
Rooting Routers Using

Symbolic Execution

Mathy Vanhoef — @vanhoefm

IT-Defense, Stuttgart, Germany, 7 February 2019

Overview

2

Symbolic Execution

Handling Crypto

4-way handshake

Results

Overview

3

Symbolic Execution

Handling Crypto

4-way handshake

Results

Motivating Example

Try to reach the prize(#)!

+-+---+---+
X	#	
+--		
+-----+---+

Enter 20 player moves using a
sequence of 'w', 's', 'a' or 'd'

Input:

4

Motivating Example

Try to reach the prize(#)!

+-+---+---+
XXXXXXX	#	
+--	X	X
	XXX	
+-----+---+

Enter 20 player moves using a
sequence of 'w', 's', 'a' or 'd'

Input: ddddddssddww

5

Motivating Example

Try to reach the prize(#)!

+-+---+---+
X	#	
+--		
+-----+---+

Enter 20 player moves using a
sequence of 'w', 's', 'a' or 'd'

Input: wwwww

6

Game

Over

How to explore all paths?

Try to reach the prize(#)!

+-+---+---+
X	#	
+--		
+-----+---+

Enter 20 player moves using a
sequence of 'w', 's', 'a' or 'd'

Input:

7

How to explore all paths?

Try to reach the prize(#)!

+-+---+---+
X	#	
+--		
+-----+---+

Enter 20 player moves using a
sequence of 'w', 's', 'a' or 'd'

Input: 𝑥1𝑥2𝑥3… 𝑥20

8

= symbolic variables

Give as input math

variables that can

have any value

How to explore all paths?

Try to reach the prize(#)!

+-+---+---+
X	#	
+--		
+-----+---+

Enter 20 player moves using a
sequence of 'w', 's', 'a' or 'd'

Input: 𝑥1𝑥2𝑥3… 𝑥20

9

Can’t use normal compiler anymore!

Need symbolic execution engine

Running our maze: it first checks

if all letters are ‘w’, ‘s’, ‘ a’ or ‘d’

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

Game

Over

There is

invalid input

How to explore all paths?

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

10

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

All 𝑥𝑖 represent

valid input

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

Game

Over

There is

invalid input

How to explore all paths?

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

11

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

All 𝑥𝑖 represent

valid input

Execution engine tracks

conditions on 𝑥𝑖’s using

a path constraint

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

Game

Over

There is

invalid input

How to explore all paths?

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

12

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

All 𝑥𝑖 represent

valid input

How to explore all paths?

+-+---+---+

|X |#|

| +-- | | |

| | |

+-----+---+

13

+-+---+---+

|X |#|

|X+-- | | |

| | |

+-----+---+

Path constraint:

𝒙𝟏 = ‘s’ && ...

Path constraint:

𝒙𝟏 = ‘d’ && ...

+-+---+---+

|XX |#|

| +-- | | |

| | |

+-----+---+

Symbolic Execution

14

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

Mark data as symbolic

Symbolic branch

Symbolic Execution

15

data[0] != 1

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

data[0] == 1

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

}

Symbolic Execution

16

data[0] == 1data[0] != 1

Continue execution:

if (data[1] != len)

PC = Path

Constraint

Symbolic Execution

17

data[0] != 1

Continue

execution

data[0] == 1 &&
data[1] != len

data[0] == 1 &&
data[1] == len

Symbolic Execution

18

Can data[2] equal zero

under the current PC?

Yes! Bug detected!

data[0] == 1 &&
data[1] == len

void recv(data, len) {

if (data[0] != 1)
return

if (data[1] != len)
return

int num = len/data[2]
...

Implementations

Practical limitations:

› 𝑝𝑎𝑡ℎ𝑠 = 2|𝑖𝑓−𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠|

› Infinite-length paths

› SMT query complexity

19

We build upon KLEE

› Works on LLVM bytecode

› Actively maintained

Overview

20

Symbolic Execution

Handling Crypto

4-way handshake

Results

Motivating Example

21

void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

Mark data as symbolic

Summarize crypto algo.

(time consuming)

Analyze crypto algo.

(time consuming)

Won’t reach this function!

Efficiently handling decryption?

Decrypted output

=

fresh symbolic variable

22

What does this give us?

23

What does this give us?

We can now detect misuse of crypto primitives!

