Improved KRACK Attacks Against WPA2 Implementations

Mathy Vanhoef — @vanhoefm

OPCDE, Dubai, 7 April 2018

Overview

Key reinstalls in 4-way handshake

Practical impact

New KRACKs

Overview

Key reinstalls in 4-way handshake

Practical impact

New KRACKs

The 4-way handshake

Used to connect to any protected Wi-Fi network

- > Provides mutual authentication
- > Negotiates fresh PTK: pairwise transient key

Appeared to be secure:

- > No attacks in over a decade (apart from password guessing)
- > Proven that negotiated key (PTK) is secret¹
- > And encryption protocol proven secure⁵

4-way handshake (simplified)

 \leftarrow - - - - - optional 802.1x authentication - - - - - \rightarrow

4-way handshake (simplified)

→ Nonce reuse implies keystream reuse (in all WPA2 ciphers)

Overview

Key reinstalls in 4-way handshake

Practical impact

New KRACKs

Lessons learned

General impact

Transmit nonce reset

Decrypt frames sent by victim

Receive replay counter reset

Replay frames towards victim

Cipher suite specific

AES-CCMP:

> No practical frame forging attacks

WPA-TKIP:

- > Recover Message Integrity Check key from plaintext^{2,3}
- > Forge/inject frames sent by the device under attack

Handshake specific

Group key handshake:

- > Client is attacked, but only AP sends <u>real</u> broadcast frames
- > Can only replay broadcast frames to client

4-way handshake:

> Client is attacked \rightarrow replay/decrypt/forge

Implementation specific

iOS 10 and Windows: 4-way handshake not affected

- > Cannot decrypt unicast traffic (nor replay/decrypt)
- > But group key handshake is affected (replay broadcast)
- > Note: iOS 11 does have vulnerable 4-way handshake⁶

wpa_supplicant 2.4+

- > Client used on Linux and Android 6.0+
- > On retransmitted msg3 will install all-zero key

Overview

Key reinstalls in 4-way handshake

Practical impact

New KRACKs

Idea 1: replay other handshake messages?

Idea 1: replay other handshake messages?

MediaTek drivers vulnerable!

- > Certain MediaTek Drivers accept replayed Msg4's
- > Used in 100+ devices → many vulnerable products⁹

ASUS RT-AC51U

TP-Link RE370K

Idea 2: A/SNonce renewed during rekey?

AP can start new handshake to refresh the PTK

- > Same messages exchanged as initial handshake
- > New ANonce and SNonce must be used

macOS:

- > Patched default KRACK attack
- > But reuses the SNonce during a rekey
- > SNonce reuse patched in macOS 10.13.3

Exploiting SNonce reuse

No problem if ANonce does change

- > But Linux's hostapd reused ANonce ...
- > Previous key was renegotiated and reinstalled
- > Can decrypt old captured traffic!

Adversary can replay old handshake

- > Tricky because messages must now be encrypted
- > But feasible under specific circumstances

Idea 3: further audit patches

Several users reported: **"Patched client still vulnerable** to group key reinstallations"

> Either our patches are flawed ...

> ... or device always accepts replayed broadcast frames?!

No broadcast replay checks!

Netis WF-2120 AWUS036NH

Nexus 5X

- > 8 of out 16 tested devices vulnerable
- > Likely caused by faulty hardware/firmware decryption

Affected devices:

- > Samsung S3 LTE
- > \$POPULAR_CLIENT

How to abuse this?

Idea 4: Impact of replaying broadcast frames?

Kankun smart power plugAndroid app to control it

Commands are broadcast UDP

- > Destination MAC in payload (?!)
- > Challenge/response protocol

Is your device affected?

github.com/vanhoefm/krackattacks-scripts

- > Tests clients and APs
- > Works on Kali Linux

Remember to:

- > Disable hardware encryption
- > Use a proper Wi-Fi dongle!

Overview

Key reinstalls in 4-way handshake

Practical impact

New KRACKs

Limitations of formal proofs

- > 4-way handshake proven secure
- > Encryption protocol proven secure

The combination was not proven secure!

Multi-party vulnerability coordination

Widespread issue! How to disclose?

Guidelines and Practices for Multi-Party Vulnerability Coordination (Draft)⁷

Remember:

- > Goal is to protect users
- > There are various opinions

Conclusion

- > Flaw is in WPA2 standard
- > Proven correct but is insecure!
- > Attack has practical impact
- > Update all clients & check APs

Thank you!

Questions?

krackattacks.com

References

- 1. C. He, M. Sundararajan, A. Datta, A. Derek, and J. Mitchell. A Modular Correctness Proof of IEEE 802.11i and TLS. In CCS, 2005.
- 2. E. and M. Beck. Practical attacks against WEP and WPA. In WiSec, 2009.
- 3. M. Vanhoef and F. Piessens. Practical verification of WPA-TKIP vulnerabilities. In ASIA CCS, 2013.
- 4. A. Joux. Authentication failures in NIST version of GCM. 2016.
- 5. J. Jonsson. On the security of CTR+ CBC-MAC. In SAC, 2002.
- 6. Apple. About the security content of iOS 11.1. November 3, 2017. Retrieved 26 November from https://support.apple.com/en-us/HT208222
- 7. Multi-party vuln coordination
- 8. M. Vanhoef and F. Piessens. Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. In CCS, 2017.
- 9. WikiDevi. MediaTek MT7620. Retrieved 2 April from https://wikidevi.com/wiki/MediaTek_MT7620A
- US Central Intelligence Agency. Network Operations Division Cryptographic Requirements. Retrieved 5 December 2017 from <u>https://wikileaks.org/ciav7p1/cms/files/NOD%20Cryptographic%20Requirements%20v1.1%20TOP%20SECRET.p</u> <u>df</u>