
Multiple Passwords in WPA3:

Use Cases & Initial Proposals
Mathy Vanhoef

Workshop on Password Authenticated Key Exchange and Password

Security & Usability (PAKE’25). 7 February 2025, Luxembourg.

Funded by NGI Sargasso under the DecoyAuth project.

* These slides are slightly updated based on feedback after the presentation.

Wi-Fi history

› 1999: WEP: completely broken

› 2003-2004: WPA1/2

Password-protected ‘home’ networks & Enterprise EAP authentication

Vulnerable to offline dictionary attacks (no forward secrecy)

2

Wi-Fi history

› 1999: WEP: completely broken

› 2003-2004: WPA1/2

Password-protected ‘home’ networks & Enterprise EAP authentication

Vulnerable to offline dictionary attacks (no forward secrecy)

3

Multiple WPA2 passwords

A single network name but multiple passwords

› Better user experience + less airtime overhead

› Use case: guests get a different password

Devices connect to same network, but are put in different VLANs

› Use case: all users or devices get a different password

Infer identity from used password, can again have different VLANs

Revoke/change individual passwords, e.g., hotels, employees,…

Malicious insider can’t create rogue clone of the network

4

Multi-password WPA2 in practice

Implemented by practically all vendors!

› Downside: network-side must loop through all passwords

› Nice alternative to have per-user credentials…

› …but without the hassle of certificates/usernames

5

Wi-Fi history

› 1991: WEP: completely broken

› 2003-2004: WPA1/2

Password-protected ‘home’ networks & Enterprise EAP authentication

Vulnerable to offline dictionary attacks (no forward secrecy)

› 2018: WPA3

Uses the “Dragonfly” PAKE and is similar to SPEKE

Was vulnerable to “Dragonblood” side-channel attacks (now fixed)

Used in mesh networks too (hence symmetric PAKE)

We focus on elliptic curve variant

6

Dragonfly

7

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 + 𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Password is hashed to

group element P
(Simplified Shallue Woestijne-Ulas)

Dragonfly

8

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 + 𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Could also have design without scalar 𝒔,

it was added to avoid patent issues…

Commit(𝑠𝐴, 𝐸𝐴) Commit(𝑠𝐵 , 𝐸𝐵)
1 2

Dragonfly

9

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 + 𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵

= 𝑟𝐴 ⋅ 𝑟𝐵 ∙ 𝑃 + 𝑚𝐵 ∙ 𝑃 − 𝑚𝐵 ∙ 𝑃

= 𝑟𝐴 ⋅ 𝑟𝐵 ∙ 𝑃

𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵

𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

1 2

Dragonfly

10

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 + 𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)
1 2

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵 = 𝒓𝑨 ⋅ 𝒓𝑩 ∙ 𝑷

𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵

𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Dragonfly

11

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 + 𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Commit(𝑠𝐵 , 𝐸𝐵)

𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴 = 𝒓𝑨 ⋅ 𝒓𝑩 ∙ 𝑷

𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴

𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵 = 𝒓𝑨 ⋅ 𝒓𝑩 ∙ 𝑷

𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵

𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Negotiate shared key. Similar to SPEKE

(expired patent) but using a mask and scalar.

1 2

Dragonfly

12

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑟𝐵 and 𝑚𝐵

𝑠𝐵 = 𝑟𝐵 + 𝑚𝐵 mod 𝑞

𝐸𝐵 = −𝑚𝐵 ⋅ 𝑃

Confirm(𝑐𝐴) Confirm(𝑐𝐵)

Confirm peer negotiated same key

Commit(𝑠𝐴, 𝐸𝐴) Commit(𝑠𝐵 , 𝐸𝐵)
1 2

3 4

𝐾 = 𝑟𝐵 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴 = 𝒓𝑨 ⋅ 𝒓𝑩 ∙ 𝑷

𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐵 , 𝐸𝐵 , 𝑠𝐴, 𝐸𝐴

𝑐𝐵 = HMAC(𝜅, 𝑡𝑟)

