
FragAttacks: Fragmentation &

Aggregation Attacks against Wi-Fi

Mathy Vanhoef

Draft version 1, 8 March 2021

Table of contents

Design flaws:

1. Design flaw: aggregation attack (CVE-2020-24588)

2. Design flaw: mixed key attack (CVE-2020-24587)

3. Design flaw: fragment cache attack (CVE-2020-24586)

2

Table of contents

› Implementation flaws allowing trivial plaintext injection:

4. Accepted plaintext frames (CVE-2020-26140 / 26143)

6. Plaintext broadcast fragments (CVE-2020-26145)

7. Cloacked aggregated frames (CVE-2020-26144)

› Other implementation flaws:

8. Pre-auth EAPOL forwarding (CVE-2020-26139)

9. Non-consecutive packet numbers (CVE-2020-26146)

10. Mixed plain/encrypted fragments (CVE-2020-26147)

11. No fragmentation support (CVE-2020-26142)

3

4

Aggregation Attack

CVE-2020-24588

Background

Sending small frames causes high overhead:

5

header packet1 ACK ACK headerheader packet2

Background

Sending small frames causes high overhead:

6

header packet1 ACK ACK header

This can be avoided by aggregating frames:

header’ packet1 packet2 ... ACK

Problem: how to recognize aggregated frames?

header packet2

Recognizing aggregated frames

7

header payload

Recognizing aggregated frames

8

header aggregated? payload

False packet

False rfc1042 IP header TCP header data

Recognizing aggregated frames

9

header aggregated? payload

False rfc1042 IP header TCP header data

Recognizing aggregated frames

10

header aggregated? payload

False rfc1042 IP header TCP header data

Recognizing aggregated frames

11

header aggregated? payload

True metadata length packet1 metadata length packet2

False rfc1042 IP header TCP header data

Recognizing aggregated frames

12

header aggregated? payload

True metadata length packet1 metadata length packet2

False rfc1042 IP header TCP header data

Recognizing aggregated frames

13

header aggregated? payload

True metadata length packet1 metadata length packet2

Authenticated Authenticated & encrypted

False rfc1042 IP header TCP header data

Recognizing aggregated frames

14

header aggregated? payload

True metadata length packet1 metadata length packet2

Not authenticated: adversary can flip value

What happens if we flip this flag?

False rfc1042 IPv4 hdr TCP hdr data

Spoofing aggregated frames

15

False rfc1042 IPv4 hdr TCP hdr data

Spoofing aggregated frames

16

True metadata length ignored metadata length packet

Adversary turns normal frame into aggregated one

False rfc1042 IPv4 hdr TCP hdr data

Spoofing aggregated frames

17

True metadata length ignored metadata length packet

Adversary turns normal frame into aggregated one

› Metadata = rfc1042 & IPv4 hdr  1st sub-packet is ignored

False rfc1042 IPv4 hdr TCP hdr data

Spoofing aggregated frames

18

True metadata length ignored metadata length packet

Adversary turns normal frame into aggregated one

› Metadata = rfc1042 & IPv4 hdr  1st sub-packet is ignored

› Length = IPv4 ID field: determines start of 2nd sub-packet

False rfc1042 IPv4 hdr TCP hdr data

Spoofing aggregated frames

19

True metadata length ignored metadata length packet

Adversary turns normal frame into aggregated one

› Metadata = rfc1042 & IPv4 hdr  1st sub-packet is ignored

› Length = IPv4 ID field: determines start of 2nd sub-packet

False rfc1042 IPv4 hdr TCP hdr data

Spoofing aggregated frames

20

True metadata length ignored metadata length packet

Adversary turns normal frame into aggregated one

› Metadata = rfc1042 & IPv4 hdr  1st sub-packet is ignored

› Length = IPv4 ID field: determines start of 2nd sub-packet

› Control IP ID & part of TCP data  inject arbitrary packets

How to control IPv4 ID and TCP data?

