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Abstract—One of the most well-known side-channel attacks is
to infer secret information from the time it takes to perform
a certain operation. Many systems have been shown to be vul-
nerable to such attacks, ranging from cryptographic algorithms,
web applications, and even micro-architectural implementations.
Exploiting these side-channel leaks over a networked connection
is known to be challenging due to variations in the round-trip
time, i.e., network jitter. Timing attacks have become especially
challenging as processors become faster, resulting in smaller
timing differences, systems become more complex, making it
more difficult to collect consistent measurements, and networks
become more congested, amplifying the network jitter.

In this work we introduce novel remote timing attack methods
that are completely unaffected by the jitter on the network path,
making them several times more efficient than timing attacks
based on the round-trip time, and allow for smaller timing
differences to be detected. More specifically, the execution time
is inferred from the TCP timestamp values that are generated
by the server upon acknowledging the request and sending the
response. Furthermore, we show how sequential processing of
incoming requests can be leveraged to inflate the time of the
secret-dependent operation, resulting in a more accurate attack.
Finally, through extensive measurements and a real-world case
study we demonstrate that the techniques we introduce in this
paper have various advantageous properties compared to other
timing attack methods: few(er) prerequisites are required any
TCP-based protocol is subject to these attacks, and the attacks
can be executed in a distributed manner.

I. INTRODUCTION

In today’s world, the majority of applications run on an
Internet-connected server, whether directly exposed or as part
of the backend of a larger service. For users this is great as they
can perform banking operations, interact with their friends on
social media networks, and perform most of their job tasks
online. However, this also poses a significant threat as these
servers, which hold all kinds of sensitive information, may also
be connected to by adversaries. There are a myriad of ways
in which attackers can try to steal the information directly. As
these direct attacks, such as SQL injection, are well-known
and well-studied they are becoming less prevalent as a result
of frameworks that eliminate whole classes of vulnerabilities.
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A lesser-known class of attacks, in particular among appli-
cation developers, are side-channel attacks. One of the most
prevalent side-channel attacks is a timing attack, where the
time it takes to perform a certain operation leaks information
about a specific secret. Compared to other types of attacks,
there are relatively few reports of timing attacks against
popular services, e.g. in publicly disclosed bug reports on
vulnerability reward program (VRP) platforms. One plausible
reason for that is that timing attacks are difficult to exploit in
practice, primarily as a result of network jitter. Poor accuracy
when executing a timing attack also makes it more difficult to
detect such leaks in a black-box setting as a high number of
requests are needed in order to validate the timing leak.

Although the adversary may try to reduce the impact of the
network jitter by sending requests from a host that is located
within the same datacenter as the targeted service, this makes
attacks significantly more complex and may not always be
feasible. The majority of widely used services have their own
data center, or serve content through a distributed Content De-
livery Network (CDN), from which the attacker can obviously
not send requests. The main approach to overcome the effects
of jitter is to collect a large number of measurements and
then apply statistical methods to detect timing differences in
the processing time. A major downside of having to collect
many measurements is that the time required to conduct a
successful attack significantly increases. Furthermore, network
parameters or congestion might also change over time, making
it even more difficult to conduct the timing attack. Another
disadvantage of the requirement to collect many measurements
is that services may implement a rate limiting system, which
could even completely thwart timing attacks.

As network jitter is the largest contributor to noise of
the measurements, researchers have recently looked into per-
forming timing attacks that are independent of network jitter.
More specifically, Van Goethem et al. introduced “timeless
timing attacks”, which leverage coalescing of two requests and
parallel execution [1]. By observing which of the two requests
generates a response first, the attacker can infer which request
took the least processing time. As the two requests arrive
simultaneously at the server, both are affected by the exact
same jitter on the network path, thereby making the attack
performance unaffected by network jitter.

The timing attack techniques that we present in this paper
are similarly unaffected by network jitter.



Conceptually, these techniques are fairly straightforward,
yet, to the best of our knowledge, novel: the execution time is
directly inferred from the TCP timestamps. The first timestamp
is generated by the server when it sends the ACK packet that
acknowledges the receipt of the request. The second timestamp
is included in the actual response, which can only be sent once
the request has been completely processed. Although the TCP
timestamp values are randomized for each connecting host,
they are increased at the same rate as the actual time does
(in millisecond, or more recently possibly even microsecond
granularity).

In contrast to the timeless timing attacks, which require
coalescing of requests and parallel processing of the requests,
the prerequisites for TCP timestamp-based attacks are less
restrictive. The only two requirements for the basic version
of the attack is that the TCP timestamps option is enabled
on the server and that a response, typically in the form of an
ACK, is immediately sent after receiving the request. Based on
our measurements on Internet-facing web servers, we find that
88.38% of these are (potentially) susceptible to our attacks.

To detect timing differences of a smaller granularity than
those of the timestamps (1 ms or 1 ps), we introduce a method
that allows the timing difference to be amplified. In essence,
multiple requests are sent simultaneously and then processed
sequentially. By measuring the time between the arrival of the
first request and the response to the last request, the timing
leak is amplified by the number of requests that were sent,
while still being unaffected by network jitter.

Our results show that our attack detects timing differences
that are 5 to 33 times smaller, and require between 1/5 and
1/50 of the number of requests compared to round-trip time
(RTT) timing attacks. Through our formal model, we present
another advantage of our timestamp-based attacks, which is
that they can be launched in a distributed manner, where
multiple hosts can attack the same service and then combine
their timing measurements. This is possible because network
jitter does not affect the measurements and reduces the risk
of detection, as the requests originate from a large number
of sources, allowing an adversary to circumvent rate-limiting
systems.

In summary, we make the following contributions:

o We present two new attack methods that use TCP times-
tamps to infer server runtimes. We discuss the threat
model, formal model, and attack methods in Section III.

« We evaluate to what extent real-world servers can be
susceptible to these attacks by testing the support for TCP
timestamps and other prerequisites in Section IV.

o By performing measurements on our lab-controlled
servers, we demonstrate that TCP timestamp-based at-
tacks can detect 5 to 33 times smaller timing differences
and requires 5 to 50 times fewer requests compared to
RTT-based timing attacks in Section V.

o We demonstrate the practicality of the introduced attacks
through case-studies of a cryptographic attack we repro-
duced (and reported) against an open-source TLS library,

a reproduced attack against OpenSSH and a reproduced
attack against ProFTPd in Section V-E.

II. BACKGROUND AND RELATED WORK
A. Timing Attacks

Timing attacks have been around since Kocher published
their paper in 1996 [2]. He created a clever attack that allowed
him to extract keys used in cryptographic operation simply by
measuring the time it took for an operation to be completed.
That time could be measured accurately by attaching probes
to a device that executed the operations, such as a smartcard.

For a long time it was thought that these attacks were only
possible on devices with low computational power, where the
operations are executed slower, and not over a network, where
the sensitive operations would be executed on a powerful
and faster server. Additionally it was only possible to take
remote noisy measurements over a network as opposed to local
accurate ones directly from a device. Often, connections over
the Internet are noisy and may change over time, making it
very difficult to measure accurate runtimes of a server-side
operation on the opposite side of the connection [3]. Despite
these difficulties, Brumley et al. showed in 2003 they could
execute timing attacks over a network, albeit a local network
where latency and noise are usually low in comparison with
the Internet [4].

Timing attacks became more prevalent when Bortz et al.
defined two attack variants in their influential work: direct
and cross-site attacks. Direct attacks are executed from an
attacker machine to a victim server directly. For cross-site
attacks, the attacker serves a victim user with a malicious piece
of JavaScript code that executes the timing attack from the
context of the victim‘s browser [5]. In further work, Crosby et
al. tested multiple methods of analyzing collected RTTs and
show that their then newly created ‘box test’ performs best
[6]. Researchers continued to exploit cryptographic libraries
or implementations of OpenSSH and TLS, now over remote
connections [7], [8], or showed that timing attacks can also be
used on or against Wi-Fi networks [9], [10], [1]. Others contin-
ued to analyze the statistical methods employed for analyzing
timing attack data [11], and some focused on measuring time
accurately from within a browser [12], [13] or moved from
cryptographic exploits to exposure of private user-information
[51, [12], [1], [14], [15], something that was already shown
to be effective against a local cache much earlier [16]. More
recent work even showed that the location of users can be
extracted from timings of SMS messages [17], [18] or instant
messengers [19].

