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ABSTRACT

We propose a new approach to infer state machine models from
protocol implementations. Our new tool, STATEINSPECTOR, learns
protocol states by using novel program analyses to combine obser-
vations of run-time memory and I/O. It requires no access to source
code and only lightweight execution monitoring of the implemen-
tation under test. We demonstrate and evaluate STATEINSPECTOR’s
effectiveness on numerous TLS and WPA/2 implementations. In
the process, we show STATEINSPECTOR enables deeper state discov-
ery, increased learning efficiency, and more insight compared to
existing approaches. Our method led us to discover several con-
cerning deviations from the standards and vulnerabilities in IWD
and WOolfSSL, both of which were assigned CVEs.
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1 INTRODUCTION

Protocol state machine learning has been used to analyse many
cryptographic protocols, e.g., TLS [16, 17], SSH [20], WPA [36], Blue-
tooth [30], DTLS [19] OpenVPN [15], and many others [5, 6, 18, 39].
A state machine shows how an implementation responds to any
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sequence of inputs it receives. The “happy flow” of a protocol is gen-
erally well described in the protocol’s specification, however, most
specifications do not clearly describe how implementations should
handle unexpected, out of order messages, which can lead to errors.
Vulnerabilities found via state machine learning include an imple-
mentation of TLS where sending a ChangeCipherSpec message to
a server before a ClientKeyExchange leads to the server using an
insecure default key [17], and an implementation of WPA/2 where
an access point skips key authentication after three timeouts [36].
Identifying such bugs in application logic is a vital and comple-
mentary analysis to other techniques, like fuzzing, which test for
vulnerabilities related to memory corruptions [27, 35].

State machine learning takes a set of input message sequences,
sends them to a system under test (SUT) and records the results.
Trying all possible combinations of messages is intractable, thus,
automated learning systems use optimised algorithms such as L* [7]
or TTT [26] to perform learning. The learned machines are usually
Mealy-machine automata [28, 34], whose transitions map from an
input to the SUT, to the output received in response, and the re-
sulting state. This kind of learning is purely black-box and relies
entirely on I/O observations. It assumes that the SUT is determin-
istic, i.e., that the same sequence of inputs will always lead to the
same protocol state. Due to this assumption, to be tractable, black-
box learning can only determine if two states that exhibit the same
I/O behaviour are equivalent up to a fixed bound. Past algorithms
try all possible inputs sequences up to a fixed size, in the worst case
this takes exponential time and if the depth is too small, they miss
protocol behaviours. Because of this, past work has used small sets
of core protocol messages and limited the depth of the search! (we
show below that this can lead to missed attacks).

We present a, two stage, state machine learning method and
supporting tool, STATEINSPECTOR. In the first stage, we capture and
analyse snapshots of the implementation’s execution context while
it runs the protocol to identify locations in memory that define the
protocol state. In the second stage, we learn the complete protocol
state machine by analysing how the implementation responds to
input queries and then inspecting the SUTs memory to see what
protocol state it is in. As we can now recognise each protocol state

Looking at SSH, [20] uses between 5 and 9 inputs, saying: “we used only a subset
of the most essential inputs, to speed up experiments” and for OpenVPN, [15] uses
between 3 and 7 inputs, saying: “In order to keep the learning complexity low, we only
include messages that would be accepted given the server configuration”. [17] uses 8
core TLS inputs, whereas our methods can test a full set of 21 TLS inputs.
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as soon as we reach it, we no longer need to try all possible protocol
inputs to a set depth.

As with past approaches, our method makes certain assump-
tions about the SUT. We discuss these in detail and empirically
verify that they are reasonable and realistic for implementations
of complex, widely deployed protocols, including TLS and WPA/2.
Our evaluation demonstrates that for modestly sized input sets,
as used in past work, our method is significantly more efficient.
Further, it shows that STATEINSPECTOR can handle larger, more
realistic input sets and greater exploration depths than past work.
In fact, we find that such input sets cause these methods—all based
on black-box learning—not to terminate. Our experiments show
that learning with larger input sets is crucial to finding deeper state
machine vulnerabilities. To that end, STATEINSPECTOR enabled us
to find vulnerabilities in WolfSSL and IWD, which could not have
been found with black-box learning methods. We also found issues
of concern in OpenSSL and Hostapd. In summary, we make the
following contributions:

(1) A new model inference approach, which leverages observa-
tions of run-time memory and program analyses.

(2) A demonstration that our approach runs faster and learns
models that black-box approaches cannot.

(3) An evaluation on TLS and WPA implementations, finding
two CVE vulnerabilities and several other issues.

We make STATEINSPECTOR, our test harnesses, our test corpus,
and our full results and data sets publicly available? [38].

2 BACKGROUND

Model Learning The models we learn take the form of a Mealy
machine. For protocols, this type of model captures the states of the
system which can be arrived at by sequences of inputs from a set I,
and trigger corresponding outputs from a set O. We consider Mealy
machines that are complete and deterministic. This means that for
each state and input i € I, there is one output and one possible next
state. Mealy machine learning algorithms include L* [7, 28, 34] and
the more recent space-optimal TTT algorithm [26]. All of these
algorithms work by systematically posing output queries from I'*
(i. e., non-empty strings of messages), each preceded by a special
reset query. More advanced learning algorithms that learn automata
with, e.g., side effects [41] or weights [40] have been proposed, but
these have not been used on cryptographic protocols.

For a learning algorithm to interact with a SUT, it relies on a “test
harness”, which is a stand alone program that translate between an
abstract and a concrete protocol message representation. For exam-
ple, a TLS test harness will map the message ClientKeyExchange
to a full TLS Client Key Exchange message including a encrypted
key seed. A test harness will also be responsible for keeping track of
key material and nonces, generating keys and performing encryp-
tion as needed. For protocols with good open source libraries, e.g.,
TLS [35], building a test harness is relatively straightforward, but for
proprietary protocols, it may amount to implementing specialised
clients or servers from scratch.

Protocol state machine learning algorithms pose combinations
of inputs to a SUT until they find a hypothesis for the state ma-
chine which achieves specific properties, namely completeness and

Zhttps://github.com/ChrisMcMStone/state-inspector

Chris McMahon Stone, Sam L. Thomas, Mathy Vanhoef, James Henderson, Nicolas Bailluet, and Tom Chothia

closedness. They then employ a secondary procedure which poses
further equivalence queries. These queries attempt to find counter-
examples to refine the hypothesis. In black-box learning, these can
be generated in various ways, including random testing, or formally
complete methods such as Chow’s W-Method [12]. The W-Method
is computationally expensive and essentially requires an exhaustive
search of all input sequences up to some specified bound, with no
guarantee of correctness beyond this bound. Therefore, finding an
optimal input set and a bound small enough to ensure termination,
yet large enough to produce useful models has been a key part of
past work on state machine learning for security analysis.

Going from a state machine to an attack The state machine
gives a detailed, abstract view of how a protocol implementation
works, and it must be analysed to see if there is a flaw in the
implementation logic. Cryptographic protocols will normally lead
to an accepting state in which encrypted data can be exchanged,
this state should be reached by carrying out the steps in protocol as
given in the specification. Vulnerabilities can take the form of a non-
standard path to this accepting state. It is normal for protocol state
machines to have many states to handle errors, some of which may
be recoverable from and some many not, however paths that reach
the accepting state while bypassing key authentication steps are of
particular interest. For instance, [17] found a path to the accepting
state for TLS which bypassed the Client Key Exchange, and [36]
found a path to the accepting state for a WPA implementation that
would bypass a message authentication step if three timeouts in a
row occurred.

Binary Program Analysis Our grey-box analyses are performed
at the assembly language level (c.f. white-box analyses, where
source code information is utilised) and are based on two tech-
niques: taint propagation and symbolic execution. Taint propaga-
tion tracks the influence of tainted variables by instrumenting code
and tracking data at run time. Any new value that is derived from
a tainted value will also carry a taint.

Symbolic execution computes constraints over symbolic variables
based on the operations performed on them. It tracks the relation
between variables and for a branch condition that depends on a
symbolic variable, it can query a SMT solver to obtain suitable
assignments that enable us to explore all feasible branches.

3 MOTIVATION AND RELATED WORK

In Table 1, in addition to STATEINSPECTOR, we summarise five key
approaches whose central aim is to learn a state machine model of a
given protocol implementation. Each approach learns this model for
different reasons (i. e., fuzzing, reverse-engineering, or conformance
testing), and their assumptions also differ (i. e., black or grey-box
access, known or unknown target protocols, and active or static
trace-based learning).

Limited Coverage Learned model coverage in passive trace-based
learning approaches (e. g., [14, 21]) is entirely determined by the
quality of pre-collected packet traces, and consequently is most
appropriate for learning unknown protocols. On the other hand,
since active methods can generate protocol message sequences on-
the-fly, their coverage capability is self-determined. All state-of-the-
art active methods (black-box [16, 17, 19, 20, 36] and grey-box [11,
31]) use automata learning algorithms (e. g., L* or TTT) for their
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Table 1: Comparison of protocol model learning approaches. Style refers to active generation of inputs sequences, or passive
trace replays. Requirements denote: (P)rotocol Implementation, (A)bstraction functions for I/0, (T)races of protocol packets,
and (F)uzzer. Learned information categorised as input (I), input to protocol state (I2PS), and input to concrete state (I2CS).