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵 = 𝒓𝑨 ⋅ 𝒓𝑩 ∙ 𝑷

𝜅 = Hash 𝐾

𝑡𝑟 = 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵

𝑐𝐴 = HMAC(𝜅, 𝑡𝑟)

Multi-password support in WPA3

Can only have a single “unbound” password

› All other passwords are tied to a client’s MAC address

Access Point (AP) can then use a matching (different) password

› In practice, we want to hand out many unbound passwords

Many users that don’t connect in sequence, e.g., hotels or conference

› Bigger issue: clients may use MAC address randomization

Some randomize MAC address every day, even for the same network

We need a different solution…

13

Current multi-password solution in IEEE 802.11

› They introduced a password identifier

Essentially the same as a username

User must enter password identifier & password

Identifier sent in plaintext, Access Point (AP) uses matching password

› This has some drawbacks

User must remember and enter password & password identifier

Identifier is sent in plaintext, leaks info and enables user tracking

14

What does the industry seem to want?

› Solution where only a password needs to be entered

No ‘registration phase’. The password is the user identity!

› Passwords should be short just like with current WPA3

Don’t want to be entering longer passwords or extra information

› Ideally same security guarantees as single-password WPA3

› Avoid DoS attacks, in particular against the Access Point (AP)

In multi-password WPA2, the AP does for loop, so ideally not worse…

› “Ideally minimal changes to Dragonfly to ease implementation”

› “Ideally support tens of thousands of simultaneous passwords”

15

Naïve: do n parallel Dragonfly executions

› Has obvious overhead:

All packets sent n times, all computations done n times

› We can do better: adapt O-PAKE or SweetPAKE [1,2]

› But a rogue AP can now guess n passwords at once!

General problem: reduces security compared to single-PW protocol.

Unclear whether supporting that many passwords is a good idea?

Possible solution: client waits for n seconds before reconnecting

On average, online attack has same impact as single-PW protocol

16

Adapting O-PAKE [1]

O-PAKE can turn any PAKE into an oblivious PAKE

› Oblivious = client can try n passwords at once

› Based on Index-Hiding Message Encoding

Polynomial interpolation of points where:

X = hash(pw)

Y = encoded handshake message

› Polynomial coefficients are sent to the client

› Client recovers the right message by calculating f(hash(pw))

17

Polynomial interpolation idea

18

𝒔𝑩,𝟏 ||𝑬𝑩,𝟏

𝒔𝑩,𝟐 ||𝑬𝑩,𝟐

𝐇 𝒑𝒘𝟏 𝐇 𝒑𝒘𝟏

→ Send poly coefficients to the client. Client recovers 𝒔𝑩 ||𝑬𝑩.

Direct O-PAKE adaption

19

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

For all passwords 𝒊 :

Pick random 𝑟𝐵,𝑖 and 𝑚𝐵,𝑖

𝑠𝐵,𝑖 = 𝑟𝐵,𝑖 + 𝑚𝐵,𝑖 mod 𝑞

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (𝐇 𝒑𝒘𝒊 , 𝒔𝑩,𝒊 ||𝑬𝑩,𝒊)

poly = interpolate(points)
Commit(𝑠𝐴, 𝐸𝐴)

1

Commit(poly)
2

𝒔𝑩,𝒊 and 𝑬𝑩,𝒊 = poly(𝐇(𝒑𝒘))

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵,𝑖 ∙ 𝑃 + 𝐸𝐵,𝑖 = 𝒓𝑨 ⋅ 𝒓𝑩,𝒊 ⋅ 𝑷

𝑐𝐴 = HMAC(H 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵)
For all passwords 𝒊 :

𝐾 = 𝒓𝑩,𝒊 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴 = 𝒓𝑨 ⋅ 𝒓𝑩,𝒊 ⋅ 𝑷

𝑐𝐴
′ = HMAC(H 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝒔𝑩,𝒊, 𝑬𝑩,𝒊)

 pw found if 𝒄𝑨
′ = 𝒄𝑨

Calculate 𝑐𝐵

Confirm(𝑐𝐴)
3

4

Confirm(𝑐𝐵)
5

Multi-Dragonfly

› Data overhead is O(c n) where n = #passwords

This seems hard to avoid…

…unless we can reuse data across handshakes?