Recently, several works introduced new attack mechanisms
to reduce the noise in measurements. Van Goethem et al.
created a new attack that eliminates transport noise by sending
two requests simultaneously, making sure they are processed
concurrently, and observing which response was sent from the
server first, and thus is likely to have the shortest execution
time [1]. Vanderlinden et al. used the ‘server-timing’ header
to measure runtime directly [20], and later created an attack
in which the client attempts to synchronize to the server’s



‘date’ response header values, to then use the value of this
header to infer whether requests took longer to be processed
[21]. This reduces noise but still creates challenges as up- and
downstream latencies may differ and can be challenging to
measure [22], [23], [24]. Recently, Kettle updates the Timeless
Timing Attacks of Van Goethem et al. and explores the
practical impact of the updated attack mechanism [25].

Over the years, defenses against timing attacks have been
proposed, but their real-world adoption is unclear [26], [27].

B. TCP Timestamps

TCP Timestamps are defined in RFC7323 [28]. Their main
components are the TSval (TimeStamp VALue) and TSecr
(TimeStamp ECho Reply) fields. A timestamp value is set in
TSval when sending a segment and is echoed back in the
TSecr in the next segment by the other host. When a host
receives any TCP segment after the first SYN, they can now
subtract the received TSecr value (which is the TSval value
sent in a previous segment) from their current timestamp and
calculate the RTT as accurately as their internal clock. This
implementation lets the receiver blindly echo the timestamp
bytes without interpreting them or knowing their meaning.
Using TCP Timestamps has several advantages [28]:

1) For TCP’s congestion control algorithms to function
correctly, they need to be able to estimate the RTT [29].
Multiple timers in TCP are based on the RTT to be able to
determine for instance when to send a retransmission. When
the RTT is incorrectly estimated, TCP may send more spurious
retransmissions or will wait too long to send retransmissions,
resulting in a suboptimal connection.

2) Additionally, Protection Against Wrap-over Sequences
(PAWS) was introduced (originally defined in RFC1185 [30]).
Because more and more connections are getting significantly
faster (specifically high speed networks in the Internet back-
bone), the sequence numbers used by TCP can wrap around
over the largest value back to zero. This could lead to potential
issues when a retransmission occurs after the sequence number
has wrapped completely around, or when a new connection is
started after an interruption and the initial sequence number
happens to be in the same range as the old one. By using TCP
timestamps, the PAWS algorithm is able to detect whether or
not a segment is a retransmission from a previous sequence
range or a segment with sequence number wrapped around,
thereby preventing any issues.

Besides those two major use-cases, additionally the Eifel
detection and response algorithms can be implemented when
TCP Timestamps are used, the timestamps can be used for the
implementation of the LEDBAT or TCP-LP congestion control
algorithms and some other optimizations were created such as
the “best current practice” of reducing the TIME-WATIT state
when TCP Timestamps are enabled [31], [32], [33], [34], [35].

For the RTT measurement (RTTM), LEDBAT and TCP-
LP, the rate at which a timestamp value changes should
at least approximate the rate of change of the actual time.
PAWS, the Eifel detection and response algorithms and the
reduction of the TIME-WAIT state on the other hand, do not

require a timestamp to work, only a monotonic non-decreasing
value that increases at least once for every range of sequence
numbers [31], [32], [33], [34], [35], [30], [28]. Because some
use-cases require a value proportionate to the actual time,
choosing a time-based value as the timestamp value is a logical
default choice. The exact values of the timestamp values do
not necessarily matter, however, previous work has shown that
the values of TCP timestamps can be used maliciously.

Separate from the official use-cases defined in RFCs, there
are additional works on passive estimation of RTTs using TCP
timestamp values [36], [37], [38].

1) Malicious Use: In the beginning of 2001, McDanel sent
a message to a mailing list regarding the use of TCP Times-
tamps for collecting uptime information [39]. He explains that
the timestamp value is usually reset to 0 upon boot for most
systems at that time. Depending on the update frequency of
the used clock, he is able to find systems that theoretically may
expose the uptime of a system until 24 days (1 ms timestamp)
or 34 years (500 ms timestamp) after boot. Although the
impact of leaking this information may be limited, a later
article from Hailperin in 2015 mentions detecting a successful
DoS attack or determining the patch-level as possible use-cases
that may be interesting to an attacker [40]. Although RFC7323
from 2014 mentions the randomization of the timestamp value,
Hailperin in their article confirm the timestamp could still
often be used to detect system uptimes [28], [40].

Besides calculating update, McDanel mentions the use of
timestamps for identifying the number of systems in a load
balanced environment. By repeatedly making connections to
the environment the timestamps from the remote system will
change when connected to another machine behind the load
balancer [39]. A similar observation was made by Bursztein
in Phrack magazine in 2005. They show that it is easy to
count the number of hosts behind a system using network
address translation (NAT) (as long as the timestamps are not
being rewritten by the NAT) and propose a method to identify
whether Port Address Translation in the NAT is being used,
and whether or not there are multiple hosts behind a port.

In addition to these attacks, they propose options for de-
fenses, the most interesting one is adding a random increment
to the timestamps [41]. It is interesting to note that this was
a full 10 years before Hailperin confirmed that systems still
used 0 as the initial value of timestamps [40]. Wicherski
et al. improve upon the idea of Bursztein to identify hosts
behind a system using NAT in their 2013 paper and use it to
implement software for network filtering based on the TCP
timestamps. To their admission, the already proposed update
to add a random offset based on each unique connection would
circumvent their system [42].

Giffin et al. describe how they create a covert channel
using TCP timestamps by using the lowest significant bit
of the timestamp to communicate to a receiving party by
introducing very small delays in the packet transmission times.
While doing this, they assure the timestamps still adhere to
the required monotone non-decreasing nature described in
RFC1323 (which was the most recent version of the RFC at



the time of their writing) [43], [44].

For any of the aforementioned attacks it is unclear whether
they are still viable, although it is likely that the host based
randomization of the timestamp clock thwarted most of these
attacks.

2) Proposed Updates and Extensions: In the past years,
many updates were proposed to the timestamps option. They
are worth noting because of their common idea: increasing
the accuracy of the timestamps from milliseconds to microsec-
onds.

In 2017, researchers showed that using a millisecond times-
tamp accuracy is not enough in a datacenter [45]. Due to
the high volume of traffic and low RTTs within a datacenter,
they claim it would be beneficial to use microsecond accurate
timestamps. In the IETF99 meeting, they follow up with an
official draft of a new option that can be used to replace
the TCP timestamps option when supported by both hosts
[46], [47]. The authors show intent to implement the option
into the Linux kernel, but the draft expired and was never
updated anymore. A few years later, in IETF109, another
option was proposed, under the name ‘extended timestamps
option” (ETSOpt) [48], [49]. Once again, a draft was published
that expired and wasn’t updated. For both updates it remains
unclear whether there are any mainstream implementations of
these unofficial options.

More recently in late 2023, the microsecond timestamps
were implemented in the linux kernel and are available in
version 6.7 and up [50]. The option to use microsecond
accuracy was implemented using a route attribute, which can
be set using iproute2 version 6.8.0 and up [51]. As an example,
these versions of the kernel and iproute are available by default
in Ubuntu 24.10, which means developers can choose to enable
the microsecond accurate timestamps starting at that version.

C. Comparison with related attacks

While there are multiple other attacks that also aim to reduce
the amount of noise in measurements in various ways, we
highlight the main differences with our new attack.

Vanderlinden et al. use the ‘server-timing’ HTTP header
to read timing information from the server [20]. They show
adoption of the header is low, in contrast with the TCP
timestamps option, which is widely enabled as shown in
Section IV. In later work, they used the ‘date’ HTTP header
to infer runtime by synchronizing with the server clock and
observing the distribution of clock rollovers in responses [21].
By using this technique, they eliminate downstream jitter, but
not upstream, which means they still have a dependence on
the network path. In addition, this attack cannot be distributed
because it (1) still includes jitter from the path to the server
in its measurements and (2) first performs a clock sync that
is unique to one connection. Both previous attacks are limited
to HTTP because of their use of HTTP headers, while our
attack is broader since all protocols running over TCP can be
exploited (e.g. SSH or FTP, see Section V-E).