Requirements Crypto- What is learned? .
Goals Style P A T F protocols I I2Ps 12cs State-classifier
Black-box MODEL LEARNING [17, 36] Model extraction Active @ @ O O [ J O [ J O /0
PULSAR [21] State-aware fuzzing Passive O O @ @ O O [ J O I/0
PRrOSPEX [14] Protocol RE Passi,ie O @ @ O O O [ ] O  Control-Flow-I/O
Grey-box MACE [11] Input discovery Active O e e O O [ J ([ O /0
AFLNET [31] State-aware fuzzing Active cC e e © © [ J [ J O 1/0
STATEINSPECTOR Model extraction Active @® @ O O [ J O [ J (] Memory
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Figure 1: State machine with a deep-state backdoor that can
only be activated by sending 12 consecutive init messages.

query generation and model construction, and such algorithms are
known to have two key limitations. First, queries to a target system
are constructed with a fixed, pre-defined set of inputs (i. e., protocol
messages). This means that behaviour triggered with inputs outside
of this set cannot be explored. To help alleviate this issue, two
approaches integrating automata learning with grey-box analyses
have been proposed—MACE [11], which uses concolic execution,
and AFLnet [31], which uses fuzzing. Despite some success when
applied to text-based protocols, these and other existing model
learning techniques suffer from a second issue, namely, limited
exploration with respect to the depth of the state machine.
Consider the state machine in Figure 1. In this simple protocol,
a backdoor exists that allows us to transition from state 1 (not
authenticated) to state 2 (authenticated) by supplying an input
of 11 init messages, as opposed to an auth message>. To learn
this state machine, state-of-the-art model learning with the TTT-
Algorithm [26] and modified W-Method [17] fails to terminate after
1M queries—essentially operating by brute-force. This is because the
number of queries needed is polynomial in the number of messages,
states and exploration depth. Moreover, to identify this backdoor,
we must set a maximum exploration depth of at least 11. In practice,
however, since query complexity explodes with a high bound, most
works use a much lower bound (e. g., 2 in [17, 20]), or use random

3This backdoor is similar to a flaw found in a WPA/2 implementation [36], which
permitted a cipher downgrade after 3 failed steps of the handshake.

testing which lacks completeness. This query explosion is also
exacerbated by large input sets. Hence, for systems where time-
spent-per-query is noticeable (e. g., a few seconds, as is the case
with some protocols), it is apparent that learning such systems
requires a more efficient approach.

Limited Optimisations Similar to the problem of limited cover-
age, current approaches also lack sufficient information to optimise
learning. That is, I/O observations do not enable learning effort to
be focused where it is likely to be most fruitful. Consider de Ruiter et
al’s application of black-box learning to RSA-BSAFE for C TLS [17].
Their learner cannot detect that the server does not close the con-
nection upon handshake termination, and, therefore, exhausts its
exploration bound, posing tens of thousands of superfluous queries.

Prospex’s grey-box approach [14] potentially avoids this issue
by using execution traces of message processing code to (indirectly)
help classify states. However, it cannot capture states that only
manifest as changes to memory, e. g., counter increments per mes-
sage read, and its coverage is limited due to the use of trace-replays.
Consequently, like MACE [11] and AFLnet [31], it is not applicable
to protocols with complex state or replay-protection (i. e., security
protocols).

Limited Insight Methods that use only I/O observations may over-
abstract the true state machine to such a degree that their output
model prevents practitioners from obtaining a sufficiently detailed
understanding of an implementation. Further, as active learning
methods produce models that depend on how they map between
concrete and abstract messages, their learned models will be in-
correct if the mapping is incorrect, which can be challenging to
identify. This mapping is done using a so-called test harness, which
is a highly flexible implementation of the target protocol (denoted
by P in Table 1). A harnesses’ main function is to send and interpret
protocol messages in an arbitrary order.

This difficulty is highlighted in the black-box analysis of TLS
performed by de Ruiter et al. [17]. The authors’ acknowledge that
their state machines for OpenSSL 1.0.1g and 1.0.1j are incorrect due
to differing assumptions between the implementation and their test
harness (page 11, Section 4.8). Unfortunately, determining whether
a model is incorrect due to a flawed test harness, or whether there
is a bug in the SUT is difficult based on a model learned using
just I/O. In general, we must manually analyse both the harness
and implementation to determine the root cause. Conversely, our
method provides insight into how state defining memory correlates
with I/O behaviour, and can therefore be used to detect such bugs
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with significantly less effort. To demonstrate this, we provide an
analysis of the aforementioned flaw in Section 6 and Appendix F.

Some recent work has extended learning with taint analysis to
learn register automata from source code [25, 33]. Such automata
are more insightful than Mealy machines, since they attempt to
model conditions on state data for transitions between states. Also
working on source code, Hoque et al. [24] have used symbolic exe-
cution to learn a state machine. In contrast, our method works from
the protocol binary alone. A different approach is taken by Pacheco
et al. [29] who learn state machines from the text of the specifi-
cation document, which obviously cannot find implementational
vulnerabilities.

Research Questions Based on the above discussion we form the
following research questions to guide the design and and provide
an evaluation criteria for our approach, STATEINSPECTOR:

RQ1: Can we identify the protocol state of the SUT by analysis of
the memory?

RQ2: Can we combine this memory analysis with automata learn-
ing methods to learn state machines more efficiently?

RQ3: Does this provide more insight into the SUTs behaviour,
letting us use larger input sets, and finding deeper states and be-
haviours that past learning methods cannot?

4 OVERVIEW

We depict a high-level overview of our approach in Figure 2. Our
method combines insights into the runtime behaviour of the SUT
(provided by the execution monitor and concolic analyser) with
observations of its I/O behaviour (provided by the test harness)
to learn models that provide comparable guarantees to traditional
black-box approaches. We now state the assumptions we make and
provide an overview of our tools operation. Our first assumption is

Assumption 1. The protocol state machine of the SUT is finite, and
can be represented by a Mealy machine.

Justification: This is a standard assumption for all state machine
learning methods, without this the learning process cannot termi-
nate. However we show with our Hostap 2.8 case study in Section 6,
that if the state machine is infinite then the process can be stopped
at any time to return a correct sub-automaton of the infinite state
machine, which can still be useful for analysis.

In all concrete implementations, each state of this Mealy machine
will correspond to a particular assignment of values to specific
“state-defining” memory locations, allocated by the implementation.
We use two terms to discuss these locations and the values assigned
to them, which we define as follows:

DEFINITION 1 (CANDIDATE STATE MEMORY LOCATION). Any mem-
ory location that takes the same value after the same inputs, for any
run of the protocol.

DEFINITION 2 (A SET OF STATE-DEFINING MEMORY). A minimal
subset of candidate state memory locations whose values during a
protocol run uniquely determine the current state.

We refer to a member of any state-defining memory set as state
memory. Next we assume that we know the input language needed
to interact with the SUT and hence generate the state machine:
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Assumption 2. All protocol states can be reached via queries built
up from the inputs known to our testing harness I'*.

Justification: This is a standard assumption of black-box state
machine learning. Our method is best for testing implementations
of well known protocols. If some inputs are missing from our input
alphabet then we will learn a correct sub-automaton of the state
machine that does not include the missing inputs.

Under these assumptions, we now describe the operation of
our approach. Our learner uses a test harness to interact with the
SUT. This test harness is specific to each protocol analysed and
tracks session state, and is responsible for communicating with the
SUT and translating abstract representations of input and output
messages (for the learner) to concrete representations (for the SUT).
In the first phase of learning, the learner instructs the test harness
to interact with the SUT to exercise normal protocol runs, trigger
errors, and induce timeouts multiple times. We capture snapshots
of the SUT’s execution context (i. e., its memory) for each of these
runs using an execution monitor. We perform subsequent analysis
of the snapshots in order to determine a set of candidate memory
locations that can be used to reason about which state the SUT is
in. We make the following assumption about this memory:

Assumption 3. A set of state-defining memory, for all states, is
allocated on the heap and used along a normal protocol run, during
error handling, or timeout routines.

Justification: We have examined implementations of TLS, WPA,
EAP protocols [1, 2], SSH [3] and OpenVPN [4] and found that
storing state memory on the heap is standard. If state memory
was stored on the stack, or via the program counter, our current
implementation would wrongly identify different states as the same,
and then terminate issuing a warning when different behaviour
was detected. We discuss how our method could be expanded to
handle state on the stack or via the program counter in Section
6.5. We may miss candidate locations if they do not change during
any known bootstrap flow. Fortunately, our results and analysis of
implementation code indicate that this assumption holds for most
protocols

Any memory location found to have the same value for each
sequence of inputs, for each run, is considered candidate state
memory. Any location that takes the same value in all states is
discarded. Assumption 3 ensures that this reduced set of locations
will be a set of state-defining memory, however, this set may also
contain superfluous locations.