24

Timing side-

channels

Decryption

oracles

Overview

25

Symbolic Execution

Handling Crypto

4-way handshake

Results

The 4-way handshake

Used to connect to any protected Wi-Fi network

26

Negotiates fresh PTK:

pairwise transient keyMutual authentication

4-way handshake (simplified)

27

4-way handshake (simplified)

28

PTK = Combine(shared secret,

ANonce, SNonce)

4-way handshake (simplified)

29

4-way handshake (simplified)

30

Encrypted with PTK

4-way handshake (simplified)

31

4-way handshake (simplified)

32

Authenticated

with a MAC

We focus on the client

Symbolic execution of

33

How to get these working under KLEE?

Intel’s iwd deamon wpa_supplicant kernel driver

Intel’s iwd

Avoid running full program under KLEE

› Would need to model Wi-Fi stack symbolically

Our approach

› iwd contains unit test for the 4-way handshake

› Reuse initialization code of unit test!

› Symbolically execute only receive function

34

wpa_supplicant

Unit test uses virtual Wi-Fi interface

› Would again need to simulate Wi-Fi stack…

Alternative approach:

› Write unit test that isolates 4-way handshake like iwd

› Then symbolically execute receive function!

› Need to modify code of wpa_supplicant (non-trivial)

35

MediaTek’s Driver

No unit tests & it’s a Linux driver

› Symbolically executing the Linux kernel?!

Inspired by previous cases

› Write unit test & simulate used kernel functions in userspace

› Verify that code is correctly simulated in userspace

› Again symbolically execute receive function!

36

Not all our unit tests have clean code

37

https://github.com/vanhoefm/woot2018

Overview

38

Symbolic Execution

Handling Crypto

4-way handshake

Results

Discovered Bugs I

39

Timing side-channels

› Authenticity tag not checked in constant time

› MediaTek and iwd are vulnerable

Denial-of-service in iwd

› Caused by integer underflow

› Leads to huge malloc that fails

Discovered Bugs II

Flawed AES unwrap crypto primitive

› Also in MediaTek’s kernel driver

› Manually discovered

40

Buffer overflow in MediaTek kernel module

› Occurs when copying the group key

› Remote code execution (details follow)

Decryption oracle in wpa_supplicant

 Decrypt group key in Msg3 (details follow)

41

Decryption oracle:

› Authenticity of Msg3 not checked

› But decrypts and processes data

Rooting Routers:
Buffer overflow in MediaTek kernel module

42

MediaTek buffer overflow preconditions I

Triggered when the client processes Msg3

› Adversary needs password of network

› Examples: Wi-Fi at conferences, hotels, etc.

43

MediaTek buffer overflow preconditions II

Which clients use the MediaTek driver?

› Not part of Linux kernel source tree

› Used in repeater modes of routers

44

Our target:

› RT-AC51U running Padavan firmware

› Original firmware has no WPA2 repeater

Popularity of Padavan firmware

45

We exploit this version

The vulnerable code (simplified)

46

void RMTPParseEapolKeyData(pKeyData, KeyDataLen, MsgType) {

UCHAR GTK[MAX_LEN_GTK];

if (MsgType == PAIR_MSG3 || MsgType == GROUP_MSG_1) {

PKDE_HDR *pKDE = find_tlv(pKeyData, KeyDataLen, WPA2GTK);

GTK_KDE *pKdeGtk = (GTK_KDE*)pKDE->octet;

UCHAR GTKLEN = pKDE->Len – 6;

NdisMoveMemory(GTK, pKdeGtk->GTK, GTKLEN);

}

APCliInstallSharedKey(GTK, GTKLEN);

}

The vulnerable code (simplified)

47

void RMTPParseEapolKeyData(pKeyData, KeyDataLen, MsgType) {

UCHAR GTK[MAX_LEN_GTK];

if (MsgType == PAIR_MSG3 || MsgType == GROUP_MSG_1) {

PKDE_HDR *pKDE = find_tlv(pKeyData, KeyDataLen, WPA2GTK);

GTK_KDE *pKdeGtk = (GTK_KDE*)pKDE->octet;

UCHAR GTKLEN = pKDE->Len – 6;

NdisMoveMemory(GTK, pKdeGtk->GTK, GTKLEN);

}

APCliInstallSharedKey(GTK, GTKLEN);

}

Len controlled by attacker

Destination buffer 32 bytes
d

Main exploitation steps

• Code execution in kernel

• Obtain a process context

• Inject shellcode in process

• Run injected shellcode

48

Main exploitation steps

• Code execution in kernel

• Obtain a process context

• Inject shellcode in process

• Run injected shellcode

49

Gaining kernel code execution

How to control return address & where to return?