Send IPv4 packets to the victim

› Client: if there’s a firewall, trick client to visit our website

Allows adversary to send IP/TCP packets, not any others

› AP: can attack AP if a client uses predictable IP IDs

All major operating systems affected

› 802.11n mandates support for aggregated frames

› Excluding Net/OpenBSD and certain IoT devices

21

Recap: can inject arbitrary packets

1. Inject special IPv4 frame to the victim

2. Adversary will intercept the corresponding Wi-Fi frame, set

the aggregated flag, and forward it to the victim

Example attacks:

› Inject IPv6 Router Advertisement with our DNS server

› Victim will use our DNS server  intercept IP-based traffic

› Against IPv4-only clients we performed a port scan

22

23

Mixed Key Attack

CVE-2020-24587

Background

Large frames have a high chance of being corrupted:

24

header packet ACK

Background

Large frames have a high chance of being corrupted:

25

header fragment1 ACK header

Avoid by fragmenting & only retransmitting lost fragments:

header packet ACK

Problem: how to (securely) reassemble the fragments?

header fragment2 ACK

header fragment1

header fragment2

header fragment3

Reassembling plaintext fragments

26

header 𝑠 fragment1

header 𝑠 fragment2

header 𝑠 fragment3

Reassembling plaintext fragments

27

› All Wi-Fi frames have an incremental sequence number 𝑠

› Fragments of a frame have the same sequence number 𝒔

header 𝑠 0 fragment1

header 𝑠 1 fragment2

header 𝑠 2 fragment3

Reassembling plaintext fragments

› All Wi-Fi frames have an incremental sequence number 𝑠

› Fragments of a frame have the same sequence number 𝒔

› All fragments also have a fragment number ...

28

header 𝑠 0 More fragment1

header 𝑠 1 More fragment2

header 𝑠 2 Last fragment3

Reassembling plaintext fragments

› All Wi-Fi frames have an incremental sequence number 𝑠

› Fragments of a frame have the same sequence number 𝒔

› All fragments also have a fragment number ...

... and a flag to identify the last fragment

29

header 𝑠 𝑛 0 More fragment1

header 𝑠 𝑛 + 1 1 More fragment2

header 𝑠 𝑛 + 2 2 Last fragment3

Reassembling encrypted fragments

30

› All encrypted frames have a packet number to detect replays

Cannot reuse sequence number (not unique & too small)

header 𝑠 𝑛 0 More fragment1

header 𝑠 𝑛 + 1 1 More fragment2

header 𝑠 𝑛 + 2 2 Last fragment3

Reassembling encrypted fragments

› All encrypted frames have a packet number to detect replays

Cannot reuse sequence number (not unique & too small)

› Everything except sequence number is authenticated

› Drop if packet & fragment numbers are not consecutive
31

Authenticated Authenticated

Problem: key renewal

› Session key can be periodically renewed ...

› ... or updated when roaming between APs

32

› Receiver is allowed to reassemble fragments encrypted

under different keys (i.e. mixed keys)

› Attacker can trick victim to combine fragments (from two

different frames) encrypted under mixed keys

› Can be abused to exfiltrate data under specific conditions

Mixed Key Attack

33

Visit attacker website

Frag1(s, n)

Frag2(s, n+1)
Decrypt & store fragment

Frag1(s, n)

clear AP decrypts it

Mixed Key Attack

34

Visit attacker website

Frag1(s, n)

Frag2(s, n+1)
Decrypt & store fragment

Frag1(s, n)

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

clear AP decrypts it

Mixed Key Attack

35

Renew session key

Frag1(s, n)

Frag2(s, n+1)

Visit attacker website

Decrypt & store fragment

Frag1(s, n)

Mixed Key Attack

36

Renew session key

Frag1(s, n)

Frag2(s, n+1)

Visit attacker website

Decrypt & store fragment

Frag1(s, n)

Packet numbers will

restart from zero

Mixed Key Attack

37

Renew session key

Frag1(s, n)

Frag2(s, n+1)

Visit attacker website

Decrypt & store fragment

Frag1(s, n)

Login to website

Mixed Key Attack

38

Renew session key

Frag1(s, n)

Frag2(s, n+1)

Visit attacker website

Decrypt & store fragment

Frag1(s, n)

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Login to website

Mixed Key Attack

39

Renew session key

Frag1(s, n)

Frag2(s, n+1)

Visit attacker website

Decrypt & store fragment

Frag1(s, n)

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Login to website

Header (Frag1) Payload (Frag2)

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Mixed Key Attack

40

Renew session key

Frag1(s, n)

Frag2(s, n+1)

Visit attacker website

Decrypt & store fragment

Reassemble & forward

Frag1(s, n)

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Login to website

Mixed Key Attack

41

Renew session key

Frag1(s, n)

Frag2(s, n+1)

Visit attacker website

Decrypt & store fragment

Reassemble & forward

Frag1(s, n)

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Login to website

Header (Frag1) Payload (Frag2)