The next phase of learning uses the candidate set to construct
a model of the protocol state machine. During this process, we
identify the set of state-defining memory for each state. Changes in
a location, such as a message counter, that tracks the state but has
no effect on it, could lead to our method wrongly thinking it has
discovered new states. To merge such states we use taint analysis
and symbolic execution to find out which candidate locations are
not used in conditionals and do not lead to writes to other candidate
state definition locations. This allows us to determine if two states
arrived at from the same input sequence should be considered
equal, even if their memory differs, as we only need to consider
the values of state-defining locations when performing this so-
called equivalence check. It also allows us to effectively ignore any
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Figure 2: Grey-box State Learning Architecture.

superfluous locations in our candidate set since they will not be
considered state-defining for any state.

To learn the state machine, we queue all queries from I* to
fulfill the completeness property for states in a Mealy machine.
Namely, that all inputs are defined for each state. We perform these
queries iteratively in increasing length. As in the first phase, we
take snapshots of the execution state of the SUT on each I/O action.
Each time a distinct state, according to its I/O behaviour and defined
state memory, is discovered, we queue additional queries from this
state in order to determine all states reachable from it. We continue
building the automaton in this way until no new states are found.

As well as state memory, it is possible that our candidate set
contains locations with assignments that appear to be state-defining
for all states identified from the set of posed inputs, but are actually
not. For instance, if a protocol implementation maintains a counter
of the messages received, it might be mistaken for state memory,
leading to a self loop in the state machine being conflated with
an infinite progression of seemingly different states. Recognising
such memory will prevent our framework from mistaking a looping
state from an infinite series of states, and so ensures termination.
To determine if such memory exists and if it can be ignored, we
perform a merge check. This allows us to replace a series of states
repeated in a loop, with a single state and a self loop. This check is
only performed between states that have the same observed input
and output behaviour, and are connected at some depth (i. e., one
is reachable from the other). We make the following assumption
about this depth:

Assumption 4. The depth that we check for possible merge states
is larger than the length of any loop in the state machine of the
implementation being tested.

Justification: If loops within a state machine exist beyond the
configured depth bound, and the memory across these states is
always changing (e. g., a counter), then STATEINSPECTOR will du-
plicate states. In both of these cases, like black-box methods, we
provide a means to bound exploration. We choose to bound by a
configurable time, but this can also be done by exploration depth. In
the worst case, the resulting models will be no less representative
than those learned with black-box methods.

When performing a merge check, we consider two states equal
if the values assigned to their state-defining locations are equal.
Therefore, for each location that differs, we must determine if it
behaves as state memory for each state (we discuss the conditions

for this in Section 5.4). To do so, we use a novel analysis (imple-
mented in the concolic analyser in Figure 2). This analysis identifies
a memory location as state-defining when this location influences
decisions about which state we are in. Concretely, this is encoded
by checking if the location influences a branch that leads to a write
to any candidate state memory. That is, state-defining memory
will control the state by directly controlling writes to (other) state
memory, and non-state-defining memory will not. This leads to our
final assumption:

Assumption 5. Any state-defining memory will control a branch,
along an execution path triggered by messages from the set I'*, and
it will lead to a write to candidate state memory within an a priori
determined number of instructions.

Justification: This restates the definition of state memory by cap-
turing how such memory is used by a program to control which
inputs lead to which outputs and new states. We discuss the selec-
tion of the above bound for the number of instructions ths might
take in Section 5.4.2, and Section 6.5. but note that this is a config-
urable parameter of our algorithm.

We complete learning when no further states can be merged,
and no new states (that differ in I/O behaviour or state memory
assignment) can be discovered by further input queries. At this
point, STATEINSPECTOR outputs a representative Mealy machine for
the SUT. We note that if any of these assumptions do not hold we
can still approximate the state machine of the SUT by imposing a
time bound on the learning, this is discuss further in Section 6.

5 METHODOLOGY

The learner component of Figure 2 orchestrates our model inference
process, as implemented by STATEINSPECTOR. It learns how the SUT
interacts with the world by observing its I/O behaviour via the test
harness, and learns how it performs state-defining actions at the
level of executed instructions and memory reads and writes, via
the execution monitor (Section 5.1). Inference begins with a series
of bootstrap queries in order to identify candidate state memory,
i.e., M (Sections 5.2, 5.3). Once completed, the model refinement
proceeds with the aim of identifying each state by its I/O behaviour
and set of state-defining memory.

This core model refinement algorithm works in an iterative loop.
It starts by taking the outputs from the bootstrap phase, @ an
estimation of M and @, an initial set of identified states, and then
queries input sequences of incrementing lengths n. Queries are
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formed by taking each input from our alphabet and appending it to
the input sequence needed reach each existing state. All queries of
length n are then posed to the SUT, and states are identified from
their memory contents at the locations defined in M. Using this
information the model the model is updated, and a state merging
check (Section 5.5) is performed complemented by a process to
handle uncertain memory in M (Section 5.4). With this iteration of
model refinement now complete, n is incremented and the process
repeats until model completeness is achieved.
We show a full sketch of our algorithm in Appendix A.

5.1 Monitoring Execution State

To monitor a SUT’s state while it performs protocol related 1/O,
we take snapshots of its memory and registers at carefully chosen
points. As many protocols are time-sensitive:

(1) We avoid inducing overheads such that the cost of each
query becomes prohibitively high.

(2) We do not interfere with the protocol execution, by, for
example, triggering timeouts.

(3) We only snapshot at points that enable us to capture each
input’s effect on the SUT’s state.

To perform a snapshot, we momentarily pause the SUT’s execu-
tion and copy the value of its registers and contents of its mapped
segments to a buffer controlled by the execution monitor. To min-
imise overheads, we buffer all snapshots in memory, and only flush
them to disk after the SUT has finished processing a full query.
Whilst snapshots do cause a worst-case overhead of 20% time-per-
query, this does not impact the behaviour of any protocols analysed.
Regarding disk requirements, snapshots were at most 500kb each.
For large state machines which required 1000s of queries, we ac-
tively deleted snapshots during learning to optimise disk space
usage.

To identify when to perform snapshots, we infer which system
calls (syscalls) and fixed parameters a SUT uses to communicate
with its client/server. We do this by generating a log of all system
calls and passed parameters used during a standard protocol run.
We then identify syscall patterns in the log and match them to
provided inputs and observed outputs. The number of syscalls for
performing I/O is small, hence the number of patterns we need
to search for is also small, e. g., combinations of bind, recvmsg,
recvfrom, send, etc. When subsequently monitoring the SUT, we
hook the identified syscalls and perform state snapshots when they
are called with parameters matching those in our log.

5.1.1  Mapping /O Sequences To Snapshots. To map I/O sequences
to snapshots, we maintain a monotonic clock that is shared between
our test harness (which logs I/O events) and our execution monitor
(which logs snapshot events). We construct a mapping by aligning
the logged events from each component, as depicted in Figure 3.
When doing so, we face two key difficulties. First, implementations
may update state memory before or after responding to an input,
hence we must ensure we take snapshots to capture both possibili-
ties (i. e., case ® in Figure 3). Second, some parts of a query may
not trigger a response, hence we must account for the absence of
write-like syscalls triggering a snapshot for some queries (i. e., cases
0 and O).
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| E | % | E | % E
Figure 3: Mapping I/O sequences to snapshots. We depict
four cases @-@, snapshot events are shown on the left
and I/O on the right. We indicate read/input events in red,
write/output events in blue, state changes in yellow, and
connection close events in green. ® shows the case where
snapshots and state changes are trivially aligned with I/O.
® shows the case where a state change occurs without a
corresponding output event. ® shows the case where state
changes occur after output events. @ shows the case where a

state change occurs after the last input event, with no output
before the connection is closed.

For all scenarios, we trigger input event snapshots after read-like
syscalls return, and output event snapshots just before write-like
syscalls execute. We take additional snapshots for output events
before each read-like syscall. This enables us to always capture
state changes, even if no corresponding write-like syscall occurs,
or the state change happens after the output is observed.

If there is no output to the final input of a query g, then we
instruct the learner to pose an additional query with an extra input,
qlli for all i € I. We expect there to be a read event corresponding
to the final input of one of these queries—thus providing us with
a snapshot of the state after processing the penultimate input. If
the SUT does not perform such a read, i. e., it stops processing new
input, as in case @, we detect this by intercepting syscalls related
to socket closure, and inform the learner that exploration beyond
this point is unnecessary.

5.2 Identifying Candidate State Memory

Snapshot Generation Our first goal is to learn a set of candidate
state memory (Definition 1) M. To form an initial approximation
of M, we perform bootstrap queries against the SUT, this produces
a set of memory snapshots where all of the memory which tracks
state is defined and used (Assumption 3). Our bootstrap queries
take the form, BF = {by, b1, ...by, }, where b; € I*. The first of these
queries by is set as the happy flow of the protocol. This is the ex-
pected normal flow of the protocol execution, which we assume
prior knowledge of. For example, in TLS 1.2, by = (ClientHelloRSA,
ClientKeyExchange, ChangeCipherSpec, Finished). The other queries
in BF are specific mutations of this happy flow, automatically con-
structed with the intention of activating error states, timeout states,
and retransmission behaviour. Each of these queries by is derived
by taking all prefixes py of the happy flow by, where 0 < |px| < |bo],
and for all inputs in I, and appending to px each i € I a fixed number
of times T such that by = py|i”.

