Multiple Passwords in WPAS:
Use Cases & Initial Proposals

Mathy Vanhoef

Workshop on Password Authenticated Key Exchange and Password
Security & Usability (PAKE'25). 7 February 2025, Luxembourg.

Funded by NGI Sargasso under the DecoyAuth project.

* These slides are slightly updated based on feedback after the presentation.

EERIDIstriN=t (I} -

WI-FI history

» 1999: WEP: completely broken
» 2003-2004: WPA1/2

» Password-protected ‘home’ networks & Enterprise EAP authentication
» Vulnerable to offline dictionary attacks (no forward secrecy)

WI-FI history

» 1999: WEP: completely broken
» 2003-2004: WPA1/2

» Password-protected ‘home’ networks & Enterprise EAP authentication
» Vulnerable to offline dictionary attacks (no forward secrecy)

Multiple WPA2 passwords

A single network name but multiple passwords
» Better user experience + less airtime overhead
» Use case: guests get a different password
» Devices connect to same network, but are put in different VLANS

» Use case: all users or devices get a different password
» Infer identity from used password, can again have different VLANs
» Revoke/change individual passwords, e.g., hotels, employees,...
» Malicious insider can't create rogue clone of the network

Multi-password WPAZ2 In practice

Implemented by practically all vendors!
» Downside: network-side must loop through all passwords

» Nice alternative to have per-user credentials...
» ...but without the hassle of certificates/usernames

WI-FI history

)

)
»

»)

» 2018: WPAS
» Uses the “Dragonfly” PAKE and is similar to SPEKE
» Was vulnerable to “Dragonblood” side-channel attacks (now fixed)
» Used in mesh networks too (hence symmetric PAKE)
» We focus on elliptic curve variant

Dragonfly

Pick random r, and my, Pick random rz and mg
sy = (ry + my) mod g sg = (rg + my) mod q
EA:—mA P EBZ—TT’;_, P

Password Is hashed to

group element P
(Simplified Shallue Woestijne-Ulas)

Dragonfly

Pick random r, and my, Pick random rz and mg
sy = (ry + my) mod g sg = (rg + mg) mod q
EA:—mA'P EB—_mB
Commit(sy, Ey) Commit(sg, Eg)
1) > <

Could also have design without scalar s,
it was added to avoid patent issues...

Dragonfly

Pick random r, and my, Pick random rz and mg
sy = (ry + my) mod g sg = (rg + mg) mod q
Ej=—-—my-P Egp = —mpg-P
Commit(sy, Ey) Commit(sg, Eg)
4 N\

K=r1r,-(sg:P+Epg)
=1,-(rg-P+mg:-P—mg-P)
=714-15*P

k = Hash(K)

tr = (sS4, E4, S, Eg)

| ca = HMAC(k, tr)

Dragonfly

Pick random r, and my,
sy = (ry + my) mod g
EA =My P

d) Commit(sy, E4)

K=ry-(sgP+Eg)=1r4-15P
k = Hash(K)

tr = (sS4, Ea, S, Eg)

| ¢4 = HMAC(k, tr)

\

Pick random rz and mg

sg = (rg + mg) mod q
EB = _mB P

<

Commit(sg, Ep)

@

10

Dragonfly

Pick random r, and my, Pick random rz and mg
sy = (ry + my) mod q sg = (rg + mg) mod q
EA:—mA'P EB=—mB-P
1 Commit(sy, E4) Commit(sg, Ep) >
> <

K=1r,-(sg:P+Eg)=14-15-P K=1rg:-(s4P+Ey) =1ry-15-P
k = Hash(K) k = Hash(K)

tr = (SAJEAJSBJEB) tr = (SBJEBISAJ EA)
¢, = HMAC(k, tr) cg = HMAC(k, tr)

Negotiate shared key. Similar to SPEKE
(expired patent) but using a mask and scalar.