…unless passwords are generated or have structure?

› First: can we reduce the value of c in O(c n)?

Reuse the same scalar for all passwords!

Note: what comes next are fresh ideas without any proofs…

20

Direct O-PAKE adaption

21

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

For all passwords 𝑖 :

Pick random 𝑟𝐵,𝑖 and 𝑚𝐵,𝑖

𝑠𝐵,𝑖 = 𝑟𝐵,𝑖 + 𝑚𝐵,𝑖 𝑚𝑜𝑑 𝑞

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝑠𝐵,𝑖 ||𝐸𝐵,𝑖)

poly = interpolate(points)1

Reuse scalar

22

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝒔𝑩

For all passwords 𝑖 :

Pick random 𝑟𝐵,𝑖 and 𝑚𝐵,𝑖

𝑠𝐵,𝑖 = 𝑟𝐵,𝑖 + 𝑚𝐵,𝑖 𝑚𝑜𝑑 𝑞

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝑠𝐵,𝑖 ||𝐸𝐵,𝑖)

poly = interpolate(points)1

Reuse scalar

23

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝒔𝑩

For all passwords 𝑖 :

Pick random 𝑟𝐵,𝑖 and 𝑚𝐵,𝑖

𝑠𝐵,𝑖 = 𝑟𝐵,𝑖 + 𝑚𝐵,𝑖 𝑚𝑜𝑑 𝑞

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝑠𝐵,𝑖 ||𝐸𝐵,𝑖)

poly = interpolate(points)1

Reuse scalar

24

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝒔𝑩

For all passwords 𝑖 :

Pick random 𝑟𝐵,𝑖 and 𝑚𝐵,𝑖

𝒓𝑩,𝒊 = 𝒔𝑩 − 𝒎𝑩,𝒊 𝒎𝒐𝒅 𝒒

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝑠𝐵,𝑖 ||𝐸𝐵,𝑖)

poly = interpolate(points)

Commit(poly)
2

1

Reuse scalar

25

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝒔𝑩

For all passwords 𝑖 :

Pick random 𝑟𝐵,𝑖 and 𝑚𝐵,𝑖

𝒓𝑩,𝒊 = 𝒔𝑩 − 𝒎𝑩,𝒊 𝒎𝒐𝒅 𝒒

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝑠𝐵,𝑖 ||𝐸𝐵,𝑖)

poly = interpolate(points)

Commit(𝒔𝑩, poly)

1

2

𝑠𝐵,𝑖 and 𝐸𝐵,𝑖 = poly(H(𝑝𝑤))

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵,𝑖 ∙ 𝑃 + 𝐸𝐵,𝑖 = 𝑟𝐴 ⋅ 𝑟𝐵,𝑖 ⋅ 𝑃

𝑐𝐴 = HMAC(𝐻 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵)

Reuse scalar (final)

26

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝒔𝑩

For all passwords 𝑖 :

Pick random 𝑟𝐵,𝑖 and 𝑚𝐵,𝑖

𝒓𝑩,𝒊 = 𝒔𝑩 − 𝒎𝑩,𝒊 𝒎𝒐𝒅 𝒒

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝑠𝐵,𝑖 ||𝐸𝐵,𝑖)

poly = interpolate(points)

Commit(𝒔𝑩, poly)

1

2

𝑬𝑩,𝒊 = poly(𝐇(𝒑𝒘))

𝐾 = 𝑟𝐴 ⋅ 𝒔𝑩 ∙ 𝑃 + 𝐸𝐵,𝑖 = 𝑟𝐴 ⋅ 𝑟𝐵,𝑖 ⋅ 𝑃

𝑐𝐴 = HMAC(𝐻 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵)

Confirm(𝑐𝐴)
3

For all passwords 𝑖 :

𝐾 = 𝑟𝐵,𝑖 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴 = 𝑟𝐴 ⋅ 𝑟𝐵,𝑖 ⋅ 𝑃

𝑐𝐴
′ = HMAC(H 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵,𝑖 , 𝐸𝐵,𝑖)

 pw found if 𝑐𝐴
′ = 𝑐𝐴

Calculate 𝑐𝐵

4

Confirm(𝑐𝐵)
4

Multi-Dragonfly

› Data overhead is now lower!

