FragAttacks: Recent Flaws in WPA2/3 and New Defenses

GISEC, 21 March '22, Dubai

Prof. dr. Mathy Vanhoef

Advancements in Wi-Fi security

- WPA3 is continously being updated
 - » Preventing Dragonblood attack
 - » Securing hotspots

Advancements in Wi-Fi security

- WPA3 is continously being updated
 - » Preventing Dragonblood attack
 - » Securing hotspots
- Operating channel validation
- > Beacon protection
- > KRACK patches proven secure

Despite these major advacements, we found flaws in all Wi-Fi networks (incl. WPA2/3)

Design flaws

Implementation Flaws

Design flaws

Implementation Flaws

Aggregation

Mixed key

Fragment cache

Implementation Flaws

Background

Sending small frames causes high overhead:

header packet1 ACK header packet2 ACK ...

This can be avoided by **aggregating frames**:

header' packet1 packet2 ... ACK

Background

Sending small frames causes high overhead:

header packet1 ACK header packet2 ACK ...

This can be avoided by **aggregating frames**:

header' packet1 packet2 ... ACK

Problem: how to recognize aggregated frames?

Aggregation design flaw

Aggregation design flaw

DEMO

Design flaws

Implementation Flaws

Design flaws

Plaintext frames

Mixed fragments

Broadcast fragments

EAPOL forwarding

Cloacked A-MSDUs

Out of order fragments

Trivial frame injection

Plaintext frames wrongly accepted:

Depending if fragmented, broadcasted, or while connecting

Trivial frame injection

Plaintext frames wrongly accepted:

- Depending if fragmented, broadcasted, or while connecting
- Sometimes frames that resemble a handshake message
- > Examples: Apple and some Android devices, some Windows dongles, home and professional APs, and many others!

→ Can trivially **inject frames**

DEMO

Design flaws

Plaintext frames

Mixed fragments

Broadcast fragments

EAPOL forwarding

Cloacked A-MSDUs

No fragmentation support

No fragmentation support

Some devices don't support fragmentation

- > But they treat fragmented frames as full frames
- > Examples: OpenBSD and Espressif chips

- → Abuse to **inject frames** under right conditions
- → All devices are vulnerable to one or more flaws

Created tool to test devices

Has 45+ test cases for both clients and APs:

Sho	Command
	Sanity checks
Send a normal ping.	ping
Send a normal fragmented ping.	ping I,E,E
	Basic device behaviour
Send a normal fragmented ping with	ping I,E,Edelay 5
Send a normal fragmented ping with	ping-frag-sep
Same as above, but also works if the	ping-frag-seppn-per-qos
	A-MSDU attacks (§3)
Send a ping encapsulated in a norm	ping I,Eamsdu
Simulate attack: send A-MSDU frame	amsdu-inject
Same as above, but against targets t	amsdu-inject-bad
	Mixed key attacks (§4)
Inject two fragments encrypted und	ping I,F,BE,AE
Same as above, but also works if the	ping I,F,BE,AEpn-per-qos
	Cache attacks (§5)
Inject a fragment, try triggering a rec	ping I,E,R,AE
Same as above, but with a longer de	ping I,E,R,E
Inject a fragment, deauthenticate and	ping I,E,R,AEfull-reconnect
Same as above, but with a longer de	ping I,E,R,Efull-reconnect

Non-consecutive PNs attack (§6.2)	
ping I,E,Einc-pn 2	Send a fragmented ping with non-
Mixed plain/encrypt attack (§6.3)	
ping I,E,P	Send a fragmented ping: first fragr
ping I,P,E	Send a fragmented ping: first fragr
ping I,P	Send a plaintext ping.
ping I,P,P	Send a fragmented ping: both frag
linux-plain	Mixed plaintext/encrypted fragme
Broadcast fragment attack (§6.4)	
ping I,D,Pbcast-ra	Send a unicast ping in a plaintext b
ping D,BPbcast-ra	Same as above, but frame is sent of
A-MSDU EAPOL attack (§6.5)	
eapol-amsdu I,P	Send a plaintext A-MSDU containi
eapol-amsdu BP	Same as above, but the frame is se
eapol-amsdu-bad I,P	Send malformed plain. A-MSDU co
eapol-amsdu-bad BP	Same as above, but the frame is se

Command	Short de
A-MSDU attacks (§3)	
ping I,Eamsdu-fake	If this test succeeds, the A-MSDU fla
ping I,Eamsdu-fakeamsdu-spp	Check if the A-MSDU flag is authen
Mixed key attacks (§4)	
ping I,F,BE,E	In case the new key is installed relat
ping I,E,F,AE	Variant if no data frames are accept
ping I,E,F,AErekey-plain	If the device performs the rekey har
ping I,E,F,AErekey-plainrekey-req	Same as above, and actively reques
ping I,E,F,AErekey-early-install	Install the new key after sending me
ping I,E,F,E [rekey-pl] [rekey-req]	Same as above 4 tests, but with lon
ping I,F,BE,AEfreebsd	Mixed key attack against FreeBSD c
Cache attacks (§5)	
ping I,E,R,AEfreebsd [full-reconnect]	Cache attack specific to FreeBSD im
ping I,E,R,APfreebsd [full-reconnect]	Cache attack specific to FreeBSD im
ping I,E,R,AP [full-reconnect]	Cache attack test where 2nd fragme

Send a normal ping as a fragmente
Ping with first frag. encrypted, seco
Same as linux-plain but decoy frag
Ping in a plaintext broadcast frame
Ping in plaintext broadcast frame of
Ping in a plaintext frame during the
Experimental broadcast fragment a
Same as eapo1-amsdu BP but easie
Test if AP forwards EAPOL frames k
Make AP send fragmented frames
Send ping inside an encrypted seco
Send ping inside an encrypted first

→ Available at https://github.com/vanhoefm/fragattack

Abusing design flaws requires multi-channel MitM

AP is cloned on different channel

Channel validation

Verify operating channel when connecting to a network

Also need to handle some edge cases:

- After the clients wakes up from sleep mode
- When the network switches channel due to radar detection

→ Implemented on Linux & Android

Channel validation

- Collaborated with industry (Broadcom and Intel) to standardize the defense
- Now part of the latest update to the IEEE 802.11 standard

March 2018

IEEE P802.11
Wireless LANs

Defense against multi-channel MITM attacks via Operating
Channel Validation

Date: 2017-11-14

Channel validation

- Collaborated with industry (Broadcom and Intel) to standardize the defense
- Now part of the latest update to the IEEE 802.11 standard

- Recognized as an optional feature of WPA3
- Good initial step, hopefully becomes mandatory in future

Other defenses for Wi-Fi networks

Channel validation

Mitigates prerequisite of several recent attacks

Beacon protection

Authenticate beacons to prevent denial of service

- > Both implemented on Linux and Android
- > Now part of the IEEE 802.11 standard
- > Wi-Fi Alliance is encouraging its adoption

Conclusion

- Discovered three design flaws
- > Multiple implementation flaws
- > Several flaws are trivial to exploit
- > More info: www.fragattacks.com