11

Dragonfly

Pick random r, and my, Pick random rz and mg

Sy = (ry + my) mod g sg = (rg + mg) mod q

EA:—mA'P EB—_mB

Commit(sy, Ey) Commit(sg, Eg)

1 > <
errA-(sB-P+EB)=rA-rB-P\ rK—rB (s4*P+Ey) =1y 15"

k = Hash(K) k = Hash(K)

tr = (SAJEAJSBJEB) tr = (SBJEBISAJ EA)
| ¢4 = HMAC(k, tr)) | cg = HMAC(k, tr)
© Confirm(cy) _ _ Confirm(cg) 0

Confirm peer negotiated same key

12

Multi-password support in WPA3

Can only have a single “unbound” password
» All other passwords are tied to a client's MAC address
» Access Point (AP) can then use a matching (different) password

» In practice, we want to hand out many unbound passwords
» Many users that don’t connect in sequence, e.g., hotels or conference

» Bigger issue: clients may use MAC address randomization
» Some randomize MAC address every day, even for the same network
» We need a different solution...

13

Current multi-password solution in IEEE 802.11

» They introduced a password identifier

» Essentially the same as a username

» User must enter password identifier & password

» |dentifier sent in plaintext, Access Point (AP) uses matching password
» This has some drawbacks

» User must remember and enter password & password identifier

» |dentifier is sent in plaintext, leaks info and enables user tracking

14

What does the industry seem to want?

)

Solution where only a password needs to be entered
» No ‘registration phase’. The password is the user identity!

Passwords should be short just like with current WPA3
» Don’t want to be entering longer passwords or extra information

ldeally same security guarantees as single-password WPA3

Avoid DoS attacks, in particular against the Access Point (AP)
» In multi-password WPAZ2, the AP does for loop, so ideally not worse...

“Ideally minimal changes to Dragonfly to ease implementation”
“ldeally support tens of thousands of simultaneous passwords”

15

Naive: do n parallel Dragonfly executions

» Has obvious overhead:
» All packets sent n times, all computations done n times

» We can do better: adapt O-PAKE or SweetPAKE [1-2]
» But a rogue AP can now guess n passwords at oncel

» General problem: reduces security compared to single-PW protocol.

Unclear whether supporting that many passwords is a good idea?
» Possible solution: client walits for n seconds before reconnecting
» On average, online attack has same impact as single-PW protocol

16

O-PAKE can turn any PAKE into an oblivious PAKE
Oblivious = client can try n passwords at once

Based on Index-Hiding Message Encoding
» Polynomial interpolation of points where:
» X = hash(pw)
» Y = encoded handshake message

Polynomial coefficients are sent to the client

Client recovers the right message by calculating f(hash(pw))

17

Polynomial interpolation idea

A

sg1 ||Ep1

Sp2 ||Eg2 /
>
H(pw,) H(pw,) \/

- Send poly coefficients to the client. Client recovers sg ||E.

18

Direct O-PAKE adaption

Pick random r, and m,
sy = (ry + my) mod g

-

For all passwords i:

Pick random rp; and mp ;
Ep;=—-mp;-P

EA == —mA * P)
Commit(s,, E,) points += (H(pw;), sg;||Eg,;)
1) A4 poly = interpolate(points)
P Commit(poly) >
sp; and Eg; = poly(H(pw)) >(4

Ker'(SB,i'P+EB,i) =Ty 'rB,i'P
Ca = HMAC(H(K): (SA»EA!SB!EB))

Confirm(cy)

3
Confirm(cg)

(For all passwords i:
K=rg;i-(sqP+Ey) =1y 1p; P
cy = HMAC(H(K), (Sa, Ea, 5B, Ei))
pw found if ¢y = ¢4

P
N

@Calculate Cp)

19

Multi-Dragonfly

» Data overhead is O(c n) where n = #passwords
» This seems hard to avoid...
» ...unless we can reuse data across handshakes?
» ...unless passwords are generated or have structure?

» First: can we reduce the value of ¢ in O(c n)?

» Reuse the same scalar for all passwords!
» Note: what comes next are fresh ideas without any proofs...