Every bootstrap query is executed at least twice, so that we have
at least two snapshots for each equivalent input sequence, which
we require for the next step of our analysis. We can reuse all of
the bootstrap queries for refining our model in subsequent phases.
When possible, we also attempt to alternate functionally equivalent
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Figure 4: Allocation alignment across different executions.
Each large block represents the memory layout of a differ-
ent protocol run; coloured squares represent state-defining
locations. Allocation alignment computes a mapping of al-
locations of a given run (blue squares) to a base configura-
tion (red squares). Using this mapping, we can diff snap-
shots that have different configurations, e.g., ® and ©, by
first mapping them onto a common configuration, i.e., .

4]

Figure 5: Logs alignment using Gotoh’s algorithm. @ and
O represent two logs to align; coloured rectangles repre-
sent their longest common sub-sequences of allocations. ®
and @ represent the aligned versions of @ and ®; crossed
out rectangles represent gaps inserted for unmatched sub-
sequences of allocations.

input parameters to the SUT across bootstrap flows. We do this
to maximise the potential number of locations we eliminate due
to not holding the same value at equivalent states (Assumption
3). For example, for TLS implementations, we execute some boot-
strap flows with different server certificates, which enables us to
eliminate memory that would otherwise have to be identified as
non-state-defining using our concolic analyser, described below.

Handling Dynamic Memory Protocols will generally allocate
state memory on-demand, using e.g., malloc. This presents a chal-
lenge when identifying state-defining locations, as logically equiv-
alent allocations may not reside at the same offsets across different
protocol executions. To address this non-determinism, we compute
a mapping of each execution’s allocations to a single base config-
uration. This enables us to analyse all snapshots together with
respect to a common configuration, rather than pair-wise. Figure 4
visualises our approach.

We first construct an allocation log for each execution that
records a timestamp, the stack pointer (i. e., callee return address),
and call parameters, of every call to a memory allocation function
(e.g., malloc and free). Then, to derive a mapping between two
logs, we use Gotoh’s algorithm [22] to find a global alignment of
the two sequences of allocations, as shown in Figure 5. As Gotoh’s
algorithm is designed to match biological sequences rather than
allocation sequences, we make adaptations to the input parameters
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of the algorithm to make it suitable for alignment of allocation
logs. We match the allocations on their size and calling context
(recorded stack pointer)—the set of all (size, context) pairs define
the input alphabet of the algorithm (in contrast to {A, T, C, G} for
biological applications). We also set the input scores in such a way
as to avoid inserting unnecessary gaps in the alignment and as to
prevent mismatches (otherwise allowed by the algorithm)—we do
not want to align two allocations whose sizes or calling contexts
are different (non-equivalent across executions). We fully explain
our adaptations and choice of parameters in Appendix C.

We choose our base configuration, or log, as the largest happy
flow log, under the assumption that it will contain all allocations
related to state-defining locations for any possible session.

Snapshot Diffing Following mapping each bootstrap snapshot’s
allocations onto the base log, we diff them to obtain our candidate
set M. Each element m € M corresponds to the location of a con-
tiguous range of bytes of dynamically allocated memory, which we
represent by: an allocation address, an offset relative to the start of
the allocation, and a size.

We perform diffing by first grouping all snapshots by their asso-
ciated I/O sequences. Then, for each group, we locate equivalent
allocations across snapshots and identify allocation-offset pairs
which refer to byte-sized locations with the same value. We then
check that every identified location also contains the same value
in every other I/O equivalent snapshot, and is a non-default value
in at least one snapshot group (Assumption 3). This gives us a set
of candidate state memory locations. We note that as this process
is carried out at the byte level, we additionally record all bytes
that do not abide by this assumption. This enables us to remove
any incorrectly classified bytes once we have established the real
bounds of individual locations (Appendix D).

5.3 Minimising Candidate State Memory

Given our initial set of candidate state memory locations, we reduce
M further by applying the following operations:

(1) Pointer removal: we eliminate any memory containing
pointers to other locations in memory. We do this by exclud-
ing values that fall within the address-space of the SUT and
its linked libraries.

(2) Static allocation elimination: we remove any full alloca-
tions of memory that are assigned a single value in the first
snapshot which does not change throughout the course of
our bootstrap flows.

(3) Static buffer elimination: we remove any contiguous byte
ranges larger than 32 bytes that remain static.

Operations 2 and 3 are used to filter locations corresponding
to large buffers of non-state-defining memory, for example, in
OpenSSL, they eliminate locations storing the TLS certificate.
Type-Based Minimisation Since state-defining locations are of-
ten only meaningful when considered within the address bounds
of their full type e.g., four consecutive bytes as a 32-bit integer,
throughout learning we additionally run a rudimentary type infer-
ence algorithm procedure. This is described in Appendix D.
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5.4 Handling Uncertain State Memory

Forming our candidate set M by computing the differences between
snapshots gives us an over-approximation of all of the locations
used to discern the SUT’s state. However, an implementation may
not use all of these locations to decide which state it is in for every
state. When testing if two memory configurations for the same
I/0 behaviour should be considered equivalent, we must identify if
differing values at candidate locations imply that the configurations
correspond to different states (i. e., the differing locations are state-
defining), or if the values they take are not meaningful for the
particular state we are checking. For a given state, by analysing
how locations actually influence execution we can tell state-defining
locations from those that are not, as in all cases, non-state-defining
locations will have no influence on how state is updated. Since
this kind of analysis is expensive, the diffing phase is crucial in
minimising the number of candidate locations to analyse—typically
reducing the number to tens, rather than thousands.

5.4.1 Properties Of State-Defining Memory. To confirm a given
location is state-defining, we attempt to capture execution traces
of its location behaving as state-defining memory. We summarise
these behaviours below, which we base on our analysis of various
implementations:

(1) Control-dependence: writes to state memory are control-
dependent on reads of state memory, e.g., a state enum flag
read forming the basis of a decision for which code should
process an incoming message, and the resulting state ma-
chine transition defined by a write to state memory.

(2) Data-dependence: non-state memory that is conditionally
written to due to dependence on a read from state memory
may later influence a write to state memory.

(3) State-defining and state-influential locations: for a par-
ticular state, its state-defining memory locations (Definition
2) will always be read from before they are written to (to tell
which state one is in), and subsequent writes to state mem-
ory will be control- or data-dependent upon the values of
those reads (Assumption 5). For state-influencing locations,
e.g., input buffers, this property will not hold—while the
contents of a buffer may influence state, it will not directly
define it, and will be written to before being read.

5.4.2 Discerning State-Defining Locations. If a location holds more
than one value when performing a merge check, we apply an addi-
tional analysis to determine if it is state-defining. First, we identify
execution paths that are control-dependent on the value stored at
the location. Then, we check if any of those paths induce a write to
known state memory. If so, we classify the location as state-defining.

We base our analysis on a variation of byte-level taint propaga-
tion combined with concolic execution. We apply it in sequence
to state snapshots taken on reads of the candidate location addr.
We start analysis from the instruction pc performing the read that
triggered the state snapshot. Our analysis proceeds by tainting and
symbolising addr, then tracing forwards until we reach a branch
whose condition is tainted by addr. If we do not reach a tainted
conditional statement within W instructions, we do not continue
analysing the path. At the conditional, we compute two assign-
ments for the value at addr—one for each branch destination. We
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@ verify result

mov rax, [s+0x80] stored in eax

mov rdi, s
or qgword [rax], 0x80 /
call ss13_get_cert_verify

mov rdx, [s+0x80] @ perform state
cmp byte [read_seq], ©x@b change

sz update_state
update_state:
@ check cmp dword [rdx+0x48a], 1
backdoor depth ® skip check of mov dword [s+0x60], ©
verify result sbb eax, eax
xor ril2d, ri2d
test eax, eax and eax, Oxffffffbo
ig update_state add eax, ©0x2210
mov [state], eax
Close jmp loc_fallthrough
Connection

Figure 6: OpenSSL client verification bypass. At @ we check
the client certificate signature, at ® we check if the read_seq
counter is equal to 11, if so, we bypass the check of the result
of client certification verification via ®. At ® we perform a
state update that is control-dependent on read_seq’s value.
STATEINSPECTOR identifies the dependence and dynamically
adjusts the learning depth to discover the deep-state change.

then symbolically explore each of the two paths until we have
processed W instructions or we reach a return instruction. If we
observe a write to known state memory on either path, we consider
addr to be state-defining.

Figure 6 depicts an example location that requires such analysis.
The counter read_seq is used to implement a sneaky backdoor that
bypasses client certificate verification in OpenSSL. Our analysis
finds that read_seq taints the branch jz update_state, and thus,
leads to a state change. We therefore classify it as state-defining. We
select an analysis bound of W = 512 based on the observation that
reads from memory involved in comparisons tend to have strong
locality to the branches they influence. Since we analyse multiple
state snapshots for each addr, generated for every possible input in
I, we reduce the chance for missing locations used in state-defining
ways outside of our bound.

5.5 State Merging

We use the values of our candidate state memory to identify when
two different sequences of inputs resulted in the same protocol state.
However, if there is superfluous memory in our candidate set, such
as, e.g., a message counter, this might stop us from identifying states
as being the same, and in the worst case lead to non-termination.
Therefore, we introduce a merge check that attempts to merge states
when all queries in the queue of a given length have been performed.