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Data exfiltration

42

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Data exfiltration

43

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Data exfiltration

44

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

192.168.1.2 to 3.5.1.1
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Adversary mixes different fragments

Data exfiltration

45

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

192.168.1.2 to 39.15.69.7
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

192.168.1.2 to 3.5.1.1
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Adversary mixes different fragments

 Login info is sent to attacker’s server

Experiments

All major operating systems are vulnerable

› Specifics may depend on driver being used

› All four tested home routers affected (Asus, Linksys, D-Link)

› One out of three professional APs affected (LANCOM)

Practically all clients are vulnerable

› Data exfiltration not possible when exploiting a client

› Possible attacks depend on target (non-trivial, see paper)

46

Practicality

Non-trivial exploitation requirements:

1. In our example AP must be vulnerable

2. Client must send fragmented frames

3. Session key is periodically refreshed

4. Client sends IP packets to attacker’s server

47

When combined with implementation bugs,

this attack becomes more practical

48

Fragment Cache Attack

CVE-2020-24586

Background: fragment cache

Incomplete fragments are stored in memory = fragment cache

49

Frag1(s, n)

Decrypt & store

fragment in cache

Background: fragment cache

Incomplete fragments are stored in memory = fragment cache

50

Frag1(s, n)

Decrypt & store

fragment in cache

Frag2(s, n+1)

Reassemble frame & clear

fragments from cache

Background: fragment cache

Incomplete fragments are stored in memory = fragment cache

51

Frag1(s, n)

Decrypt & store

fragment in cache

Frag2(s, n+1)

Reassemble frame & clear

fragments from cache

Problem: fragment cache isn’t cleared when

(re)connecting to a different network

Background: fragment cache

Incomplete fragments are stored in memory = fragment cache

52

Frag1(s, n)

Decrypt & store

fragment in cache

Frag2(s, n+1)

Reassemble frame & clear

fragments from cache

 Can be abused to exfiltrate (or inject) data

Cache Attack

53

Connect with own credentials

Spoof victim MAC address

Cache Attack

54

Connect with own credentials

Spoof victim MAC address

Target is an enterprise (hotspot) network

› Users don’t trust each other

› Adversary has valid credentials

Cache Attack

55

Connect with own credentials

Frag1(s, n)

Spoof victim MAC address

Cache Attack

56

Connect with own credentials

Frag1(s, n)

Spoof victim MAC address

Store fragment under

victim MAC address

Cache Attack

57

Connect with own credentials

Frag1(s, n)

Spoof victim MAC address

Store fragment under

victim MAC address

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1

Cache Attack

58

Connect with own credentials

Frag1(s, n)

Spoof victim MAC address

Store fragment under

victim MAC address

Cache Attack

59

Connect with own credentials

Frag1(s, n)

Spoof victim MAC address

Store fragment under

victim MAC address

Disconnect

Vulnerability: AP won’t clear fragment from it’s memory

Cache Attack

60

Connect with real credentials

Connect with own credentials

Frag1(s, n)

Spoof victim MAC address

Store fragment under

victim MAC address

Disconnect

Cache Attack

61

Store fragment under

victim MAC address

Connect with real credentials

Store fragment under

victim MAC address

Disconnect

Cache Attack

62

Store fragment under

victim MAC address

Connect with real credentials

Store fragment under

victim MAC address

Disconnect

Login to website

Cache Attack

63

Store fragment under

victim MAC address

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Connect with real credentials

Store fragment under

victim MAC address

Disconnect

Login to website

Cache Attack

64

Store fragment under

victim MAC address

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Connect with real credentials

Store fragment under

victim MAC address

Disconnect

Login to website

Header (Frag1) Payload (Frag2)

POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Cache Attack

65

Store fragment under

victim MAC address

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Reassemble and process frame

Connect with real credentials

Store fragment under

victim MAC address

Disconnect

Login to website

Cache Attack

66

Store fragment under

victim MAC address

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Reassemble and process frame

Connect with real credentials

Store fragment under

victim MAC address

Disconnect

Login to website

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Cache Attack

67

Store fragment under

victim MAC address

Frag1(s’, n)

Frag2(s’, n+1) Frag2(s, n+1)

Reassemble and process frame

 Login data in Frag2 is now sent to the attacker

Connect with real credentials

Store fragment under

victim MAC address

Disconnect

Login to website

Header (Frag1) Payload (Frag2)