20

Direct O-PAKE ada

Pick random r, and m,
sy = (ry + my) mod g
EA == —mA * P

ntion

J/

(l\ Commit(sy, Ey)
L)

[For all passwords i :

Pick random rp; and mp ;

sgi = (15; + mp;) mod q

Ep;=—-mp;-P

points += (H(pw;), sp,; ||Eg,)
poly = interpolate(points)

21

Reuse scalar

Pick random r, and m,
sy = (ry + my) mod g
EA == —mA * P

("Pick random Sp
For all passwords i :
Pick random rp; and mp ;
Spi = (rB,i + mB,i) mod q
Epi=-—-mg;-P
points += (H(pw;), sg,; ||Eg,)

(l\ Commit(sy, Ey)
L)

poly = interpolate(points)

]

N

22

Reuse scalar ("Pick random s

For all passwords i :

Pick random r, and m, Pick random mg,;
sy = (ry + my) mod g
Egy=-my-P Ep; =—-mg;-P

é\ Commit(s, E4) points += (H(w:), sg,; ||Es,:)
)

>_poly = interpolate(points)

N

(Pi)
Reuse Sca|ar Pick random sp
For all passwords i :
Pick random r, and m, Pick random mg,;
Fa=—ma b Epi=—-mp;-P
Commit(sy, E,) points += (H(pwy), sp,; [1Ep,)
1) >\ poly = interpolate(points)
Commit(poly)
< \2

24

(Pi)
Reuse Sca|ar Pick random sg
For all passwords i :
Pick random r, and m, Pick random mg,;
sa = (14 + my) mod q rpg; = (SB — mB,,-) mod q é
Fa= s P Epi=—-mp;-P
é\ Commit(s,, E4) points += (H(pw,), Ep,:)
-/

sp,; and Ep; = poly(H(pw))
Ker'(SB,i.P-l_EB,i) ZTA'TB,L"P
Cq = HMAC(H(K)J (SA' EA' SB, EB))

>_poly = interpolate(points)
Commit(s g, poly) ;g
(2

25

Reuse scalar (final) Pick random sg
For all passwords i :
Pick random r, and m, Pick random mg,;
sy = (ry + my) mod g rpi = (SB _ mB,i) mod q é
Egy=-my-P Ep; =—-mg;-P
Commit(sA, EA) p0|n.tS += (H(le)» EB,i)
1 L) >_poly = interpolate(points)
P Commit(sg, poly) >
Ep; = poly(H(pw)) >(4
K=r1,- P+Eo: V=74 Tn:-P
Ta- (5 Bi) =Ta T, (For all passwords i : A
Cyp = HMAC(H(K), (SA, EA'SB'EB)) K = re - (SA P+ EA) =7y T p
,L ,1
Confirm(c,) cy = HMAC(H(K), (5a, Ea, S5.i» E5,))
3 PRVN
. pw found if ¢, = ¢4
< Confirm(c) @Calculate Cg)

26

Multi-Dragonfly

y Data overhead i1s now lower!

» But still requires polynomial interpolation in every handshake
» Can optimize with precomputation if passwords remain identical [3!
» But still O(n?) in number of the passwords
» Do poly interpolation once and reuse the polynomial?
» We can easily change the scalar sz while keeping all my ; the same
» Would what this look like? Let’s explore...

[3] M. Manulis and B. Poettering. Practical affiliation-hiding authentication

from improved polynomial interpolation. In Asia CCS, 2011. 27

Reuse scalar (final)

Pick random r, and m,
sy = (ry + my) mod g
EA == —mA * P

(" Pick random Sp
For all passwords i :
Pick random mp;
Tgi = (SB — mB,i) mod q
Epi=-—-mg;-P
points += (H(pw;), Ep,;)

(l\ Commit(sy, Ey)
L)

poly = interpolate(points)

]

N

28

Reuse poly

Pick random r, and m,
sy = (ry + my) mod g
EA == —mA * P

("Pick random Sp
For all passwords i :
Pick random mp;
rg; = (sp —mg;) mod q
Epi=-—-mg;-P
points += (H(pw;), Eg ;)

(l\ Commit(sy, Ey)
L)

poly = interpolate(points)

]

N

29

Reuse poly

Pick random r, and m,
sy = (ry + my) mod g
EA == —mA * P

)\

(For all passwords i :
Pick random mp;
Epi=—mp;-P
points += (H(pw,), Ep,;)
poly = interpolate(points)
Pick random sg

(l\ Commit(sy, Ey)
L)

Vi:rg; = (sp —mp;) mod q

30

(-
For all passwords i :

Reuse p0|y Pick random mg ;
Pick random r, and m, Epi=—mg; P
= (1, + my) mod points += (H(pw,), Ep,;)
o4~ Ha T A motd _poly = interpolate(points) y

Ey=—my-P

Commit(sy, E4) [Pick random Sp)
1/ A=A >L Vi T'B’l- = (SB —_ mB,i) mOd q J ! !

