Breaking Network Protocols: When Established Protocols Meet New Threat Models

Mathy Vanhoef

Keynote, IFIP WG 11.4 "Network & Distributed Systems Security" Workshop. May 16, 2024.

Introduction

Goal of this talk:

- > Explain some interesting network attacks + demos ©
- > Common theme: attacks are enabled by novel threat model

I will use the word "threat model" rather informally:

- > In some attacks, the adversary is given extra capabilities
- > In other attacks, the focus is more on new attack techniques

Agenda

- Attacks that introduced new threat models:
 - » The BEAST and HEIST attack (TLS/HTTPS)
 - * The Multi-Channel MitM (KRACK)
 - ›› Outbound Connections (FragAttacks)
 - » DNS Spoofing & VPNs (TunnelCrack)
- > Conclusion

The BEAST attack against SSL/TLS

- > Phillip Rogaway ('95): CBC encryption can be attacked when the Initialization Vectors (IVs) are predictable
- > Fixed in TLS1.1, but TLS1.0 was still very common
 - >> "It's hard to abuse, so not important to fix"
- Duong & Rizzo ('11): attacked CBC in practice by assuming malicious JavaScript in the browser + network MitM
 - » And extended attack to achieve full plaintext recovery
 - >> Sudden scramble to update implementations

The BEAST Threat Model

- Arguably most influential contribution was the threat model:
 - >> Attack can execute JavaScript in the victim's browser
 - » And attacker can intercept (encrypted) network traffic
- > This completely broke an established protocol in practice
- > The "BEAST threat model" was (and is) used in many works
 - » In many attacks against RC4, including our <u>RC4 NOMORE</u> attack
 - » Many TLS attacks (Lucky13, Bleichenbacher attacks, DROWN)
 - » In the CRIME and BREACH attack to abuse compression

Abusing compression

CRIME and BREACH attack

- Abused compression at the TLS and HTTP level to leak information in response, e.g., leak CRSF tokens
- Assumed execution of malicious JavaScript + network MitM
 - >> Network MitM was used to measure length of response

TIME and HEIST attack

- Like BREACH abuses compression to recover CRSF token
- > But uses timing side-channels instead of needing MitM

DEMO: HEIST Attack

Reflection

- The new "BEAST threat model" enabled various follow-up works to construct more practical attacks
- Some attacks were further improved to reduce the required capabilities of the attacker

"Attacks only get better, they never get worse."

— Bruce Schneier

Agenda

- > Attacks that introduced new threat models:
 - The BEAST attack (TLS)
 - » The Multi-Channel MitM (KRACK)
 - » Outbound Connections (FragAttacks)
- > Conclusion

Channel 1

Channel 6

→ Called a "Multi-Channel MitM" (MC-MitM)

 $\langle ----- optional\ 802.1x\ authentication\ ----->$

Block Msg4

$$Msg4(r+1)$$

Install PTK & GTK

Msg3(r+2; GTK)

 $\operatorname{Enc}_{\operatorname{ptk}}^{1}\{\operatorname{Msg4}(r+2)\}$

Reinstall PTK & GTK

 $\mathrm{Enc}_{\mathrm{ptk}}^{1}\{\,\mathrm{Data}(\dots)\,\}$

Msg3(r+2; GTK)

Same packet number is used!

Enc_{ptk}{ Data(...) }

$$Msg4(r+1)$$

Install PTK & GTK

 $Enc_{ptk}^{1}\{ Msg4(r+2) \}$

 $\operatorname{Enc}^1_{\operatorname{ptk}}\{\operatorname{Data}(\dots)\}$

wpa_supplicant 2.4+ installed all-zero key

Enc_{ptk}{ Data(...) }

Installation of all-zero key was detected (!!)

Bug report on Linux's hostap mailing list:

"While testing with supplicant 2.4 we observed [..]:

- 4. We send M4 and install PTK
- 5. We received M3 again
- We send M4 and install PTK
- ... we install it as 0 again in step (6)"

^[2] An issue with supplicant receiving retranmitted M3 (Jouni Malinen)

This bug was then fixed

- "[..] possibility of the authenticator having to retry EAPOL-Key message 3/4 in case the first EAPOL-Key message 4/4 response is lost. That case **ended up trying to reinstall the same TK to the driver**, but the key was not available"
- > They didn't realize an adversary can force this situation
- The MC-MitM threat model that allows us to do this reliably!

^{2]} An issue with supplicant receiving retranmitted M3 (Jouni Malinen)

The MC-MitM is used in several works now

- The MC-MitM was originally used by us to break WPA-TKIP
- Was used to infer resource sizes in combination with malicious JavaScript, i.e., in a BEAST-like attack
- To exploit an implementation flaw in Broadcom code
- In our "framing frames" attack
- Also used in the FragAttacks research

References:

Advanced WiFi Attacks Using Commodity Hardware (ACSAC'14)

[•] Request and Conquer: Exposing Cross-Origin Resource Size (USENIX Sec '16)

Discovering Logical Vulnerabilities in the Wi-Fi Handshake Using Model-Based Testing (Asia CCS '17)

[•] Framing Frames: Bypassing Wi-Fi Encryption by Manipulating Transmit Queues (USENIX Sec '23)

Agenda

- Attacks that introduced new threat models:
 - >> The BEAST and HEIST attack (TLS/HTTPS)
 - The Multi-Channel MitM (KRACK)
 - » Outbound Connections (FragAttacks)
- > Conclusion

Background

Sending small frames causes high overhead:

header packet1 ACK header packet2 ACK ...

This can be avoided by **aggregating frames**:

header' packet1 packet2 ... ACK

Background

Sending small frames causes high overhead:

header packet1 ACK header packet2 ACK ...

This can be avoided by **aggregating frames**:

header' packet1 packet2 ... ACK

Problem: how to recognize aggregated frames?

Aggregation design flaw

Aggregation design flaw

A-MSDU

- Flaw was noticed while 802.11n was being standardized, but implementations based on the draft already existed (2007)
- "QoS bit 7 should be protected to guard against attack that at minimum leads to a flood of traffic"
- "While it is hard to see how this can be exploited, it is clearly a flaw that is capable of being fixed."
 - → Exploit by using new threat model © (2021)

Exploit steps

Example:

- Send e-mail with embedded image
- Send WhatsApp message to cause link/image preview

DEMO: FragAttacks A-MSDU Flaw

Conclusion

- Established protocols, when used in new situations and under new thread models, may become vulnerable to new attacks → Keep studying old protocols!
- When reading about attacks, learn about their threat model. That may be the most useful thing to know in the long term.
- Attacks only get better → threat models only get better?