› But still requires polynomial interpolation in every handshake

Can optimize with precomputation if passwords remain identical [3]

But still O(n2) in number of the passwords

› Do poly interpolation once and reuse the polynomial?

We can easily change the scalar 𝒔𝑩 while keeping all 𝒎𝑩,𝒊 the same

Would what this look like? Let’s explore…

27
[3] M. Manulis and B. Poettering. Practical affiliation-hiding authentication

from improved polynomial interpolation. In Asia CCS, 2011.

Reuse scalar (final)

28

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝑠𝐵

For all passwords 𝑖 :

Pick random 𝑚𝐵,𝑖

𝑟𝐵,𝑖 = 𝑠𝐵 − 𝑚𝐵,𝑖 𝑚𝑜𝑑 𝑞

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝐸𝐵,𝑖)

poly = interpolate(points)1

Reuse poly

29

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

Pick random 𝒔𝑩

For all passwords 𝑖 :

Pick random 𝑚𝐵,𝑖

𝒓𝑩,𝒊 = 𝒔𝑩 − 𝒎𝑩,𝒊 𝒎𝒐𝒅 𝒒

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝐸𝐵,𝑖)

poly = interpolate(points)1

Reuse poly

30

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

For all passwords 𝑖 :

Pick random 𝑚𝐵,𝑖

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝐸𝐵,𝑖)

poly = interpolate(points)

Pick random 𝒔𝑩

∀𝒊: 𝒓𝑩,𝒊 = 𝒔𝑩 − 𝒎𝑩,𝒊 𝒎𝒐𝒅 𝒒1

Reuse poly

31

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

For all passwords 𝑖 :

Pick random 𝑚𝐵,𝑖

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝐸𝐵,𝑖)

poly = interpolate(points)

1

Commit(𝑠𝐵, poly)
2

𝐸𝐵,𝑖 = poly(H(𝑝𝑤))

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵,𝑖 = 𝑟𝐴 ⋅ 𝑟𝐵,𝑖 ⋅ 𝑃

𝑐𝐴 = HMAC(𝐻 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵)

Confirm(𝑐𝐴)
3

For all passwords 𝑖 :

𝐾 = 𝑟𝐵,𝑖 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴 = 𝑟𝐴 ⋅ 𝑟𝐵,𝑖 ⋅ 𝑃

𝑐𝐴
′ = HMAC(H 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵,𝑖 , 𝐸𝐵,𝑖)

 pw found if 𝑐𝐴
′ = 𝑐𝐴

Calculate 𝑐𝐵

4

Confirm(𝑐𝐵)
4

Pick random 𝒔𝑩

∀𝒊: 𝒓𝑩,𝒊 = 𝒔𝑩 − 𝒎𝑩,𝒊 𝒎𝒐𝒅 𝒒

Reuse poly (final)

32

Commit(𝑠𝐴, 𝐸𝐴)

Pick random 𝑟𝐴 and 𝑚𝐴

𝑠𝐴 = 𝑟𝐴 + 𝑚𝐴 mod 𝑞

𝐸𝐴 = −𝑚𝐴 ∙ 𝑃

For all passwords 𝑖 :

Pick random 𝑚𝐵,𝑖

 𝐸𝐵,𝑖 = −𝑚𝐵,𝑖 ∙ 𝑃

 points += (H 𝑝𝑤𝑖 , 𝐸𝐵,𝑖)

poly = interpolate(points)