As previously mentioned, Van Goethem et al. use the
Timeless Timing Attacks to remove all network jitter from

Client
TSval=x, TSecr=0
I SYN

Server

TSval=y, TSecr=x

|
|
|
SYN/ACK |

|
TSval=x+6., TSecr=y I
ACK

Fig. 1. The TCP 3-way handshake with timestamp option support, where the
TSval of the client is increased by d. between SYN and ACK.

timing samples [1]. We highlight differences with the Timeless
Timing Attacks throughout this paper.

III. ATTACK OVERVIEW
A. Attack Mechanisms

The key aspect of our proposed timing attack is to utilize
TCP timestamps that are set by the server to infer the runtime
of processing a certain request. In Figure 1 we show the TCP
3-way handshake for two hosts that have timestamps enabled.
The client (the host that opens the connection) sends a SYN
with (among possible other options) the timestamps option
that includes a client-chosen initial value for TSval and 0
for TSecr because there is no initial value to echo back to
the server. If the server (the host that accepts the connection)
also supports TCP timestamps, it replies with the option set in
the SYN/ACK segment with the TSecr set to the value that
the client sent in the previous segment. The server selects a
TSval value that is usually based on the current time in milli-
or (depending on its configuration) microseconds on the server.
After this interaction the timestamps option is configured and
the client and server continue to send the TSval and reply
the TSecr to each other. If the server does not support the
timestamps option, it will not reply with that option in the
SYN/ACK segment after which the client host knows to disable
the option on their side as well in order to save bandwidth for
the continuation of the connection.

The initial value of the timestamp, denoted by x and y in
Figure 1 are calculated based on an internal clock to which
a random value unique to each connecting host is added
[52]. This prevents certain information leakages discussed in
Section II. Despite the prevention of information leakage, the
randomized initial values do not prevent timing attacks.

1) TCPTS Timing Attack: The basic idea of our attack is
to utilize the timestamps that the server sends along with
its replies to infer the runtime of a process on the server,
as visualized in Figure 2. Because with every TCP segment,
including segments containing data like HTTP/TLS responses
as well as simple ACK segments, the server includes a new
TCP timestamp based on its current time, we can calculate
the difference between two subsequent timestamps from the
server. Due to the per-host random offset that is added to the
timestamps, we cannot discover the local time of the server.
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Fig. 2. Basic attack mechanism where the difference between two TCP
timestamps Js can be used to estimate server runtime.

However, because the timestamps are proportionate to the
time, we can infer the runtime of a process on the server.

An important note to make for this attack mechanism
is that when sending a request, the server has to send an
immediate ACK before processing the request and another
segment (for instance with HTTP response and ACK) after
the processing. For each of those two segments, there will
be a timestamp option attached with two separate TSval
values. By subtracting the two timestamps, we obtain an
approximation of the runtime on the server, rounded down
to the accuracy of the server clock. We explore the real-world
immediate acknowledgement behavior in Section IV.

2) Runtime Multiplication Enhancement: A major enhance-
ment to this basic attack can be made when multiple requests
are coalesced so they arrive on the server at the same time.
This can for instance be achieved by sending one TCP segment
with multiple HTTP requests, a scenario used as an example
in this section. By coalescing multiple requests into a single
TCP segment, all requests will arrive on the server at exactly
the same time and will be processed one after another when
using HTTP/1.1.

In Figure 3 we show the enhanced attack mechanism where
the first two ACKs show the exact same behavior as in Figure 2.
Now, because there are more requests to be processed, the
client will receive more responses and thus more timestamps,
which can all be used at once to estimate the runtime of the
Server process.

When sending NV requests in one segment, we can calculate
the time difference between the initial ACK, which is an imme-
diate acknowledgement to the first request, and the timestamp
from the last response. As a result, the timing difference is
inflated IV times, which can be particularly helpful when it is
smaller than the granularity of the server‘s timestamp.

The requirement of an immediate ACK as discussed for the
basic attack mechanism is not as important for this enhanced
attack mechanism. Without an immediate acknowledgment
there is still the opportunity to multiply the runtime by N — 1
instead of NV by using the TSval value from the response to
the first request instead of the immediate ACK.

Because the Internet is becoming more and more complex

FIN/RST

Fig. 3. Advanced attack mechanism where difference between multiple
timestamps can be combined to estimate runtime more accurately.

and websites often serve a larger amount of requests to clients,
nginx increased the default maximum number of requests
that can be handled over a single connection to 1000 as
of version 1.19.10, before which it was limited to 100
[53]. For Apache 2.4, the default is still set to 100, but can
be easily modified through the MaxKeepAliveRequests
directive [54].

3) Distributed Attack: Because our attack has no depen-
dency at all on the network connection, it is feasible to
execute it in a distributed manner. An attacker could let many
machines, or even a botnet, each collect a small number of
samples and combine these samples into a single dataset from
which they can infer the runtime of one endpoint of a server.

This is a powerful property because it allows an attacker
to remain undetected even when collecting large amounts of
samples. Additionally, the attacker will be able to collect data
much more quickly than if they would have to use a single
machine, on which the simultaneous collection streams will
be limited due to the amount of network traffic an attacker
will generate. Sending this much traffic from one machine can
have the unintended side-effect of creating congestion on their
own connection, which will increase the noisiness of the RTT
measurements. Finally, the distributed attack would also allow
adversaries to circumvent rate limiting systems imposed by the
server, which are typically based on IP addresses. We note that
the Timeless Timing Attacks described by Van Goethem et al.
can also be executed in a distributed manner, but this is not
explored in their paper [1].

B. Formal Model

To clarify the attack and its advantages, we introduce a
formal model of the attack mechanisms. We follow the model
of Crosby et al. [6] and split the RTT, denoted by R, into
the server processing time P and the transport time over



the network 7. In a classical timing attack, where response
times over the network are directly collected and analysed, the
measurements obtained are of the form R = P+T'. Here, both
the server processing time P and the network transport time 7’
consist of sub-operations, such as the transport times between
each middlebox on the Internet, as well as the server reading
the data from the request, parsing and processing it, and so on.
An important sub-operation is the sensitive operation we want
to time in our attack, whose duration we will represent by Pj;.
The other components can be split into the sub-operations
m € [1,..., M —1] before the sensitive operation and the sub-
operations n € [M + 1,..., N]| after the sensitive operation.
This leads to the following equation:

M-—1 N
R=>"(Tw+Pu)+Pu+ > (Pat+T) (1)
m=1 n=M+1

In our novel attack, we will measure the time that has
passed between the generation of two TCP timestamps. More
precisely, we will measure the time between: (1) the timestamp
generated by the server right before processing a request; and
(2) the timestamp generated right after processing the request,
i.e., when the response is being sent. This means we only
measure the sub-operations m € [k, ..., M — 1], the sensitive
operation P, and sub-operations n € [M + 1,...,¢], where
1<k< Mand1</?¢<N.All of the operations within our
measurement are happening on the server, so we can say that
T,, and T,, are equal to zero and can be removed from the
equation. In addition, we define ¢ to be the identifier of the
request that is processed over the connection, leading to:

14
> P 2)

M-1
R; = Z Ppi+ Py +
m=k n=M+1

This equation describes exactly the amount of time between
the generation of two timestamps. The time that can be mea-
sured in our basic attack is this value for the first request of the
connection, floored to the accuracy of the TCP Timestamps,
namely 1 ms (or optionally 1 ps). With S denoting a sample
that our attack measures, this gives S = | Ry|.