This check operates by identifying pairs of base and merge states,
which can be merged into a single state. These pairs are selected
such that two properties hold: @ the merge state must have I/O
equivalence to the base, and @ the merge state should be reachable
from the base. I/O equivalence signifies all input-output pairs are
equal for the two states, to a depth D. The intuition is that if I/O
differences have not manifested in D steps, they may in fact be
the same state, and we should therefore check if the differences in
their memory are state relevant. The base-to-merge state reacha-
bility must also be possible in D steps (Assumption 4). We enforce
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this property based on the observation that in security protocol
implementations, state duplication is more likely with states along
the same path. So-called loopback transitions often occur where in-
puts are effectively ignored with respect to the state, however their
processing can still result in some changes to memory, resulting
in duplication for our memory classified states. Loops in models
between multiple states are less common, but will be checked by
our learner provided the number of states involved is less than or
equal to D.

Our merge check determines whether the memory being used
to distinguishes the states is state-defining. Algorithm 2 (see Ap-
pendix) shows a sketch of our approach. In summary, for each
location of differing memory, and for each input message (to ensure
completeness), we monitor the execution of the SUT. We supply it
with input messages to force it into the state we wish to analyse
we then begin to monitor memory reads to the tracked memory
location. We follow this by supplying the SUT with each input
in turn and perform context snapshots on the reads to the mem-
ory location, which we call a watchpoint hit. We then supply each
of these snapshots as inputs to our concolic analyser (detailed in
the next section), which determines if the SUT uses the value as
state-defining memory (Assumption 5). If our analysis identifies
any location as state defining, then we do not perform a merge of
the two states. Conversely, if all tested locations are reported as
not state-defining, then we can merge the merge state into the base
state, and replace the transition with a self loop.

5.6 Implementation

Our resulting implementation consists of a Java-based learner, a
ptrace-based [8] execution monitor, and test harnesses in Python
and Java. Our concolic analyser is built using Triton [32] and IDA
Pro [23]. In total, STATEINSPECTOR consists of over 10kloc across
three different languages. We provide a complete breakdown of the
code in Appendix E.

6 EVALUATION

We tested STATEINSPECTOR against implementations of two of the
most widely used cryptographic protocol—TLS and WPA/2. Our re-
sults are then compared against the state-of-the-art, model learning
focused technique from Table 1—black-box model learning. Other
works in this Table are either 1) underpinned by this same black-box
learning algorithm but lack support for cryptographic protocols
(MACE [11] and AFLnet [31]), or 2) are limited to core state and
transition modelling due to their non-active nature (Pulsar [21] and
Prospex [14]).

All of our test harness code and protocol state machine diagrams
are available in our artefact submission [38]. For each state ma-
chine we verified a sample of the paths against the SUTs and we
ensured that the protocol paths as described in the specification
were possible in the state machine. In all cases the logic of the
protocol included the correct specified protocol flow and the state
machines corresponded with the observable behaviour of the SUT.

6.1 TLS

We evaluated our tool on the TLS 1.2 server implementation of
OpenSSL, RSA-BSAFE-C and GnuTLS, and both the server and
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client implementations of Hostap’s internal TLS library. We learn
these models with two separate input sets, one containing only
the core TLS messages (as in de Ruiter et al. [17]), and another
with a much larger input set, including client and server authenti-
cation messages and multiple key exchanges (as provided by the
TLS-Attacker test harness [35]). Table 2 lists the time taken to learn
all models, as well as the identified candidate state memory details,
query statistics and number of states identified. We list the number
of queries required to learn the same models with state-of-the-art
black-box learning, i.e., the TTT algorithm [26] with the modified
W-Method equivalence checking of [17] with a conservative equiv-
alence checking depth of 3. We cut off black-box experiments after
3 days if they show no sign of approaching termination.

6.1.1  WolfSSL. When testing WolfSSL TLS server v4.8 with STATEIN-
SPECTOR and our extended input alphabet, we obtained the state ma-
chine in Figure 11 (appendix). The expected “happy flow”, marked
in green, goes from s0, s2,...,s7; s7 is the accept state that allows
us to send encrypted application data, indicating the protocol ran
successfully. Most unexpected messages lead to a single error state
s1. However, we see that the server accepts all of the messages
normally sent by a server (the red transitions from s3, s4, s5 & s6
to s2), which can also then lead to the accept state.

We would expect server messages sent to a server to be ignored
(a self loop) or result in a transition to an error state. However,
we noticed that these messages transition to a new state that can
reach the accepting state. That is, a client can send a ServerHello
message to the server and set the server nonce to a value of its
choosing. Thus, a client can completely control the encryption
key. Unfortunately, this does not directly lead to a MITM attack,
as inserting a message into a TLS session results in a transcript
mismatch and termination of the protocol run.

We found similar behaviour in the WolfSSL client: it accepts and
processes all client messages apart from ClientKeyExchange. Since
STATEINSPECTOR can map from uses of state memory to source-code
locations, we could quickly determine that the client performs a
check that explicitly rejects ClientKeyExchange—annotated with
a comment saying it needs to be stopped for “security”. Investigat-
ing further, we found that if the client was compiled with support
for the PSK cipher-suite, we could send a ClientHello to the client,
it would accept the message, and (incorrectly) set a flag that marks
it as a server. As the flag is set after sending a ChangeCipherSpec
message, the client can be tricked into believing the protocol has
finished, which forces it to loop forever, and, thus, leads to a DoS
attack. We reported the vulnerability (CVE-2021-44718) to the Wolf-
SSL authors and they released a fix in v5.1. We note that traditional
black-box learning does not terminate for the client or server (we
stop after 3 days), and therefore would not have allowed us find
these issues. In contrast, STATEINSPECTOR took less than an hour.

6.1.2 OpenSSL. We tested OpenSSL versions ranging from 2014
to 2020. Of particular interest is the OpenSSL server running ver-
sion 1.0.1g. Our state machine for this implementation found a
previously discovered [17] critical vulnerability: specifically, if a
ChangeCipherSpec (CCS) message was sent before the ClientKey
Exchange, the server would compute the session keys using an
empty master secret. This vulnerability shows up clearly in the
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Table 2: Model learning results on TLS 1.2 and WPA/2 servers. TLS experiments are repeated with two alphabets, core and
extended. Times specified in hours and minutes (hh:mm). Experiments which did not terminate: Hl.

P . Classifying Mem. Mem. 1/0 Total I/OMem. Watchpoints . Black-Box
rotocol Implementation . . . ) . . Total Time . .
Locations Allocations States States Queries  Queries Queries Hits Queries Time
TLS 1.2 RSA-BSAFE-C 4.0.4 88 14 11 9 128 109 19 4 00:06 204k | |
o TLS 1.2 Hostap TLS 159 32 11 6 194 160 34 17 00:24 971 01:48
= TLS12 OpenSSL 1.0.1g 126 16 19 12 488 280 208 116 00:18 5819 00:42
'::' TLS 1.2 OpenSSL 1.0.1j 125 16 13 9 291 165 126 23 00:10 1826 00:13
@ TLS 1.2 OpenSSL 1.1.1g 126 6 6 6 88 86 2 0 00:02 175 00:02
8 TLS 1.2 GnuTLS 3.3.12 172 7 16 7 265 129 36 42 00:10 1353 00:21
TLS 1.2 GnuTLS 3.6.14 138 7 18 8 973 452 522 121 00:36 3221 00:52
TLS 1.2 WolfSSL 4.8 163 33 6 6 126 90 30 0 00:07 320 00:12
.E' TLS 1.2 RSA-BSAFE-C 4.0.4 165 7 14 7 918 688 230 635 01:08 133k | |
= TLS 1.2 OpenSSL 1.1.1g 467 66 11 11 535 524 11 0 01:05 1776 01:25
< TLS1.2 OpenSSL 1.0.1g 554 110 40 20 2454 1860 594 609 04:21 20898 21:05
‘;é TLS 1.2 GnuTLS 3.3.12 185 5 23 19 1427 1274 153 128 02:05 66k | |
HOTLS 1.2 GnuTLS 3.6.14 157 6 13 11 730 673 57 37 01:32 66k | |
TLS 1.2 WolfSSL 4.8 173 33 9 9 479 449 30 0 01:05 73671 | |
WPA/2 Hostap 2.8" 138 3 24 6 1629 804 825 261 03:30 2127 03:30
WPA/2 IWD 1.6 135 8 5 5 264 126 138 597 01:02 3000+ | |

T For Hostap, we stopped both learners at ~200 minutes, as we found that its state machine is infinite and would prevent both approaches terminating.

state machine as a path to the exchange of encrypted data state,
that does not include the ClientKeyExchange message.

The state machine we learnt was different from the one found
in [17] using black box learning, we found that there was an error
in the test harness used in [17]: when two ClientHello messages
are send by the test harness, the test harness will use the first
nonce to generate the key whereas the server will use the second.
As the test harness cannot then communicate with the server it
wrongly believes that the server is in an error state (this error was
acknowledged in [17]). Our direct memory analysis methods are
able to tell that the resulting state is not an error state, and so
produce the correct state machine. Appendix F shows the state
machine and provides a more detailed discussion of this issue.