Commit(𝑠𝐵, poly)

1

2

𝐸𝐵,𝑖 = poly(H(𝑝𝑤))

𝐾 = 𝑟𝐴 ⋅ 𝑠𝐵 ∙ 𝑃 + 𝐸𝐵,𝑖 = 𝒓𝑨 ⋅ 𝒓𝑩,𝒊 ⋅ 𝑷

𝑐𝐴 = HMAC(𝐻 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵 , 𝐸𝐵)

Confirm(𝑐𝐴)
3

For all passwords 𝑖 :

𝐾 = 𝑟𝐵,𝑖 ⋅ 𝑠𝐴 ∙ 𝑃 + 𝐸𝐴 = 𝒓𝑨 ⋅ 𝒓𝑩,𝒊 ⋅ 𝑷

𝑐𝐴
′ = HMAC(H 𝐾 , 𝑠𝐴, 𝐸𝐴, 𝑠𝐵,𝑖 , 𝐸𝐵,𝑖)

 pw found if 𝑐𝐴
′ = 𝑐𝐴

Calculate 𝑐𝐵

4

Confirm(𝑐𝐵)
4

Pick random 𝒔𝑩

∀𝒊: 𝒓𝑩,𝒊 = 𝒔𝑩 − 𝒎𝑩,𝒊 𝒎𝒐𝒅 𝒒

Advantages

› Can broadcast the polynomial to all clients at once

Can even be sent outside the handshake…

…this makes supporting many passwords more feasible

› Reduces computational burden on the AP

AP still loops over all passwords, but so do existing WPA2 solutions

33

But is it secure?*

› Reuse of polynomial = reuse of first handshake message

Doing so is secure for CPace [4]. So possibly also for Dragonfly?

CPace is similar to Dragonfly but more efficient…

› This seems to be the way forward to explore!

From academic perspective, we can continue with CPace

› Industry might be interested in updated proof of Dragonfly…

…the scalar 𝑠𝐵 doesn’t have to change, but it ensures fresh keys?

› Help needed! Eternal fame if WPA3 adopts your solution ☺

Does this look OK? Are new proofs needed? What about scalar 𝑠𝐵?

34
* Slide updated based on suggestions and insights after the presentation. Thank you!

Other directions

› Can also do similar things like SweetPAKE [2]

Based on Password-Authenticated Public-Key Encryption (PAPKE)

Not based on Dragonfly, IEEE 802.11 might be more hesitant to adopt

But also seems worth exploring!

› Could even combine polynomial interpolation with PAPKE

Happy to discuss, see backup slides

› Post-quantum? Currently not (yet) a focus in Wi-Fi…

35

Conclusion

› High interest to have multi-password WPA3 solutions

› Supporting low #password is feasible

› Help needed to optimize solutions for more passwords!

Security analysis, optimizations, ideas…

Eternal fame awaits! ☺

→ https://github.com/DistriNet/decoyauth

36

https://github.com/DistriNet/decoyauth

References

1. F. Kiefer and M. Manulis. Oblivious PAKE: Efficient handling of password
trials. In Springer International Conference on Information Security, 2015.

2. A. Arriaga, P. Y. Ryan, and M. Skrobot. SweetPAKE: Key exchange with
decoy passwords. In Asia CCS, 2024.

3. M. Manulis and B. Poettering. Practical affiliation-hiding authentication
from improved polynomial interpolation. In Asia CCS, 2011.

4. D. Harkins. Simultaneous authentication of equals: A secure, password-
based key exchange for mesh networks. In IEEE SensorComm, 2008.

5. Manuel Barbosa, Kai Gellert, Julia Hesse, and Stanislaw Jarecki. "Bare
pake: universally composable key exchange from just passwords." In
AICC Annual International Cryptology Conference, 2024.