For the enhanced attack mechanism, we force C' requests
to arrive at the server simultaneously and measure the time
between the start of processing the first request and the
sending of the response to the last request. In essence, this
is equivalent to summing Equation (2) C' times, once again
this value will be floored to the accuracy of the timestamp,

giving S = {270:1 RZ-J which can be further worked out as:

C M-1 C £
S = > Puit Y Pu+ > P
i=1 m=k i=1 1=1 n=M+1 (3)
M—1 C

0
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i=1 n=M+1
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In the expansion of Equation (3) we can see that the
processing time is multiplied by C, which means that a small

(secret-dependent) processing time may be multiplied to a
duration that is large enough to be detected in the floored
value captured by the attacker. Furthermore, when looking at
the individual components in the final equation, these consist
of C' times the processing time before and after the secret
operation and C' times the processing time of the secret
operation. These components consist of a true processing time
and a variation, i.e., jitter, on the processing time. This means
that although the timing difference from the secret operation
is amplified (by C times), so is the jitter of the operations that
take place on the server. However, because those operations are
local on the server, the jitter associated with these operations
is several orders of magnitude smaller than the jitter incurred
on the network path. As a result, our novel timing attack is
as performant as if it were conducted from the local machine
since it is unaffected by jitter on the network path.

C. Threat Model

We assume the attacker is remote and launches attacks from
any Internet-connected device, or several devices in the case of
a distributed attack. This is in contrast with most (traditional)
timing attacks where the attacker ideally positions themselves
as close as possible to the victim host. Here, “close” refers
to the latency and number of hops between the attacker and
the victim hosts. Geographically distant servers may thus be
considered closer or more optimally positioned than other,
geographically nearby hosts depending on the network con-
nection (e.g. inter-datacenter vs. from a residential network).
Not having the requirement to be close to the targeted server
provides the advantage that attacks can still be effective even
though it is not possible to be in the same data center as the
victim, or when the server is hosted on-premises.

In our basic attack scenario an attacker has to be able
to read all TCP response segments in order to collect the
TCP timestamps. In addition, when executing the more en-
hanced variant of the attack, the attacker has to be able to
coalesce multiple requests into one TCP segment. Given that
the initiated requests are under the control of the attacker,
this prerequisite can be trivially achieved. Furthermore, the
requests sent by the attacker should be handled sequentially by
the server; for web requests this means that HTTP/1.1 should
be used in favor of HTTP/2 (most servers that support the
latter also support the former), and in most other protocols the
default is sequential execution. Adding to that constraint, the
server should not close the connection immediately after each
request for the enhanced attack to properly function, as it relies
on the measurement of timestamp values in many response
segments. We found that there are a few cases where certain
web servers would send a Connection: close response
header after each request. In Section IV-C we explore in more
detail to which extent these prerequisites are met in real-world
applications.

In addition to direct timing attacks, i.e. those where the
attacker directly sends requests to the victim server, one
could also consider leveraging these attacks in a cross-site
context [5]. This means that the requests are initiated by the



Servers

Attack Precondition tested  supported %
Both TCP Timestamps Option 883892 785778  88.90%
Single Immediate Acknowledgment 613909 610224  99.40%
Multiplied  Persistent Connections 613909 586609  95.55%
Multiplied ~ Runtime > 1 ms 557215 386381  69,34%

TABLE I
AN OVERVIEW OF ATTACK PRECONDITIONS AND THEIR OCCURRENCE ON
THE INTERNET. THE BOTTOM THREE MEASUREMENTS WERE PERFORMED
ON A SUBSET OF DOMAINS FROM THE SET OF DOMAINS THAT SUPPORT
TIMESTAMPS AND THEREFORE SHOW THE SUPPORT OF EACH FEATURE
FOR TIMESTAMP-ENABLED DOMAINS

user’s browser while they are visiting a malicious site. As
a result, the requests would carry the user’s authentication
information for that website, allowing the attacker to infer
information specifically for the user. Because the attacker
cannot observe TCP traffic from within the browser, they need
to position themselves in an active Machine-in-the-Middle
(MitM) position, allowing them to observe network traffic
from and to the victim host. Note that the traffic between the
victim and targeted server can still be encrypted, as the attacker
only needs to read out the (unencrypted) TCP options. From
the MitM position, which can be achieved in various ways such
as by setting up a rogue Wi-Fi access point, being a privileged
network administrator, or executing ARP or DHCP spoofing,
the attacker can also inject malicious JavaScript to trigger
the requests. This can be done against any connection that
is (initially) set up over an insecure channel. Although most
HTTP/1.1 servers support HTTP request pipelining, browsers
will wait for a response before sending another requests on
the same connection. As such, only the basic attack can be
performed in the cross-site attack scenario.

In a cross-site attack, the attacker has limited control over
the network conditions and location of the victim. In particular
when using a MitM position while relaying the network traffic
to their destinations, there will likely be significantly more
network jitter on the connections than in the evaluation setup
we used to test the limits of our attack. This means that,
because our attack is independent of network jitter, it can
be expected to be equally performant as in our evaluation
setup, but the same is not true for the classical attack. With
increasing network jitter, the classical attack can be expected
to deteriorate while our novel attack can still operate at the
same performance.

IV. SUSCEPTIBILITY

In order to demonstrate the potential for widespread ap-
plicability of our attacks, we present an overview of some
preconditions and test the susceptibility of these preconditions
on the Internet. For each of the preconditions, we used a subset
of the Tranco list [55]. ' An overview of the preconditions and
their use can be found in Table I.

! Available at https:/tranco-list.eu/list/ KI33W

A. Timestamp Option Support

A requirement to perform our attacks is that the victim
has TCP timestamps enabled, since an adversary can always
enable TCP timestamps on their device. Fortunately, we found
that the timestamp option is enabled by default on both Linux
and Windows Server, though it is disabled by default on
Windows Workstation 10. This means that for users using
Windows as their operating system, a cross-site attack will not
be possible unless they enable the timestamps option manually
or the attacker finds a way to do so automatically. When the
option is enabled, the attacker’s kernel is instructed to send
out the timestamps option in each outgoing TCP handshake
(initial SYN) and attach the option to each TCP segment. The
server still has the option to either include a timestamps option
in their response or not. This means the attacker will always be
able to enable TCP timestamps on their own device, but they
still rely on the server for the attacks to work. In a cross-site
attack scenario, the attacker does not have complete control
over the client device. They have to rely on the configuration
of the victim’s device in this case.

To estimate the number of servers on the Internet that enable
TCP timestamps, we crawled the top million domains in the
Tranco list and tried to send each a TCP 3-way handshake on
ports 80 and 443, including the timestamps option. After the
handshake completes, we followed up by sending a TCP RST
segment to release the connection. From this interaction, we
can determine whether the server supports TCP Timestamps
by checking whether or not they responded to our SYN with
a SYN—-ACK that includes the timestamps option.

We disregard domains that cause an error and find that al-
most 90% of servers support TCP timestamps when randomly
reaching out to them. The number of domains supporting
timestamps on port 443 is practically the same. This makes
sense because we will often end up on the same machine for
both ports and the kernel will attach a timestamp regardless of
the transport-level port. We can conclude that attackers have a
reasonable chance that their target supports TCP timestamps.

To check whether there are any servers that use a timestamp
with a granularity lower than a millisecond, we performed
another scan in which we opened a connection to the server
by sending a SYN segment with a timestamp option attached,
waiting for one second and then sending a FIN segment.
By comparing the difference in timestamp value (if supported
and enabled by the server) in the FIN/ACK and SYN/ACK
against the sleep timeout of one second, we can roughly
estimate the timestamp granularity. Out of 730557 tested
domains, we find that only approximately 50 appear to use
timestamps that have a higher accuracy than one millisecond.
Further manual inspection reveals that some hosts indeed use
timestamps that are more accurate than one millisecond, but
the majority of results are false positives, for instance due to
the fact that these hosts replied with a TSvVal value of 0 in
their SYN/ACK segment, which results in an artificially large
difference between the two timestamp values. These systems
do not seem to start counting at 0, which was the default
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way of using timestamps a long time ago, but they seem to
only start sending their actual timestamp values after the three-
way handshake is completed. This has no practical impact on
our attacks, as we do not use the timestamp included in the
SYN/ACK in the attack.