When testing client authentication with our extended alphabet,
using the -Verify flag, we found that a client would halt on a
invalid certificate but the server would not. This shows up in the
state machine as a path to the accepting state of the server using
an invalid certificate input. Searching the documentation we found
an additional flag -verify_return_error that must be used if we
want OpenSSL to halt when it receives an invalid client certificate. A
recent Github issue* describes the same misleading configuration,
and resulted in a patch to the OpenSSL client implementation”.
This arguably makes matters worse as now the server and client
behaviour is inconsistent. We have reported this issue to OpenSSL
and they have added fixing it as a post version 3.0.0 milestone.

6.1.3 RSA-BSAFE-C. We selected this implementation as it serves
to demonstrate that our method is applicable not just to open-source
implementations, but also to closed-source.

From our experiments, we found that each time the server sends
an Alert message it performs a partial socket shutdown. Specifi-
cally, it calls shutdown(n, SHUT_RD) on the connection with the
test harness. This means that it no longer processes inputs, however,
this is not detectable by the test harness. For our approach this is

*https://github.com/openssl/openssl/issues/8079
Shttps://github.com/openssl/openssl/pull/8080

not a problem; we detect that no progress can be made using our ex-
ecution monitor (by hooking shutdown) and prevent further inputs
from this point. For black-box learning, which is entirely dependent
on the test harness, the socket closure is not detected, and so learn-
ing continues exploring beyond the receipt of an Alert message.
As shown in Table 2, this leads to many superfluous queries, and,
as a result, the learner fails to terminate within 3 days for either
alphabet. In comparison, our algorithm is able to learn the same
models with 128 queries in 6 minutes for the core TLS function-
ality, and in ~1 hour for a more complex model capturing client
authentication and alternative key exchanges. Notably, this latter
test revealed that repeated ClientHello’s are only permitted when
the server is configured with forced client authentication.

6.1.4 GnuTLS. Our tests on the TLS server implementations in
GnuTLS 3.3.12 and 3.6.14 showed substantial changes between the
two versions. In particular, each version required us to hook differ-
ent syscalls for snapshotting. State count also differed, especially
so when testing with the extended alphabet. Analysis of the mod-
els revealed slightly different handling of the Diffie-Hellman key
exchanges, which in the older version resulted in a path of states
separate from RSA key exchange paths.

The difference in learning performance between the two ap-
proaches, in the case of the extended alphabet, was profound. Black-
box learning failed to terminate after 3 days and over 60k queries.
We found that this was due to multiple states and inputs warranting
empty responses. Consequently, black-box learning exhausted its
exploration bound, trying all possible combinations of the trouble-
some inputs at the affected states. In contrast, as shown in Table 2,
STATEINSPECTOR is able to handle such cases much more effectively.
This is in part because some groups of inputs are found to result
in equivalent snapshots, and when the state equivalence is not
immediately evident, our merging strategy quickly finds memory
differences are inconsequential.

6.1.5 Hostap-TLS. We tested Hostap’s TLS library as both a client
and server. Although this library is described as experimental, it is
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AUTH / ACCEPT,0.0 E4(...)/ AES_DATA_1,0.0

ASSOC(...)/ EI(...),0.0

Figure 7: IWD Version 1.8 state machine (unpatched)

used in resource-constrained Wi-Fi devices [13] and Wi-Fi clients
in embedded Linux images created using Buildroot [9].

Our state machine showed that, surprisingly, TLS alerts are al-
ways sent in plaintext, which might leak information about the
connection. Further, some frames from the extended alphabet, such
as Heartbeat requests or responses were not supported, and send-
ing them resulted in desynchronisation of the TLS connection. We
therefore do not include learning results for this implementation
with the extended alphabet.

More worryingly, the model showed that against a client, the
ServerKeyExchange message can be skipped, meaning an adver-
sary can instead send ServerHelloDone. The client will process
this message, and then hits an internal error when sending a re-
ply because no RSA key was received to encrypt the premaster
secret. When Ephemeral Diffie-Hellman is used instead, the client
calculates g as the premaster secret with s equal to zero if no
ServerKeyExchange message was received. Because the exponent
is zero, the default math library of Hostap returns an internal er-
ror, causing the connection to close, meaning an adversary cannot
abuse this to attack clients. Nevertheless, this does illustrate that
the state machine of the client does not properly validate the order
of messages, and if Hostapd switch to a different math library it
might become vulnerable to attack.

6.2 WPA/2’s 4-Way Handshake

We tested two widely used Linux WPA implementations: IWD (iNet
Wireless Daemon) and Hostap. To learn the state machine, we start
with an input alphabet of size 4 that only contains messages which
occur in normal handshake executions. Our test harness automati-
cally assigns sensible values to all of the fields of these handshake
messages. To produce larger input sets, we also tried non-standard
values for certain fields. For example, for the replay counter, we
tried the same value consecutively, set it equal to zero, and other
variations. To this end, we created two extended alphabets: one of
size 15 and another one of size 40.

To detect key reinstallation bugs [43], we let the SUT send an en-
crypted dataframe after completing the handshake. In the inferred
model, resulting dataframes encrypted using a nonce equal to one
are represented using AES_DATA_1, while all other dataframes are
represented using AES_DATA_n. A key reinstallation bug, or a vari-
ant thereof, can now be automatically detected by scanning for
paths in the inferred model that contain multiple occurrences of
AES_DATA_1.

6.2.1 IWD. We show part of the state machine we learn for IWD
version 1.8 in Figure 7. AUTH and ASSOC are the initial wi-fi
messages and E1 to E4 are the steps of the WPA 4-way handshake.
Simplifying this state machine we only labelled the happy flow
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ASSOC(...)/ EI(...),0.0 E2(...)/ E3(...),0.0

AUTH / ACCEPT,0.0

AES_DATA_1,0.0

Figure 8: IWD Version 1.9 state machine (patched)

and merge the different configuration options for the handshake
messages into one action. We provide the full state machine in our
submitted artefact.

The key aspect of this state machine is that the last message
of the handshake (E4) can be replayed in the state that sends en-
crypted data (state 4).This means an adversary can replay message
E4, after which it will be processed by IWD. As shown by the WPA
KRACK attack [43] this triggers a key reinstallation. Note that this
is not a default key reinstallation, i. e., we confirmed that existing
key reinstallation tools cannot detect it [42]. The discovered rein-
stallation can be abused to replay, decrypt, and possibly forge data
frames [43]. We reported this vulnerability and it has been patched
and assigned CVE-2020-17497 [37]. When running our tool on the
patched version of IWD, the state machine enters a new state after
receiving message 4, which confirms that the vulnerability has been
patched. The state machine is shown in Figure 8, here we see that
it is no longer possible to send multiple E4 messages. We also see
some additional states, as before state 2 is a live error state, but now
states 4 and 7 allow the protocol to securely recover from repeated
AUTH and ASSOC messages.

With black-box testing, the key reinstallation is only found when
using a small input alphabet and when the test harness always sends
handshake messages with a replay counter equal to the last one
used by the AP. If the harness instead increments the replay counter
after sending each handshake message, the key reinstallation can
only be discovered when using an extended alphabet. However,
in that case black-box learning takes much longer: after 3 hours
the learner creates a hypothesis model but it is unable to verify
this hypothesis within 8 hours (at which point we terminated the
learner). This shows that our method handles larger input alphabets
more efficiently, especially when queries are slow, resulting in more
accurate models and increasing the chance of finding bugs.

6.2.2 Hostapd. One obstacle with Hostapd is how the last used
replay counter in transmitted handshake messages is saved: our
learner initially includes this counter in its candidate state mem-
ory set. When trying to merge states with different replay counter
values, our concolic analysis determines this value to be state defin-
ing. Indeed, Hostapd checks whether incoming frames include a
particular value. However, with each loop of the state machine,
the expected value changes, and hence the learner prevents the
merge. This results in a violation of Assumption 1, meaning that the
true protocol state machine of Hostapd is infinite and therefore no
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learning method can find it. We can approximate the state machine
by including a time bound on the learning. Because of this we also
do not explore a bigger alphabet. For a fair comparison, we used
the same time bound in our method and in black-box learning. The
models which were produced with both approaches within ~210
minutes were equivalent. Under these conditions, we note that both
resulting state machines followed the standard and contained no
surprising transitions.

6.3 Deep State Protocol Bugs

We note that states in protocols beyond typical learning bounds
(i.e., 2) are not only theoretical—a state machine flaw in a WPA/2
router [36] found a cipher downgrade was possible after 3 failed
initiation attempts (which would have been missed with configured
bounds less than 3, as in [17]).

When using STATEINSPECTOR an implementation of our motivat-
ing example protocol from Section 3, Figure 1, we found that it could
learn the state machine and find the authentication bypass with
149 queries in just over a minute, with our concolic analyser taking
20 seconds of that time. In comparison, a black-box learner using
TTT and the modified W-method failed to terminate its analysis
after 3 days.

To provide a more realistic test-case, we modified OpenSSL ver-
sion 1.0.1j to add an extremely simple (4 line) backdoor (Appendix G,
Listing 1). The backdoor hijacks existing state data to implement a
simple client authentication bypass, activated by after receiving n
unexpected messages (see Figure 6 of Section 5.4.2).