192.168.1.2 to 3.5.1.1
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Experiments

Roughly half of all tested devices are vulnerable

› Seems to depend on driver & network card

› My four home routes were all affected

› None of the three professional APs were affected

Also possible to exploit clients under non-trivial threat model

› Can inject packets towards the client

› See paper for details

68

Recap: attacker can exfilrate/inject packets

Fragments aren’t cleared from memory after (re)connecting

› Adversary can poison the cache

Threat model and impact:

› Exploiting an AP: against enterprise network, client sends

fragmented frames, can exfiltrate client data

› Exploiting a client: non-trivial threat model, AP send

fragmented frames, can inject packets towards the client

69

70

Implementation Flaws:

trivial plaintext injection

Accepted plaintext frames (CVE-2020-26140 / 26143)

Accepting plaintext frames (CVE-2020-26140)

› Examples: some routers, some dongles on Linux/Windows

Accepting fragmented plaintext frames (CVE-2020-26143)

› Examples: many dongles on Windows, some FreeBSD APs

71

 Can inject frames indepedent of network config

Plaintext broadcast fragments (CVE-2020-26145)

Some devices accept plaintext broadcast fragments

› Sometimes only accepted while connecting

› Treated as full frames!

› Examples: MacOS, iOS, and Free/NetBSD APs

72

 Can inject frames indepedent of network config

Cloacked aggregated frames (CVE-2020-26144)

Implementations must accept plaintext EAPOL frames

› Abuse to inject plaintext aggregated frames to low #devices:

73

header aggregated? payload

True metadata length packet1 metadata length packet2

Cloacked aggregated frames (CVE-2020-26144)

Implementations must accept plaintext EAPOL frames

› Abuse to inject plaintext aggregated frames to low #devices:

74

header aggregated? payload

True EAPOL hdr length ignored metadata length packet2

› Set metadata to start of EAPOL  plaintext frame is accepted

Cloacked aggregated frames (CVE-2020-26144)

Implementations must accept plaintext EAPOL frames

› Abuse to inject plaintext aggregated frames to low #devices:

75

header aggregated? payload

True EAPOL hdr length ignored metadata length packet2

› Set metadata to start of EAPOL  plaintext frame is accepted

› 1st sub-packet will be ignored, but 2nd one is processed

 Can trivially inject plaintext frames

76

Implementation flaws

with other impact

Pre-auth EAPOL forwarding (CVE-2020-26139)

Some APs forwards EAPOL frames before sender is authenticated

› Examples: Net/FreeBSD APs and 2 4 home routers

77

 Abuse to inject frames in combination with

aggregation attack (CVE-2020-24588)

2. EAPOL frame
3. EAPOL frame

1. Associate

header 𝑠 𝑛 0 More fragment1

header 𝑠 𝑛 + 1 1 More fragment2

header 𝑠 𝑛 + 2 2 Last fragment3

Non-consective packet numbers (CVE-2020-26146)

› Recap: fragments must have consecutive packet numbers

› Almost nobody checks this! Only Linux does.

› Can do mixed key “exfiltration” attack without periodic rekeys

Client must still use fragmentation & connect to attacker server

78

Mixed plain/encrypted fragments (CVE-2020-26147)

Many devices only require the first fragment to be encrypted

› Most Windows & Linux drivers, some Free/NetBSD drivers

› Aggregation attack possible without the victim needing to

connect to the attacker’s website (can inject packets)

› Cache attack against client possible when even when the

AP doesn’t send fragmented frames (can inject packets)

Some devices only require the last fragment to be encrypted

› Several Free/NetBSD drivers

› Trivial to inject data if fragmentation is used 79

No fragmentation support (CVE-2020-26142)

Some devices don’t support fragmentation

› They treat fragmented frames as full frames

› Examples: OpenBSD and ESP12-F

Abuse to inject frames when:

› Another device sends fragmented frames

› This other device visits the attacker’s server

80

81

Discussion

Practicality vs. impact

Perhaps we’re lucky:

› Widespread flaws  relatively trickly to exploit in practice

› Trivial to exploit flaws  not widespread in practice (?)

Important concerns remain:

› Significant #devices affected by trivial to exploit flaws

› Every Wi-Fi device affected by one or more flaws

› Combining flaws increases practicality of certain attacks

 Patch now before attack improve!
82

Conclusion

› Aggregation & fragmentation design flaws

› Several common implementation flaws

› Need patched drivers to test if affected

› Impact varies per device & network

83