B. Immediate Acknowledgments

For the basic attack method to work, the server has to
respond to incoming requests twice: once immediately when
the request arrives (an ‘immediate acknowledgment’) and once
after the application has processed the request. An attacker has
to be able to trigger this behavior from the server to be able
to measure the runtime based on the timestamps.

For Linux-based servers (by far the most common OS
for servers [56]), a one-time immediate ACK is sent when
the connection has been established [57]. For subsequent
data that is sent, an acknowledgment is sent immediately
when more than a full frame has been received (as per the
___tcp_ack_snd_check function). An attacker could force
this condition to always be true by including bogus data in
their request (e.g. as part of an unused HTTP request header).

To evaluate how prevalent the immediate ACK is in practice,
we selected a random sample based on resource and timing
constraints from those that have TCP timestamps enabled. For
each domain we visited the first page after following all initial
redirects (to HTTPS and possibly a landing page). For the
613909 hosts that responded, we find that over 99.40% send
an immediate ACK after the first request on a new connection,
which matches the behavior defined in the Linux kernel (which
is most likely similar to kernels of other OSes). From this high
percentage, we can conclude that the basic attack will work
against almost all servers that have TCP timestamps enabled.

C. Persistent Connections

Our stronger attack method that leverages runtime multi-
plication has different preconditions compared to the basic
method. In order for the attack to work, a server has to accept
more than one request over a single connection. When using
HTTP/1.1, the default behavior is to keep connections alive
so subsequent requests can be sent directly over an existing
connection. This is more efficient than closing each connection
because setting up a connection takes time and resources.
Although by default connections remain open, both the server
and client have the option to indicate they want the connection
to be closed. By adding the Connection: close header
to a request or response, they can communicate that the
connection should be closed after the next response is received.

A server that sends a Connection: close header will
in general not respond to subsequent requests over the same
connection anymore. It may mean that the server does not
support persistent connections, so it is best to honor this
header to avoid unexpected side-effects. In our test with
613909 servers, we find that less than 4.5% of servers respond
with a Connection: close header after the first request.
That means more than 95.5% of servers support persistent

connections and are potentially vulnerable to the runtime
multiplication timing attack.

D. Server Runtimes

1) Problem Statement: Our attack must handle TCP’s con-
gestion and flow control methods, since they may otherwise
interfere with the attack. A first mechanism is the initial con-
gestion window (icwnd), which prevents a host from sending
a large batch of data right after creating a connection. The
congestion window slowly opens up and allows the host to
send more and more data whenever an acknowledgment from
the receiving side makes its way back. This mechanism would
be detrimental to our attack because an attacker would not
able to send a large number of requests at once to the victim.
However, because the initial congestion window is a parameter
of the sender, the attacker can freely alter this parameter,
removing this obstacle. For the basic attack method the icwnd
is not important because only one request is sent.

A second mechanism is the receive window that is con-
trolled by the receiving side. Upon sending data, the receive
window of the receiver is filled up gradually. When the
window is full, the server instructs the client to stop sending
more data by advertising a zero window size. The client, i.e.,
attacker, now has to wait, otherwise data will be lost as the
server can’t receive it anymore. Once enough data has been
processed to open up the window, the server will increase
the receive window size and advertise this in one of the
responses that are being sent back (or in another window size
advertisement). Now the client is able to send more data, but
overall, the time lost is at least one RTT (at the moment the
server sends the updated receive window, that response has to
travel to the attacker, which then has to send their next batch
of requests). If the remaining requests in the buffer together
have a processing time smaller than the RTT, the server will
have to stop processing requests and wait for the next batch
to arrive, which is a problem for the attack. If this occurs, the
total processing time of all requests will depend in part on the
RTT, which is exactly what we attempt to avoid.

2) Solution: The effect only occurs when an attacker wants
to send more requests to the server than fit into the receive
window. One way to make sure this doesn’t happen is to check
the server’s window size when opening the connection, and
then never sending more data than the server advertises it
can receive. When an attacker wants to send more data than
fits into the window, they have two options: they can either
send the next batch of requests at the moment they expect
the server’s receive window to open up, or they can wait for
the server to send the updated window size. The latter can be
used by an attacker when the processing time of the requests
is large enough such that the next batch of requests can reach
the server before that server has run out of requests to process
and has to wait for the next batch of requests.

Once again, we reached out to the homepages of a random
sample of 557 215 domains from the Tranco list that support
TCP timestamps to estimate if this would be an issue on
real-life websites. By using the TCP timestamps to measure



the runtime, we get an accurate representation of the time
it took the server to process the request. We find that out
of over 386000 domains, just under 70% take more than
1 ms to process the request. This is in line with what can be
expected, as many of these homepages are likely using caching
mechanisms to speed up the processing of the requests. When
executing timing attacks against other endpoints on a site (such
as endpoints where the site has an interaction with a database
or other backend server such as an authentication service), we
can safely assume that the overall runtime will be significantly
larger. Therefore, we conclude that the majority of endpoints
an attacker would be interested in will not be affected by the
receive window size problem.

E. Coalescing Requests

In our attack that leverages request coalescing, a prerequisite
is that the requests arrive simultaneously at the server. If there
is any delay between requests being processed, network jitter
would be introduced, decreasing the attack performance. There
are several options for coalescing requests, examples being:

o Single TCP segment. The attacker can send multiple
requests in one TCP segment, but the multiplication factor
is limited by the maximum segment size (MSS) of the
connection, which is typically around 1460 bytes.

e TLS record. Multiple requests can be combined into
a single TLS record. The server can only decrypt and
process this TLS record once it has been received entirely.
The maximum size of a single TLS record is 16 384 bytes.

e Omitted TCP segment. An adversary sends requests
over multiple TCP segments, and sends the first TCP
segment last over the wire. Only when the missing first
segment arrives can the server process all requests. The
limit depends on the maximum receive buffer defined by
the server. For example, on AWS Ubuntu-based servers,
this maximum value is set to 6 MiB by default, which is
more than sufficient to send the requests.

A second requirement is that requests are processed sequen-
tially. Although HTTP/1.1 does not guarantee this [58], we
confirmed that nginx, Apache, and Microsoft ISS handle
HTTP/1.1 requests sequentially. Overall, for HTTP/1.1, the
main limiting factor is how many requests can be sent in a sin-
gle connection (nowadays up to 1000, recall Section III-A2).

F. Infrastructure Considerations

When compared to prior work on timing attacks that are
unaffected by network jitter, namely the Timeless Timing
Attacks [1], the prerequisites of our attack are different. The
timeless timing attacks require an HTTP/2 connection over
which requests are sent that arrive simultaneously at the server
and are then processed in parallel. HTTP/1.1 does not support
multiplexing of requests over a single connection, so, to the
best of our knowledge, there is no other remote timing attack
that is unaffected by network jitter that has a comparable
performance to our proposed technique using TCP timestamps.

For the timestamp-based attack that requires coalescing
of requests to amplify the timing difference, a requirement

is that these requests are processed sequentially. As such,
coalescence-based attacks over HTTP/2 are not feasible, as the
server will process these requests in parallel, but connections
supporting HTTP/1.1 are affected. The Web Almanac of
2024 shows that around a fifth of homepages only support
HTTP/1.1, but this is not an issue for our attack: even when
HTTP/2 is supported by a server, it is likely that HTTP/1.1 is
still supported for backward compatibility [59].

In addition, when visiting many sites on the Internet, the
origin server (actual host of the site’s content) will not be
reached but rather a CDN server can be found. Many sites
either use a CDN for caching static content or as a proxy
that adds some protection against e.g., Distributed Denial-of-
Service (DDoS) attacks. Looking at the Web Almanac data, it
is clear that many publicly facing sites support HTTP/2 [59].
Large CDNs are likely to implement new standards faster
than individual websites. Once they do, the adoption of for
instance HTTP/2 or even HTTP/3 rises fast because of the
large number of sites using these CDNs as the frontline of
their infrastructure. We tested the top three CDNs (Cloudflare,
Amazon CloudFront and Google Cloud CDN) and found that,
as expected, they do not pass through TCP timestamps from
the origin server. This means the attack cannot be carried
out through the CDN and must instead target the origin
server directly. When sending traffic over the Internet, we
never observed that timestamps were rewritten or dropped
by middleboxes such as NATSs, routers, firewalls, Intrusion
Prevention Systems (IPSs), or similar devices.