To learn this model, we used an extended alphabet of 21 mes-
sages, including core TLS functionality, client certificates, and vari-
ous data frames. With n = 5, black-box learning configured with a
bound equal to n, fails to identify the state after 3 days of learning
and ~100k queries. STATEINSPECTOR, on the other hand, identifies
the main backdoor-activation state in under 2 hours and ~1.2k
queries and the second activation variant (with two preceding
ClientHellos, as opposed to the usual one) in under 3 hours and
~2.5k queries. Doubling the depth n to 10 results in 3.2k and 4k
queries respectively—an approximately linear increase. Black-box
learning predictably failed to locate the even deeper state due to its
exponential blow up in this particular scenario.

6.4 Analysis of False Positives/Negatives

Our method found issues with four of the implementations we
looked at. We verified that all of these issues are real and we have
included PoC attack code and patches for the IWD key reinstalla-
tion attack and the WolfSSL DoS attack, both of which have CVEs.
The inconsistent client and server certificate checking, OpenSSL
has been confirmed by OpenSSL and they have added a fix as a
milestone. We verified that Hostap-TLS does sent plaintext alerts
sent in plaintexts, and that we can force a client to use ¢° as a
premaster secret, however this does not result in an attack, because
the math library used returns an error and halts the protocol.

The black-box model learning method [12, 26], which we com-
pare our method with, checks candidate state machines against
the implementation and only terminates once it correctly models
the implementation to a depth of 3 steps, following the shortest
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path to any state. In our tests, whenever the black-box method ter-
minated, our method produced the same state machine, therefore
we can be sure that our state machines also correctly model the
implementation to a depth of at least 3 steps.

For the cases in which the black-box method did not terminate,
we examined each state machine in turn. For RSA-BSAFE-C with
the core library, we tested all paths around the state machine to
depth 3, and verified that it correctly models the implementation
behaviour. Testing all paths for the larger input alphabet would be
computationally difficult, and with a lack of source-code or ground
truth for this implementation, further assessment could not be
carried out. With GnuTLS and WolfSSL however, we compared the
state machine (all of which are available on our website [38]) to the
implementation source code. All paths without loops will already
have been verified by the learning method, and those with loops
in these state machines are self loops indicating no state change.
We ensured that these self-looping transitions do not lead to any
change in state memory by inspecting the source code responsible
for this observed behaviour.

For GnuTLS, we additionally needed to check that application
data sent early was discarded, and for GnuTLS that a client hello,
key exchange and certificate message sent after a change cipher
spec messages are also ignored. Therefore, we can conclude that
the state machines from our experiment in Table 2 correctly predict
the behaviour of the implementation to a depth of at least three
steps from any state, i.e., no misidentified states.

Examining the state machines learnt, we see that false positives
at a depth greater than 3 would only be possible if our method had
mistaken a state change for a self loop. As we show with our deep
state example, our method is able to detect the progression of state
much more effectively than black-box methods, and so is less likely
to make this mistake.

We may get false negatives if input messages are missing from
our alphabet of possible inputs, hence our assumption that all inputs
to the protocol are known. If inputs were missing we would learn a
correct sub-automata of the state machine. In future work, we hope
to be able to use symbolic execution and the memory fingerprint of
the protocol to automatically discover new state changing inputs.

6.5 Limitations

Errors due to the test harness: A poor quality test harness may
also lead to false results. If the test harness produced badly formed
protocol messages, we would mistakenly show a correct protocol
message leading to an error state. If the test harness sends well
formed messages that are mistaken for another message we might
get incorrectly labelled and/or missing transitions.

We found an example of such a mistake in a test harness in
[17], an error in the nonce handling in the test harness leads to an
incorrect transition to an error state. In Section 6.1.2 we showed that
our method could detect the correct state of the implementation
and highlight the error, suggesting that our method is more robust
against errors in the test harness than standard blackbox learning.

An incorrect message response passed to the learner will lead
to the learner detecting non-determinism and halting with an er-
ror message. A good test harness will need to ensure a reliable
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connection to the SUT, e.g. handling network errors and avoiding
timeouts.

Risk of Overfitting: When looking at other protocols, it is
possible we would get false results if we have overfitted the design
of our method to our case studies. We note that we developed our
method just by looking at OpenSSL, and applied it to the other
TLS versions and to WPA with minimial alteration. This gives us
some confidence that we are not overfitting to particular protocol
versions. Our method largely is independent of the size and shape of
the state machine, so these should not be an issue. STATEINSPECTOR
is designed to look for program state on the heap; it is possible that
other protocol implementations might store their state on the stack,
or by using the program location.

Stack memory could be considered part of our candidate state
memory and for an implementation in which different locations
in the code represent the different states, we could add the pro-
gram counter to the candidate state memory. We note that it is not
enough to add the program counter at just the time of the memory
snapshot, as would often be a general method to read messages
off a socket, rather we would have to traverse the call stack and
record the last few return addresses. Our original design of our tool
did include this feature, however we removed it, because it slowed
down the analysis, and all of our case studies used the heap for state
memory. As well as our TLS and WPA examples, we have looked at
open source implementations of EAP protocols [1, 2], SSH [3] and
OpenVPN [4] and confirmed they use heap memory for the protocol
state. While simpler protocols might use stack memory or program
counters, it seems cryptographic protocol implementations primary
use heap memory for state.

Finally, a parameter we set during testing was the look ahead
distance, to see if candidate state memory that was loaded into
a register affected control flow, which we set to 512. Registers
are limited, and so compilers will not generally load values into
registers and a long time before they are used, so this distance is
unlikely to be greater for other protocols.

6.6 Other Possible Designs

Comparison with A/B testing: An alternative approach to test-
ing implementations is be a form of A/B testing, in which messages
are sent to two different implementations of the same protocol
to look for differences. This type of testing would not reveal the
state machine of the implementation, so there would be no way to
see if two queries lead to the same state. Consequently, it would
require many more messages, and no way to know when the en-
tire state machine had been explored. As a case study we consider
the patched and unpatched IWD implementations, from Figures
8,7. With A/B testing, two different responses would be noted if
the tester performed the handshake followed by two repeated E4
messages. This would lead to identification of the vulnerabilities.
However, systematically finding this would require all possible
queries to be tried, and as these include timeouts, each query takes
on average 10 seconds. At a depth of 5, and our alphabet of 15 mes-
sages, this would take 87 days, compared to our methods run time
of 1 hour. Deeper vulnerabilities, such as our deep state example of
a WPA/2 vulnerability from [36] that is at a depth of 8, could not
be found through systematic A/B testing of all paths.
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Our experiments show that the majority of differences between
the state machines are due to none security issues, such as error han-
dling, therefore the A/B method would return many false positives.
For instance, before reaching the vulnerabilities when comparing
patched and unpatched IWD, A/B testing would also find 32 dif-
ferences when traversing states 4, 7 and 8 of the patched version
(Figure 8) none of which are security critical.

Justifying the use of symbolic analysis: To test if our mem-
ory snapshotting method would work without the taint analysis, we
re-ran our case studies with the symbolic execution and state merg-
ing turned off. Out of these 9 (the GnuTLS and OpenSSL versions)
failed to terminate. Inspecting the candidate state memory, we
found that this included a message counter, which increased with
every message received. Without symbolic execution this would
look like a new protocol state was reached after every message.
Symbolic execution can tell that the message counter never affects
the control flow, and so removes it from the candidate state memory
set.

Other design choices: It would also have been theoretically
possible to find the state memory without the memory diffing, by
using taint analysis on all memory to find which controlled the
outputs. However, running taint analysis on so much memory is
unlikely to be tractable. As memory allocation functions (e.g. mal-
loc) may return different addresses for each run, we used Gotoh’s
algorithm [22] to alignment memory between runs. An alternative
to this would have been to rewrite the memory allocator to return
the same values for each run.

7 CONCLUSION

Black-box testing is fundamentally limited because it can only
reason about how a SUT interacts with the outside world. On the
one hand, this means that a large number of queries are required
to learn state machines even for simple protocols, and on the other,
because we have no insight into how the SUT processes inputs, we
cannot optimise queries to trigger or avoid certain behaviours.

In this study we have proposed a new grey-box approach, STATEIN-
SPECTOR, which overcomes many of these issues. Our method out-
performs black-box learning across all tests. In six of our tests,
black-box learning did not terminate, this includes the two case
studies that resulted in CVEs being assigned. We have demonstrated
that black-box learning performs particularly badly with larger al-
phabets of inputs. Past work on learning state machines tackled this
poor performance by ensuring termination with small alphabets of
core messages. Our work on the other hand, makes it possible to
consider a full library of messages, which has enabled us to discover
high impact vulnerabilities and numerous concerning deviations
from the standards.
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A MAIN GREY-BOX STATE LEARNING
ALGORITHM

Algorithm 1: Grey-box state machine learning.

In: SUT: system under test; H: test harness;
bootstrapQueries: set of boostrap queries to initiate

learning.
Out: M: identified state memory; A: learned automata.
1 M < empty // candidate state memory.
2 brs « empty // bootstrap query results.

// perform bootstrap queries
3 foreach q € bootstrapQueries do

the snapshots to perform allocation log alignment and
memory diffing, @ identify candidate state memory
(Sections 5.1 and 5.2).