37

O-PAKE + PAPKE

38

For all passwords 𝑖 :

𝒔𝒌𝒊, 𝒂𝒑𝒌𝒊 = KGen(𝒑𝒘𝒊)

 points += (H 𝑝𝑤𝑖 , 𝒂𝒑𝒌𝒊)

poly = interpolate(points)

3

For all passwords 𝑖 :

𝐾 = 𝐷𝑒𝑐(𝑠𝑘𝑖, C)

 S = HMAC(K, c_nonce || s_nonce)

 𝑐𝐴
′ = HMAC(𝑆, 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡)

 pw found if 𝑐𝐴
′ = 𝑐𝐴

Calculate 𝑐𝐵

apk = poly(H(𝑝𝑤))

C = enc(apk, pw, K)

S = HMAC(K, c_nonce || s_nonce)

𝑐𝐴 = HMAC(𝑆, 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡)

Confirm(C, 𝑐𝐴)

4

Confirm(𝑐𝐵)
4

Hello(c_nonce)

Commit(poly, s_nonce)

1

2

Generate s_nonce

Generate K and c_nonce

O-PAKE + PAPKE

› Included client and server nonce (c_nonce and s_nonce) to

allow reuse of the polynomial while preventing replays

Client nonce likely not needed, since it already generates the key K

› Unclear how the data & computation overhead compares to

other solutions. How expensive it PAPKE?

› Deviations more from Dragonfly, Wi-Fi vendors and/or IEEE

802.11 might be more hesitant to adopt it?

39

Scaling to thousands of passwords?!

Have different types of passwords

› Unbounded passwords: can be used by any client

After first usage, they are bound to the client’s MAC address

› Bound passwords: associated to a client’s MAC address

› Group passwords: can always be used by any client

Never get bound to a specific MAC address

Need to support fewer actual simultaneous passwords!

› Trickier nowadays due to MAC address randomization

40

Use password identifier in the background

Use password identifier instead of MAC address

Proposal to regularly rotate the password identifier

› After connecting, network issues a (new) password identifier

› Must synchronize identifier across all devices that use a

particular password

Standard currently does not specify how to do this

But it does look feasible with some effort

41

	Introduction
	Dia 1: Multiple Passwords in WPA3: Use Cases & Initial Proposals
	Dia 2: Wi-Fi history
	Dia 3: Wi-Fi history
	Dia 4: Multiple WPA2 passwords
	Dia 5: Multi-password WPA2 in practice

	WPA3 handshake
	Dia 6: Wi-Fi history
	Dia 7: Dragonfly
	Dia 8: Dragonfly
	Dia 9: Dragonfly
	Dia 10: Dragonfly
	Dia 11: Dragonfly
	Dia 12: Dragonfly

	WPA3 Password Identifier
	Dia 13: Multi-password support in WPA3
	Dia 14: Current multi-password solution in IEEE 802.11

	Desired solution
	Dia 15: What does the industry seem to want?

	Naive
	Dia 16: Naïve: do n parallel Dragonfly executions

	O-PAKE
	Dia 17: Adapting O-PAKE [1]
	Dia 18: Polynomial interpolation idea
	Dia 19: Direct O-PAKE adaption
	Dia 20: Multi-Dragonfly
	Dia 21: Direct O-PAKE adaption
	Dia 22: Reuse scalar
	Dia 23: Reuse scalar
	Dia 24: Reuse scalar
	Dia 25: Reuse scalar
	Dia 26: Reuse scalar (final)
	Dia 27: Multi-Dragonfly
	Dia 28: Reuse scalar (final)
	Dia 29: Reuse poly
	Dia 30: Reuse poly
	Dia 31: Reuse poly
	Dia 32: Reuse poly (final)
	Dia 33: Advantages
	Dia 34: But is it secure?*

	SweetPAKE
	Dia 35: Other directions

	Conclusion
	Dia 36: Conclusion
	Dia 37: References

	SweetPAKE
	Dia 38: O-PAKE + PAPKE
	Dia 39: O-PAKE + PAPKE

	Backup
	Dia 40: Scaling to thousands of passwords?!
	Dia 41: Use password identifier in the background