The high adoption of HTTP/2 in the Web Almanac data
thus includes many CDN endpoints which are more likely to
support HTTP/2 [59]. Because popular web servers nginx and
Apache do not yet enable HTTP/2 out of the box, it is likely
that relatively fewer origin servers actually support HTTP/2.
This means that the Timeless Timing Attacks are less likely
to be usable against those origin servers, while our attack
would be usable. In addition, we expect that a Timeless Timing
Attack against a CDN server will be less performant due to
the additional jitter imposed by the backend requests between
the CDN server and the origin server.

As mentioned, we cannot perform our attack through a
CDN, but must instead target the origin server. Fortunately,
Vissers et al. have shown that many origin servers can be
found despite them using a CDN [60]. They claim most sites
do not use a CDN to hide their origin server, but mainly
for performance reasons. An adversary can therefore use the
techniques described by Vissers et al. to find origin servers
for the victim site and perform the attack against these servers
directly, meaning the usage of CDNs does not limit our attack.

V. RESULTS

To evaluate our novel attack methods, we perform measure-
ments on our lab-controlled servers hosted on popular cloud
platforms. We collect millions of samples and systematically
analyze them to explore the limits of the attack methods.
We compare our methods against the well known RTT based
timing attack method by collecting measurements against the



same servers to allow for a fair comparison. In addition, we test
the attack against three real-world applications. Our datasets
have been made public on Zenodo.?

A. Experimental Setup

We set up multiple servers on Google GCP in a region
on our university’s continent to act as the victim servers,
and on our internal university cloud located on our campus
to act as the adversary machines. Note that the performance
of our attack is unaffected by the location of the server; we
opted for a nearby server to reduce latency and thereby speed
up the experiments, allowing us to perform a comparability
analysis with a high number of measurements. All servers
have high speed Internet connectivity of at least 1 Gbps.
Our victim servers were large instances of type C4 with a
constant clock frequency (through the all-core turbo
frequency option) to prevent a varying clock frequency
from interfering with the runtime of the server-side scripts.
The virtual CPUs remain shared with other tenants, which
could still be a source of noise in the execution. Our web
servers are set up to respond to our requests with a variable
delay that is configurable through a request query parameter.

On the adversary servers, we increased the initial congestion
window such that we would not be limited by the congestion
control algorithms of TCP. We disabled Nagle’s algorithm
(by setting the TCP_NODELAY flag for each connection) to
make sure we could send requests without any delay added
by the kernel. Finally, we also disabled the TCP segmentation
offloading features of each network interface card (NIC) to
be able to correctly identify each of the received segments
exactly as they were sent by the servers, without the NICs
merging the segments before they could be captured. These
are all settings that can be changed by any attacker executing
a direct timing attack as long as they have root privileges on
the machine they are launching the attacks from.

We collected 35000 samples consisting of a total of ap-
proximately 100 million requests to the HTTP servers for each
timing difference that we aimed to detect: 500, 250, 100, 75,
50, 25, 10, 5 and 1ps for the millisecond timestamps and
5000, 1000, 750 and 500 ns for the microsecond timestamps.
This results in an approximate total of 1.3 billion requests sent
to and processed by the GCP servers. We also collected data
for smaller timing differences using millisecond timestamps
but leave those out of the reporting because the number of
requests needed for a successful attack exceeded our threshold.
A collected sample consists of two sets of 1000 baseline
requests, where the delay performed on the server is set to
only 1 millisecond, and a set of 1 000 target requests for which
the delay is the same 1millisecond plus one of the tested
delays mentioned above. These delays are set through PHP’s
sleep_ns function which itself also experiences execution
time jitter. That is, not every call to the sleep function will take
exactly the same amount of time, there will be some variations
in runtime, just like a real-world operation would experience.

2 Accessible via https://doi.org/10.5281/zenodo.17098889.

10

After sending the request, the TCP timestamp values for every
received segment are collected. Additionally, we also collect
RTTs between the same adversary and victim machines to be
able to compare our attack against existing methods.

Our data collection ran for a total of one month on multiple
concurrent clients and servers, resulting in several hundreds
of gigabytes of network traffic being generated. To collect the
data, we incurred a cost of approximately $2000 USD for
cloud services. The main source for the costs was the egress
traffic. Although our servers only returned a small response
that fit in a single TCP segment; by sending over a billion
requests this still amounted to a high amount of network traffic.
Because of the relatively high cost of running the required
infrastructure and the time it takes to collect measurements,
our work is limited by these practical constraints.

B. Data Analyses

In our analysis, we repeat the attacks 500 times, and assess
whether the success-rate over all of those attacks is higher
than 95%. To have enough samples for this analysis, and keep
the costs of data collection manageable, we reuse 75% of the
samples between each subsequent attack iteration. We apply
this approach to multiple methods of data analysis:

1) RTT Based Timing Attacks: For the standard timing
attacks based on the RTTs we use the box test as defined by
Crosby et al., which has become the de facto standard method
of analyzing RTT based timing attacks [6].

2) TCP Timestamp Based Timing Attacks: For our novel
attacks based on the TCP timestamp values we used the
chi2_contingency test to calculate a unique value for
each of the datasets that we then use to find a threshold to
differentiate the datasets. This metric was chosen based on
the results of prior work that successfully employed this test
[21], [20]. Because we found that the chi2_contingency
test does not perform well when a low number of samples is
provided to it, we additionally test each of the datasets against
a simple threshold test on the raw data. For the threshold test,
we select the smallest value from the datasets and compare
those values. Choosing the smallest value over the median
or mean is based on the observation from Crosby et al. that
for comparing network timings, the lower percentiles work
better than higher percentiles or mean values because these
distributions are not Gaussian, but rather skewed with a long
tail [6]. When using millisecond timestamps, there are only
a few discrete bins in which collected values end up, which
makes it difficult to calculate the percentiles as used in the
box test. With microsecond timestamps enabled, however, we
can switch back to the box test. This is possible because there
are many more distinct execution time values being measured
and calculating percentiles in these datasets is more accurate.

C. Attack Results

1) Millisecond Timestamps: In Table Il we show the results
of the novel attack (indicated by “TCPTS’) versus the standard
timing attack (indicated by ‘RTT’). Specifically, this table
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Attack  Analysis Method  Coalescing 1 ps S us 10pus  25us  S50ps  75us 100 pus 250 us 500 ps

900 - 27900 900 900 900 900 900 900 900

100 - 26100 500 200 100 100 100 100 100

50 - 32550 600 200 50 50 50 50 50

TCPTS X2 / Threshold 10 - - 640 230 50 40 20 10 10
5 - - 2320 225 55 35 25 5 5

2 - - 2434 272 48 28 26 12 4

1 - - 5009 305 47 28 25 13 6

RTT box test / - - - 10337 2944 848 1089 66 32

TABLE II

RESULTS OF THE ATTACK USING TCP TIMESTAMPS AND A ROUND-TRIP TIME ATTACK. EACH VALUE INDICATES THE NUMBER OF REQUESTS THAT ARE
REQUIRED FOR A SUCCESSFUL ATTACK (95% SUCCESS RATE). VALUES MARKED BY A ‘—’ WERE UNSUCCESSFUL WITH UP TO 100 000 REQUESTS.

Attack

Analysis Method Coalescing 500 ns 750 ns 1 ps 5 us
900 - - ~ 16200

100 — 90100 45700 8500

50— 83000 44650 7850

“ZOTXCtZ;FtS 10— 80410 38370 6890

S _ 90885 40985 6245

> - — 45490 6654

I -~ 91349 53101 5781

TABLE III

RESULTS OF THE MICROSECOND TIMESTAMPS ATTACK USING THE BOX
TEST. EACH VALUE INDICATES THE NUMBER OF REQUESTS THAT ARE
REQUIRED FOR A SUCCESSFUL ATTACK (95% SUCCESS RATE). VALUES
MARKED BY A ‘~’ WERE UNSUCCESSFUL WITH UP TO 100 000 REQUESTS.

