtain 

different execution & leak new data



Leaked information: #iterations needed

21

Client address addrA addrB

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

22

Client address addrA addrB

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

23

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3



Leaked information: #iterations needed

24

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Forms a signature of the password

Need ~17 addresses to determine 

password in RockYou (~𝟏𝟎𝟕) dump



Raspberry Pi 1 B+: differences are measurable

25



Raspberry Pi 1 B+: differences are measurable

26

EAP-pwd client:

~30 measurements / address

Using Crosby’s box test



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

27



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

28

WPA3: always do 40 

loops & return first P



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

29

Blinded constant time

square root test



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

30

Extra iterations based 

on random password



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

31

Truncate to size of prime p



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

32

Brainpool: 𝑝 = 0xA9FB57DBA1EEA9BC…

 High chance that x >= p



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

33

= rejection sampling



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

34

Code may be skipped



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

35

#Times skipped depends on password



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

36

#Times skipped depends on password 

& random password in extra itreations



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

37

Variance ~ when password element was found



Hash-to-curve: WPA3

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

38

Variance ~ when password element was found

Average ~ when found & #iterations code skipped



Raspberry Pi 1 B+

39



Raspberry Pi 1 B+

40

WPA3 AP (Hostap):

~300 measurements / address

Using Crosby’s box test



41

Cache 

Attacks



Threat Model

42



Threat Model

43



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

44

NIST: 𝑝 = 0x0xFFFFFFFF00000001000…

 Negligible chance that x >= p



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

45

NIST curves: use Flush+Reload to 

detect when code is executed



Cache attack on NIST curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

pw = rand()

return P

46

Monitor using Flush+Reload to 

know in which iteration we are

NIST curves: use Flush+Reload to 

detect when code is executed



Attacking client: Intel Core i7-7500

47



Attacking client: Intel Core i7-7500

48

WPA3 client (Hostap):

~20 measurements / address

Using Linear Classifier



Password Brute-force Cost

49



Implementation 

Inspection

50



Other Implementation Vulnerabilities

51

Bad randomness: 

› Can recover password element P

› With WPA2 bad randomness has lower impact!

Invalid curve attack: 

› Attacker sends point not on curve

› Recover session key & bypass authentication



Wi-Fi Specific 

Attacks

52



Denial-of-Service Attack

53

Convert password to 

group element P

Convert password to 

group element P

AP converts password to EC 

point when client connects

› Conversion is computationally expensive (40 iterations)

› Forging 8 connections/sec saturates AP’s CPU



Downgrade Attacks

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades

› Performing partial WPA2 handshake  dictionary attacks

Handshake can be performed with multiple curves

› Initiator proposes curve & responder accepts/rejects

› Spoof reject messages to downgrade used curve

54



55

Disclosure



Disclosure process

Notified parties early with hope to influence WPA3

Reaction of the Wi-Fi Alliance

› Privately created backwards-compatible security guidelines

› 2nd disclosure round to address Brainpool side-channels

› Nov 2019: Updated guidelines now prohibit Brainpool curves

56



Latest Wi-Fi Alliance guidelines (Nov 2019)

› “implementations must avoid [..] side-channels”

› If WPA3-Transition “doesn’t meet security requirements”, 

then seperate passwords

› “Failure to implement...”  how can it be checked?

57



Fundamental issue still unsolved

› Hard to implement in constant time

› On lightweight devices, doing 40 iterations is too costly

58

Draft IEEE 802.11 standard has been updated

› Exclude MAC addresses from hash2curve

Allows offline computation of password element

› Now uses constant-time hash2curve

› Explicitly prohibit use of weak EC & MODP groups

› Prevent crypto group downgrade attack



Remaining issues

Message transcript is not included in key derivation

› Prevents formal proof of protocol

› High risk of implementation issues

› E.g. prevention of crypto group downgrade attack

Downgrade to WPA2

› Not addressed in the standard

› Up to vendor whether to implement trust-on-first-use

› Done by Android & NetworkManager of Linux

59



Issue 2: not backwards-compatible

Might lead to WPA3.1?

› Not yet clear how Wi-Fi Alliance will handle this

› Risk of downgrade attacks to original WPA3

60

Should you switch to WPA3?

› WPA2 is trivial to attack... so yes.



Conclusion
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Draft 802.11 standard updated

› Issues could have been avoided!

https://wpa3.mathyvanhoef.com

61

https://wpa3.mathyvanhoef.com/


Thank you! Questions?
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Draft 802.11 standard updated

› Issues could have been avoided!

https://wpa3.mathyvanhoef.com

62

https://wpa3.mathyvanhoef.com/