Commit(sg, poly)

< 2
Eg; = poly(H(pw)) >(4
K=ry-\sg - P+Eg;)=14-15; P
. IilleAg(H(K) gl)E : ;'l)) (For all passwords i : A
- A K=1p;i-(sa-P+Ey) =14-18;"P

Conflrm(CA) C,:l - HMAC(H(K), (SA, EA, SB,il EB,i))
3 if ¢! =
. pw found if ¢, = ¢4
< Confirm(c) @Calculate Cp)

31

(-
For all passwords i :

Reuse p0|y (flnal) Pick random mg ;
Pick random r, and m, Epi=—mg; P
= (1, + my) mod points += (H(pw,), Ep,;)
o4 = A4 T MOSd _poly = interpolate(points) y

Ey=—my-P

Commit(sy, E4) [Pick random Sp)
1/ A=A >L Vi TB’l- = (SB —_ mB,i) mOd q J ! !

Commit(sg, poly)

< 2
Eg; = poly(H(pw)) >(4
K=1ry-(sgP+Eg;)=1ry-15; P
o IilleAg(H(K) gl)E SA EB;) (For all passwords i : A
- A K=1p;i-(sa-P+Ey) =14-1p; P

Conflrm(CA) C;l - HMAC(H(K), (SA, EA, SB,ii EB,i))
3 if ¢! =
. pw found if ¢, = ¢4
< Confirm(c) @Calculate Cp)

32

Can broadcast the polynomial to all clients at once
» Can even be sent outside the handshake...
» ...this makes supporting many passwords more feasible

Reduces computational burden on the AP
» AP still loops over all passwords, but so do existing WPA2 solutions

33

But IS It secure?*

» Reuse of polynomial = reuse of first handshake message
» Doing so is secure for CPace ¥, So possibly also for Dragonfly?
» CPace is similar to Dragonfly but more efficient...

» This seems to be the way forward to explore!
» From academic perspective, we can continue with CPace
» Industry might be interested in updated proof of Dragonfly...

» ...the scalar sz doesn’t have to change, but it ensures fresh keys?

» Help needed! Eternal fame if WPA3 adopts your solution ©
» Does this look OK? Are new proofs needed? What about scalar sg?

34
* Slide updated based on suggestions and insights after the presentation. Thank you!

Can also do similar things like SweetPAKE 12
» Based on Password-Authenticated Public-Key Encryption (PAPKE)
» Not based on Dragonfly, IEEE 802.11 might be more hesitant to adopt
» But also seems worth exploring!

Could even combine polynomial interpolation with PAPKE
» Happy to discuss, see backup slides

Post-quantum? Currently not (yet) a focus in Wi-Fi...

35

Conclusion

» High interest to have multi-password WPAS3 solutions

» Supporting low #password is feasible

» Help needed to optimize solutions for more passwords!
» Security analysis, optimizations, ideas...
» Eternal fame awaits! ©

- https://github.com/DistriNet/decoyauth

36

https://github.com/DistriNet/decoyauth

References

1. F. Kiefer and M. Manulis. Oblivious PAKE: Efficient handling of password

trials. In Springer International Conference on Information Security, 2015.

2. A. Arriaga, P. Y. Ryan, and M. Skrobot. SweetPAKE: Key exchange with
decoy passwords. In Asia CCS, 2024.

3. M. Manulis and B. Poettering. Practical affiliation-hiding authentication
from improved polynomial interpolation. In Asia CCS, 2011.