Coalescing  France Poland Finland Combined

900 900 900 900 900
100 100 100 100 100

50 50 50 50 50

10 50 60 50 50

5 50 45 50 50

2 48 48 48 48

1 47 48 48 48

TABLE IV

RESULTS OF THE DISTRIBUTED ATTACK FOR A DIFFERENCE IN RUNTIME
OF 50 ps AND DIFFERENT AMOUNT OF COALESCED REQUESTS. THE
SEPARATE RESULTS FROM THE THREE CLIENT LOCATIONS ARE ALSO

SHOWN. EACH VALUE INDICATES THE NUMBER OF REQUESTS THAT ARE

REQUIRED FOR A SUCCESSFUL ATTACK.

shows the number of requests required to be able to success-
fully differentiate between the baseline and target endpoints
where the timing difference between the execution times of
those two requests is listed in the header row. For instance,
for the timing attack based on the RTT, 2944 requests are
needed to differentiate between a request that took 1ms to
process and one that took 1 ms +50 ps.

It is clear from the data that our novel attack can exploit
timing differences that are impossible to differentiate using
only RTTs, for delays up to 5 times smaller than those that
can be exploited using RTTs. Even when the RTT attack can
work, our attacks decrease the required number of requests for
a given delay by a factor of over 5 and up to 50.

As mentioned before, the x2 test does not work well when
only a small number of samples is used. For that reason, we
combine the x? test with a simple threshold test and list the
outcome of the best performing attack. In practice, we found
that the simple threshold test always performed better when
fewer than 25 requests were required to distinguish the timing
differences. In all other cases the x? test performed better.

2) Microsecond Timestamps: Microsecond timestamps
were recently added to Linux as an opt-in feature, and are
expected to become more prevalent [50], so we also test our
attack using them, with the results in Table III. In contrast
to millisecond timestamps, we do not compare to traditional
RTT-based attacks, since the RTT-based attack can detect at
most 25 us differences, which is much higher than the highest
timing difference tested for the microsecond timing attack.

As shown in Table III, we could detect differences down
to 750 ns with an accuracy over 95% using the box test.
This timing difference is 33 times smaller than what the best
traditional timing attack can detect. Detecting differences of
500 ns is on the verge of practicality: although a 95% success
rate was never reached with less than 100 000 requests, when
using 100, 50, 10, or 5 coalesced requests, the success rate
was around 90%, and when using 2 or 1 coalesced requests,
the success rate was around 80%. Similarly, for 750 ns with
2 coalesced requests, the success rate was 90%. Lastly, when
using 900 coalesced requests, the success rate of detecting
differences of 750 ns and 1 us was roughly 80% and 90%,
respectively. We believe the reason for this lower success rate
is that the box test is less ideal when relatively few samples
are available. That is, when sending up to 100000 requests
using 900 request coalescing, we extract | 100000/900] = 111
timestamp differences. We consider it interesting future work
to investigate better statistical tests to also achieve 95% success
rate for these cases.

3) Distributed Attack: An advantage of our attack is the
ability to mount a distributed attack. Multiple attacker clients
can collect samples simultaneously from one victim server.
This is possible because the measured values are independent
of network jitter, so requests from differing network paths will
cause similar measurements regardless of their path and the
jitter imposed by it. To test the distributed attack, we set up
a victim server in Spain and collected data from clients in
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France, Poland and Finland simultaneously. We merged the
collected data and ran an attack against the resulting dataset.
In Table IV, the results of the independent datasets for each
of the client locations as well as the results for the combined
dataset are shown. When compared to the 50 ps case in Table II
and to each other, clearly the distribution of the clients did
not have an impact on the results. We limit the distributed
attack testing to only one runtime difference because of the
previously mentioned cost and time constraints.

D. Success Probability Model

Using our formal model of Section III-B, we can evaluate
whether the observed results are in line with what could be
expected. As mentioned, the observed value (S = |Rp]) is
the total execution time taken by the server, rounded down to
the nearest accuracy of the TCP timestamp. We perform two
comparisons to determine whether it is possible to distinguish
between a timing difference of A;, namely whether the two
baseline requests are the same: |Ry0| = | Rp1], and that the
longer execution time results in a higher timestamp: | Rpo| <
| Rpo + A¢]. As we sent requests at random intervals and did
not synchronize with the clock tick at the server side, the
observed values R; are randomly distributed in the half-open
interval from |R;] until and excluding | R;| + 1.

Without considering the jitter of the execution time, we can
state that the probability for a successful attack with a single
observation is P(|Ryo] < |[Rpo+ A¢]), or the probability
that A; makes the observed result jump to the next tick.
The value for this is 1%55’ where 1ms is the accuracy of
the timestamp. Similarly, the probability for failure can be
expressed as 1 — lfnts. As such, only a difference of 950us
could be detected with a single request with 95% accuracy.
Using n requests, we can determine the probability that all
requests fail as (1 — 1%;)”’ and subsequently the probability
for the attack to succeed:

Ay
1ms

1-(1- )" “)

Of course, we need to also take into account the jitter of
the execution time on the server. As we make our comparison
with three independent requests (two baseline requests, and
the target request), the value of the jitter should be counted
three times. With J representing the jitter, the success of the

attack can then be expressed as:

A
1— =L +3J
Ims

1—( & 5)

Comparing this probability with our obtained results, e.g.
for 250 ps, and an (estimated) jitter value of J = 1us, we find
that 11 requests are needed to achieve an accuracy of 95%.
This is fairly close to the 13 requests that we found through
our empirical results. Similarly, we find that our overall results
are in line with the expectation from our formal model, and

thus provides more confidence in the validity of these results.
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E. Case Studies

1) Attacking TLS: To test our attack against timing leaks in
a non-HTTP protocol, we audited open-source TLS libraries
for timing attacks [61]. This revealed that the TLS imple-
mentation in the Embedded Linux Library (ELL) developed
by Intel [62] is vulnerable to the Lucky 13 timing attack.
This attack targets CBC-mode encryption, which employs a
block cipher where the receiver decrypts the incoming data,
removes padding bytes, and then verifies the authenticity of
the remaining data by calculating and verifying a Message
Authentication Code (MAC). The problem is that the number
of padding bytes is determined by unauthenticated decrypted
data, specifically the last decrypted byte [61]. As a result, ELL
is vulnerable to similar timing attacks as was GnuTLS [61, §6],
where the number of input bytes given to the MAC algorithm
depend on the last (unauthenticated) decrypted byte, influenc-
ing its execution time. These data manipulations cause MAC
verification to fail, causing the client to send a TLS Alert. All
combined, the value of the last plaintext byte influences how
fast the TLS Alert is sent. By trying various modifications
to the last value in an encrypted block, and measuring the
response time, this byte’s value can be recovered [61].

As a proof-of-concept, we implemented an attack against a
TLS client that recovers the rightmost byte in an encrypted
block. As often done in cryptographic attacks [61], [8], we
demonstrate feasibility by distinguishing between two possible
plaintext values. When using ELL on a Raspberry Pi 1 B+ with
microsecond TCP timestamps enabled, and with the attacker
connected to the same Wi-Fi network, we could successfully
distinguish between the plaintext bytes 0x00 and 0x01. Note
that these two possible plaintext values result in the smallest
timing difference, meaning they are the hardest to distinguish.

We also tested the attack against an AWS EC2 t2.micro
in North California with microsecond timestamps enabled,
with the attacker using a VPS in the United Kingdom. For
ethical reasons, we used rate-limiting to avoid overburdening
either hosting company. Over this transatlantic connection, our
attack successfully distinguished the plaintext bytes 0x00 and
0x41, resulting in the smallest timing difference in the Lucky
13 attack, which in our setup was roughly one microsecond.
Moreover, with over 50k samples, we could also distinguish
between the bytes 0x00 and 0x01 with a success probability
above 50%, corresponding to a timing leak of roughly 150
nanoseconds. Interesting future work is to perform extra
measurements to precisely determine the success probability.

The timing leak in ell was assigned CVE-2025-32998.