› Kernel doesn’t use stack canaries

› Kernel stack has no address randomization

› And the kernel stack is executable

50

Return to shellcode on stack & done?

Nope… our shellcode crashes

Problem: cache incoherency on MIPS

Data cache

…

old stack data

…

51

Memory

…

old stack data

…

Problem: cache incoherency on MIPS

Data cache

…

shellcode

…

52

Instruction cache

…

<no cached entry>

…

Memory

…

old stack data

…

Fetch

Problem: cache incoherency on MIPS

Data cache

…

shellcode

…

53

Instruction cache

…

old stack data

…

Memory

…

old stack data

…

Fetch

Solution: flush cache after write

Data cache

…

shellcode

…

54

Instruction cache

…

<no cached entry>

…

Memory

…

old stack data

…

Flush

Solution: flush cache after write

Data cache

…

shellcode

…

55

Instruction cache

…

<no cached entry>

…

Memory

…

shellcode

…

Flush Fetch

Solution: flush cache after write

Data cache

…

shellcode

…

56

Instruction cache

…

shellcode

…

Memory

…

shellcode

…

Flush Fetch

How to flush the cache?

Execute kernel function to flush cache

› Rely on Return Oriented Programming (ROP)

› Use mipsrop tool of Craig Heffner

57

 Building ROP chain is tedious but doable

Main exploitation steps

• Code execution in kernel

• Obtain a process context

• Inject shellcode in process

• Run injected shellcode

58

Obtaining a process context

Code execution in kernel, let’s spawn a shell?

› Tricky when in interrupt context

› Easier in process context: access to address space

59

How to obtain a process context?

› System calls run in process context …

› … so intercept a close() system call

Intercepting system calls

60

System call table:

sys_open

sys_read

sys_close

…

sys_close

normal code

Intercepting system calls

61

System call table:

sys_open

sys_read

sys_close

…

sys_close

normal code

Interceptor

attackers code

Jump to sys_close

Main exploitation steps

• Code execution in kernel

• Obtain a process context

• Inject shellcode in process

• Run injected shellcode

62

Hijacking a process

Kernel now executes in process context

› Hijack unimportant detect_link process

› Recognize by its predictable PID

Now easy to inject shellcode in process:

1. Call mprotect to mark process code writable

2. Copy user space shellcode to return address

3. Flush caches

63

Main exploitation steps

• Code execution in kernel

• Obtain a process context

• Inject shellcode in process

• Run injected shellcode

64

User space shellcode

When close() returns, shellcode is triggered

› It runs “telnetd –p 1337 –l /bin/sh” using execve

› Adversary can now connect to router

Important remaks:

› Original process is killed, but causes no problems

› Used telnetd to keep shellcode small

65

Running the full exploit

Multi-chain exploit. Space for shellcode?

› For initial stage we have 250 bytes

› Handshake frame can transport ~2048 bytes

› We can even use null bytes!

66

Decryption

Oracle

67

Recall: decryption oracle in wpa_supplicant

68

Decryption oracle:

› Authenticity of Msg3 not checked

› Does decrypt and process data

How can this be abused to leak data?

Background: process ordinary Msg3

On reception of Msg3 the receiver:

1. Decrypts the Key Data field

69

header Key Data

Encrypted and authenticated

Background: process ordinary Msg3

On reception of Msg3 the receiver:

1. Decrypts the Key Data field

2. Parses the type-length-values elements

70

header

Encrypted and authenticated

Background: process ordinary Msg3

On reception of Msg3 the receiver:

1. Decrypts the Key Data field

2. Parses the type-length-values elements

71

header 48 18

Type Len

Encrypted and authenticated

Background: process ordinary Msg3

On reception of Msg3 the receiver:

1. Decrypts the Key Data field

2. Parses the type-length-values elements

72

header 48 18 𝒚𝟎…𝒚𝟏𝟕

Type Len RSNE

Encrypted and authenticated

Background: process ordinary Msg3

On reception of Msg3 the receiver:

1. Decrypts the Key Data field

2. Parses the type-length-values elements

73

header 48 18 𝒚𝟎…𝒚𝟏𝟕 221 38

Type Len RSNE Type Len

Encrypted and authenticated

Background: process ordinary Msg3

On reception of Msg3 the receiver:

1. Decrypts the Key Data field

2. Parses the type-length-values elements

74

header 48 18 𝒚𝟎…𝒚𝟏𝟕 221 38 𝒙𝟎…𝒙𝟑𝟕

Type Len RSNE Type Len GTK

Encrypted and authenticated

Background: process ordinary Msg3

On reception of Msg3 the receiver:

1. Decrypts the Key Data field

2. Parses the type-length-values elements

3. Extracts and installs the group key (GTK)

75

header 48 18 𝒚𝟎…𝒚𝟏𝟕 221 38 𝒙𝟎…𝒙𝟑𝟕

Type Len RSNE Type Len GTK

Encrypted and authenticated

How to turn parsing

into an oracle?