4. D. Harkins. Simultaneous authentication of equals: A secure, password-
based key exchange for mesh networks. In IEEE SensorComm, 2008.

5. Manuel Barbosa, Kai Gellert, Julia Hesse, and Stanislaw Jarecki. "Bare
pake: universally composable key exchange from just passwords." In
AICC Annual International Cryptology Conference, 2024.

37

O-PAKE + PAPKE (For all passwords i :

sk;, apk; = KGen(pw;)
= | points += (H(pw;), apk;)

Generate K and c_nonce | poly = interpolate(points))
Hello(c_nonce) .
Q 1) > Generate s_nonce
P Commit(poly, s_nonce) 5 é
apk = poly(H(pw)) >(4
C = enc(apk, pw, K)
S = HMAC(K, c_nonce || s_nonce) " For all passwords i : h
¢, = HMAC(S, transcript) K = Dec(sk;, C)
) . ’ S = HMAC(K, c_nonce || s_nonce)
3 Confirm(C, ¢4) cy, = HMAC(S, transcript)
Confirm(cz) —~ pw found if ¢, = ¢4
{4 2 Calculate cp y

38

Included client and server nonce (c_nonce and s_nonce) to
allow reuse of the polynomial while preventing replays
» Client nonce likely not needed, since it already generates the key K

Unclear how the data & computation overhead compares to
other solutions. How expensive it PAPKE?

Deviations more from Dragonfly, Wi-Fi vendors and/or IEEE
802.11 might be more hesitant to adopt it?

39

Scaling to thousands of passwords?!

Have different types of passwords

» Unbounded passwords: can be used by any client
» After first usage, they are bound to the client's MAC address

» Bound passwords: associated to a client's MAC address

» Group passwords: can always be used by any client
» Never get bound to a specific MAC address

Need to support fewer actual simultaneous passwords!
» Trickier nowadays due to MAC address randomization

40

Use password identifier in the background

Use password identifier instead of MAC address

Proposal to regularly rotate the password identifier
» After connecting, network issues a (new) password identifier

» Must synchronize identifier across all devices that use a
particular password
» Standard currently does not specify how to do this
» But it does look feasible with some effort

41

	Introduction
	Dia 1: Multiple Passwords in WPA3: Use Cases & Initial Proposals
	Dia 2: Wi-Fi history
	Dia 3: Wi-Fi history
	Dia 4: Multiple WPA2 passwords
	Dia 5: Multi-password WPA2 in practice

	WPA3 handshake
	Dia 6: Wi-Fi history
	Dia 7: Dragonfly
	Dia 8: Dragonfly
	Dia 9: Dragonfly
	Dia 10: Dragonfly
	Dia 11: Dragonfly
	Dia 12: Dragonfly

	WPA3 Password Identifier
	Dia 13: Multi-password support in WPA3
	Dia 14: Current multi-password solution in IEEE 802.11

	Desired solution
	Dia 15: What does the industry seem to want?

	Naive
	Dia 16: Naïve: do n parallel Dragonfly executions

	O-PAKE
	Dia 17: Adapting O-PAKE [1]
	Dia 18: Polynomial interpolation idea
	Dia 19: Direct O-PAKE adaption
	Dia 20: Multi-Dragonfly
	Dia 21: Direct O-PAKE adaption
	Dia 22: Reuse scalar
	Dia 23: Reuse scalar
	Dia 24: Reuse scalar
	Dia 25: Reuse scalar
	Dia 26: Reuse scalar (final)
	Dia 27: Multi-Dragonfly
	Dia 28: Reuse scalar (final)
	Dia 29: Reuse poly
	Dia 30: Reuse poly
	Dia 31: Reuse poly
	Dia 32: Reuse poly (final)
	Dia 33: Advantages
	Dia 34: But is it secure?*

	SweetPAKE
	Dia 35: Other directions

	Conclusion
	Dia 36: Conclusion
	Dia 37: References

	SweetPAKE
	Dia 38: O-PAKE + PAPKE
	Dia 39: O-PAKE + PAPKE

	Backup
	Dia 40: Scaling to thousands of passwords?!
	Dia 41: Use password identifier in the background