2) SSH: We also used TCP timestamps to perform a user
enumeration timing attack against an OpenSSH server. For
this, we built an OpenSSH server that does not include the
patch preventing user enumerations [63]. We used a t2.micro
server as the victim, where a real user uses sha512 to hash the
password, and non-existing users use default berypt option.

Like in any realistic scenario, we set up fail2ban and
configured it to ban an IP address for one day after 5 login
failures [64]. As an adversary, we used multiple AWS t2.micro
instances. With this distributed attack setup, we were able



to differentiate (non-)existing usernames with 95% success
probability using 30 distributed connection attempts. We also
ran the attack while other clients sent 900+ HTTP requests/sec
to the targeted server to mimic real-world traffic, which did
not noticeably affect the performance of the attack.

This attack is infeasible using a standard RTT-based timing
attack, since an adversary would be unable to combine mea-
surements from different sources. We also tested a Raspberry
Pi with the real account using sha256, resulting in a timing
difference of around 3 ms, which our attack can measure using
only a single connection attempt.

3) FTP: Finally, we tested our attack for a user enumeration
attack against ProFTPd. We set up a server running ProFTPd
on Google Cloud and collected timestamps under two sce-
narios: (1) without sending any other traffic to the server;
(2) while sending approximately 900 requests/sec of synthetic
background requests every second to an nginx server running
on the same host to mimic real-world background traffic. We
found that an attacker only needs a single login attempt to
differentiate between existing and non-existing users on the
FTP server. Sending about 900 requests/sec did not noticeably
change these results.

We also confirmed that FTP allows for request coalescing,
meaning an attacker can send multiple login requests at once.
Depending on the rate-limiting configuration on the server, the
attacker can therefore coalesce requests to FTP and exploit
timing attacks with smaller runtime differences.

VI. DISCUSSION

A. Extension for Other Protocols

Any TCP-based protocol can be vulnerable to our attack,
as evidenced by our case studies. Whether our optimized
coalesce-based method is also feasible depends on whether an
attacker can send multiple requests back-to-back and whether
or not the server processes those requests sequentially.

1) QUIC as a Transport Protocol: In the newer QUIC
protocol, there are no timestamps exposed, rendering the attack
impossible. QUIC timestamp frames have been proposed in an
Internet Draft, which has been expired since 2023 [65]. If this
extension is deployed, it might expose all applications running
over QUIC to attacks analogous to our TCP-based ones.

2) High-Accuracy Timestamps: Previously, proposals were
drafted to use higher resolution timestamps [45], [48], [49],
[46], [47]. As we have shown, there is now also an imple-
mentation of microsecond timestamps in the Linux kernel that
can be enabled through a route option [50], [51]. We have
shown that microsecond timestamps can be used effectively to
exploit timing attacks. Therefore, users of this feature should
take care not to expose these highly accurate timestamps to
the public Internet. We showed that there are only a handful
of servers that currently use timestamps more accurate than a
millisecond, however, in the future, this number could increase
as developers and system administrators find and enable the
now optional microsecond timestamps.
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Fig. 4. Cumulative distribution of TCP connections based on their peak
number of unacknowledged packets during the connection. This analysis
is based on 14 days of 15-minute traffic traces from the WIDE backbone
project [68], encompassing over three million real-world TCP connections.

B. Defenses

In addition to well-known defenses such as constant-time
implementations, which are known to be difficult to implement
in practice, we propose two general defenses:

1) Decreasing Timestamp Frequency: When timestamps
are enabled, a timestamp is added to every segment sent by
a host. Nishida proposed to decrease this frequency to save
bandwidth [66], [67]. In specific cases this can be a viable
defense against our attack. We note that when an attacker
is able to send hundreds of coalesced requests, it is very
likely there will always be at least two response-segments that
include a timestamp, thereby making an attack feasible, with
the only limitation that the attack cannot choose how many
coalesced requests they will include in their measurements.
Each of the collected samples may in this case result in
a different multiplicative factor of the runtime, which will
make attacking more difficult. In the basic attack method,
this defense slows the attacker by increasing the number of
requests needed, making the attack more time and resource-
intensive.

2) Obfuscated Timestamp Values: As a more general and
robust defense, we propose to obfuscate timestamps by re-
placing them with an incremental counter, where the sender
maintains a table that maps the counter to timestamp values.
We opt for this approach over the idea of encrypting the
timestamps because it is compatible with the receiver’s PAWS
mechanism. While the other side of the connection will not
be able to read the actual values of the timestamps anymore,
they can still reflect the counter value back to the sender, and
the sender can use its table to map it back to the original
timestamp value.

To estimate the size of the mapping table, we analyzed the
peak number of unacknowledged packets in real-world TCP
connections, based on two weeks of network captures from
the WIDE backbone that connects universities and research
organizations to the Internet in Japan [68], covering slightly



more than 3 million TCP connections. This revealed that a
table of 10 entries can handle 87% of TCP connections, and 20
entries can handle 95% (see Figure 4). Here, each entry would
take up 8 bytes, namely the counter value and corresponding
timestamp. Connections with many unacknowledged packets
typically transferred more than 50 MiB of data, and for
these connections, or for connections that have no secret-
dependent operations, the defense can be disabled. Although
this table introduces some overhead, and it might interfere with
middleboxes that (try to) use the intercepted timestamps, the
advantage is that it is compatible with PAWS.

C. Limitations

While our novel attack improves the limits of timing attacks,
there are also limitations that have to be overcome or might
prevent the use of the attack against specific hosts.

Primarily, the preconditions required for the attack and
discussed in Section IV show specific limitations. Timestamps
are optional and they have to be enabled. For the coalescing
attack, it must be possible to coalesce requests in specific ways
to be able to let them arrive at the server at the same time.

The connection should be persistent and the requests cannot
be executed concurrently, which means the use of HTTP/1.1 is
required for the attack to work. Although HTTP/2 and QUIC
have been published for a while, most servers still implement
and listen for HTTP/1.1 for backward compatibility.

D. Future Work

In our case studies, we showed that, apart from HTTP/1.1,
our attacks also apply against other TCP-based protocols like
TLS, OpenSSH, and FTP. Interesting future work is investigat-
ing additional TCP-based protocols for their susceptibility, as
well as other non-TCP protocols that also contain a timestamp.

The box test was the best-performing method of analysis
among the different analysis methods we tested on the mi-
crosecond timestamp dataset, which is in line with previous
results of Crosby et al. [6]. For low-granularity data, however,
the box test cannot perform well. Interesting future work is
evaluating different tests for low-granularity data.

VII. CONCLUSION

While additional features are often added to protocols for
various reasons, we show that these extensions should be
handled with care. The values used in the TCP Timestamps
option can be abused to exploit timing leaks by reading
multiple response segments from a server and deriving an
accurate runtime from the timestamp values. We gathered data
on runtimes derived from TCP timestamp values on multiple
servers for multiple timing differences and use this data to
show that it is possible to exploit timing leaks using TCP
timestamps. The novel attacks we proposed improve a classical
attack by a factor of over 5 and can exploit timing leaks that
are 5 times smaller for millisecond timestamps, or even 33
times smaller for the new and optional microsecond times-
tamps. We have shown that the attack works against multiple
TCP-based protocols and not only against HTTP/HTTPS. By
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means of three case studies we have shown exploits against
real-world products work in lab settings with and without
background traffic that mimics real-world deployments. A
major advantage of the attack is that it is fully distributable,
which can speed up attacks and bypass IP-based rate-limiting.
We showed that most web servers are likely susceptible to
these new attacks and propose two possible defenses, one of
which completely prevents attacks.
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ETHICS CONSIDERATIONS

We collect data in a lab-environment that is fully under
our own control and as such we do not interfere with any
production environments. When we scan (a subset of) the
Tranco top 1 million domains, we make sure to either close
any opened connection with a FIN or RST in order to not
leave any connections open or resources tied up. On top
of that, the amount of traffic we send to each server we
connect to is intentionally very low in order to not disturb
any production environments. We only sent valid requests, no
mis- or malformed data.

In our proof-of-concept attack against the ELL library we
used rate-limiting to prevent overloading the used hosting
providers. We are also in the process of disclosing this
vulnerability: it has meanwhile been assigned a CVE.
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