76

Constructing an oracle

77

header 221 38 𝒙𝟎…𝒙𝟑𝟕

Type Len GTK

Encrypted

Adversary knows type and length, but not GTK

Constructing an oracle

78

header 221 36 𝒙𝟎…𝒙𝟑𝟕

Type Len

Encrypted

Adversary knows type and length, but not GTK.

1. Reduce length by two

Constructing an oracle

79

header 221 36 𝒙𝟎…𝒙𝟑𝟕

Type Len

Encrypted

Adversary knows type and length, but not GTK.

1. Reduce length by two

2. Parsing

Constructing an oracle

80

header 221 36 𝒙𝟎…𝒙𝟑𝟕

Type Len

Encrypted

Adversary knows type and length, but not GTK.

1. Reduce length by two

2. Parsing

Constructing an oracle

81

header 221 36 𝒙𝟎…𝒙𝟑𝟓 𝒙𝟑𝟔 𝒙𝟑𝟕

Type Len GTK’

Encrypted

Adversary knows type and length, but not GTK.

1. Reduce length by two

2. Parsing

Constructing an oracle

82

header 221 36 𝒙𝟎…𝒙𝟑𝟓 𝒙𝟑𝟔 𝒙𝟑𝟕

Type Len GTK’ Type Len

Encrypted

Adversary knows type and length, but not GTK.

1. Reduce length by two

2. Parsing only succeeds if 𝒙𝟑𝟕 equals zero

Constructing an oracle

83

header 221 36 𝒙𝟎…𝒙𝟑𝟓 𝒙𝟑𝟔 𝒙𝟑𝟕

Type Len GTK’ Type Len

Encrypted

Adversary knows type and length, but not GTK.

1. Reduce length by two

2. Parsing only succeeds if 𝒙𝟑𝟕 equals zero

3. Keep flipping encrypted 𝒙𝟑𝟕 until parsing succeeds

Abusing the oracle in practice

1. Guess the last byte (in our example 𝒙𝟑𝟕)

2. XOR the ciphertext with the guessed value

3. Correct guess: decryption of 𝒙𝟑𝟕 is zero

Parsing succeeds & we get a reply

4. Wrong guess: decryption of 𝒙𝟑𝟕 is non-zero

Parsing fails, no reply

 Keep guessing last byte until parsing succeeds

84

Practical aspects

Test against Debian 8 client:

› Adversary can guess a value every 14 seconds

› Decrypting 16-byte group key takes ~8 hours

85

Attack can be made faster by:

› Attacking several clients simultaneously

› Can brute-force the last 4 bytes

Conclusion

› Symbolic execution of protocols

› Simple simulation of crypto

› Root exploit & decryption oracle

› Interesting future work

86

Questions?

Thank you!

Backup slides

88

Example

89

void recv(data, len) {
plain = decrypt(data, len)
if (plain == NULL) return

if (plain[0] == COMMAND)
process_command(plain)

else
...

}

Create fresh

symbolic variable

Normal analysis

Mark data as symbolic

 Can now analyze code

that parses decrypted data

Other than handling decryption

Handling hash functions

› Output = fresh symbolic variable

› Also works for HMACs (Message Authentication Codes)

90

Tracking use of crypto primitives?

› Record relationship between input & output

› = Treat fresh variable as information flow taint

Detecting Crypto Misuse

Timing side-channels

› ∀(𝑝𝑎𝑡ℎ𝑠): all bytes of MAC in path constraint?

› If not: comparison exits on first byte difference

91

Decryption oracles

› Behavior depends on unauth. decrypted data

› Decrypt data is in path constraint, but not in MAC

Exploit recap & lessons learned

92

io.netgarage.org

___ / /\
/__/\ / /::\
__\:\ / /:/\:\
/ /::\ / /:/ \:\

__/ /:/\/ /__/:/ __\:\
/__/\/:/~~ \ \:\ / /:/
\ \::/ \ \:\ /:/
\ \:\ \ \:\/:/
__\/ \ \::/

__\/

Debug with infinite loops

First test ideas in CCache incoherence

The big picture

93

Although limitations remain,

symbolic execution tools are

now more usable & efficient.