4 br « execQuery(SUT, H, q)

5 brs < append(brs, br)

6 M « updateStateMem(M, br)

7 end

8 A «— emptyAutomata // initial (empty) model.

9 foreach br € brs do
// bootstrap initial model (Section 5.2).

10 A « processBootstrapResult(A, br)

11 end

12 M < minStateMem(SUT, H, M) // Section 5.3.
1B ne«1 // current maximal query length.

14 repeat

15 qs < generateQueries(n) // up to length n.

// execute queries and update model.

16 foreach g € gs do

17 ‘ A « execQueryUpdate(SUT, H, A, M, q)
18 end

// execute state merge check (Section 5.5).
19 A « checkStateMerge(SUT, H, A, M)

// handle uncertain memory (Section 5.4).

20 M <« handleUncertainStateMem(SUT, H, M)
21 n<n+1

22 until modelComplete(A, M, n)

23 return (A, M)

/*x @ generate snapshots of the SUT for each query, ® use

*/

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

B ALGORITHM TO GENERATE
WATCHPOINT HIT SNAPSHOTS

Algorithm 2: Generation of watchpoint hit snapshots.

Input: SUT: the system under test; H: test harness;
(addr, size): memory to test; p: prefix query to arrive
at merge state; mergeState: candidate merge state; d:
merge depth.
Out: W: list of watchpointHitExecutionDumps
1 foreach (input,s) € reachableFrom(mergeState, d) do
2 if outputFor(input, s) € disabled then
3 ‘ continue;
4 end
5 initialiseWatchpointMonitor(SUT, addr, size);
6 w «—execWatchpointQuery(SUT, H, p || input);
7 W «—append(W, w);
8 end
9 return W;

C SETTING PARAMETERS FOR GOTOH’S
ALGORITHM

Gotoh’s algorithm is a dynamic programming algorithm that uses
scores to find an optimal alignment for two sequences, i. e., the one
with the highest score. It requires four input parameters that are
used to score elements pair-wise:

(1) match: score used if two elements are aligned and match.

(2) mismatch: score used if two elements are aligned and do not
match.

(3) gapopening: score used if a gap is inserted or ‘opened’. In-
serting a gap results in an element from one sequence being
aligned with ‘nothing’ and the other sequence being shifted
right by one element.

(4) gapeniargement: score if used an already ‘open’ gap is ex-
tended.

To compute the score of an alignment for two sequences, we
sum the classification scores (i. e., match, mismatch, gap opening,
or enlargement) of pairs of elements or inserted gaps, without re-
ordering. For example, using the sequences in Fig. 9, we calculate
our alignment score as:

match + mismatch + gapopening + 9Penlargement

A B - -
A A B C

Figure 9: Example of sequence alignment. From left to right,
we classify the pairs of elements as: match (A, A), mismatch
(B, A), gap opening (-, B), and gap enlargement (-, C).

To avoid inserting many small gaps in an alignment, we must set
9aPopening < 9aPenlargement- This inequality ensures that open-
ing a gap is more penalising than extending an already existing
one. This forces gaps to be grouped, which results in an optimal
alignment.
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To derive mappings from allocation logs, we prevent any alloca-
tion mismatch when aligning two sequences. Therefore, we force
the algorithm to insert a gap (of any size) instead of choosing a
mismatch. For example, suppose we want to align two sequences
of allocations of length n and m, with n >= m >= 1. The largest
gap we could insert is of size n (when there is absolutely no match).
Thus, to prevent any mismatch, we must set:

mismatch < gapopening + (n — 1)gapenlargement

This inequality ensures that a mismatch is always more penalising
than inserting a gap of maximal length. As a result, the algorithm
will always choose to insert a gap instead of mismatching two
allocations.

D CANDIDATE STATE MEMORY
TYPE-INFERENCE

The values stored at state-defining locations are often only meaning-
ful when considered as a group, e. g., by treating four consecutive
bytes as a 32-bit integer. Since we perform snapshot diffing at a
byte-level granularity, we may not identify the most-significant
bytes of larger integer types if we do not observe their values chang-
ing across snapshots. As learning the range of values a location
can take is a prerequisite to determine some kinds of termination
behaviour, we attempt to monitor locations with respect to their
intended types.

To learn each location’s bounds, we apply a simple type-inference
procedure loosely based upon that proposed by Chen et al. [10].
We perform inference at the same time as we analyse snapshots to
handle uncertain state memory locations (Section 5.4). During this
analysis, we simulate the SUT’s execution for a fixed window of
instructions, while doing so, we analyse loads and stores from/to
our candidate state memory. To perform inference, we log the
prefixes used in each access, e. g., inmov byte ptr [loc_1]1, 0, we
record byte for loc_1. Then, following our main snapshot analysis,
we compute the maximal access size for each location and assign
each location a corresponding type. To disambiguate overlapped
accesses, we determine a location’s type based on the minimal non-
overlapped range. Following type-inference, we update our model
and the state classifications maintained by our learner using the
new type-bounds discovered.

E ADDITIONAL IMPLEMENTATION DETAILS

In this appendix, we provide a breakdown of each major component
of STATEINSPECTOR’s implementation.

State snapshotting. We perform memory and program state snap-
shots using ptrace-burrito [8]. We primarily use syscall-based hooks
to trigger our snapshotting mechanism. Each snapshot consists of
the program’s registers and its entire virtual address space includ-
ing, all heap regions, its stack, and all mapped sections.

Watchpoint queries. We use ptrace-burrito to set watchpoints, and
use its hooking facilities to capture program state snapshots on
each watchpoint hit. Each watchpoint snapshot contains the same
information as a regular state snapshot, as well as information
about the watchpoint that triggered the snapshot.
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Taint & concolic execution. We use Triton [32] to build our taint and
concolic execution-based analysis. To provide function and control-
flow information to our tool we use IDA Pro [23], which provides
function and basic block boundary information, and function-level
control-flow graph information. To infer type information, we use
Triton’s read/write hooks to provide information on memory ac-
cesses.

F OPENSSL TEST HARNESS STATE MEMORY
ANALYSIS

Table 3: The sets of differing memory for states on suspected
and confirmed alternate paths to successful handshake com-
pletion, when compared to the legitimate happy flow state 4
(s4) memory.

State IDs

s14 {

s15, 517, s13

Addresses of differing memory to s4

{0x555555a162a0, 0x4b0, 0X13}
{0x555555a162a0, 0x4b0, 0x120}
{0x555555a162a0, 0x4b0, 0x0}
{0X555555a066b0, 0x160, OXO}
{0x555555a0e6b0, 0x160, 0x10}
{0x555555a0e6b0, 0x160, 0x44}
{0X555555a066b0, 0x160, 0X68}
{0x555555a0e6b0, 0x160, 0x6¢}
{0x555555a0e6b0, 0x160, 0xc0}
{0X555555a066b0, 0x160, 0XC8}
{0x555555a0e6b0, 0x160, 0xd2}

Using the learning output of STATEINSPECTOR, we carried out
an investigation into what the differing memory in Table 3 actu-
ally constituted. We were able to do this by referring to the logs
produced by the tool, which print the source code details of any
watchpoint hits made at reads of the tested memory. All considered
states shared the two differing addresses listed at the top of the table.
The first of these represented a counter referred to as the sequence
number. This value increments for each message received after the
ChangeCipherSpec message and is used for constructing MACs.
The second address in the table refers to the frame type of the just
received message. This value is determined as not state defining be-
cause from any given state it is always written to before being read,
i.e., it may be state influencing, but not defining (c.f., Section 5.4.1).
The third address in the table pertains to a flag which determines
if the client has attempted more than one ClientHello message.
Only prior to the receipt of a ClientKeyExchange is this flag ever
read (and therefore used to define the state). Consequently, it is not
considered state defining for any of the states listed in the table.
The remaining memory refers to arbitrary certificate data which
we also found was not state defining. In particular, we were unable
to detect any reads of the memory from the states considered.
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Figure 10: Learned model for OpenSSL 1.0.1g

G OPENSSL CLIENT AUTHENTICATION
BYPASS BACKDOOR

Listing 1: A four line modification to OpenSSL 1.0.1j, which
introduces a client authentication bypass at a configurable
depth (BACKDOOR_DEPTH). In the first part, we hijack a counter,
the read_sequence counter, and conditionally increment it
each time an unexpected data frame is read whilst waiting
on the ClientCertificateVerify signature. In the second
part, if this counter reaches the specified depth value, in-
valid ClientCertificateVerify signatures are ignored, and
the handshake proceeds to the ChangeCipherSpec state. Af-
ter this point, the read_sequence is automatically reset by
the implementation for use in later MAC calculations.

@@ /ssl/s3_pkt.c:139 ssl3_read_n()
SSL3_BUFFER *rb;

+++ // Backdoor pt 1: Set-up

+++ if(s->state SSL3_ST_SR_CERT_VRFY_A)

+++ ++(*s->s3->read_sequence);

if (n <= @) return n;
rb = &(s->s3->rbuf);

@@ /ssl/s3_srvr.c:683 ssl3_accept()
ret=ssl3_get_cert_verify(s);
if (ret <= @) goto end;

+
+++ // Backdoor pt 2: Activation

+++ if(*s->s3->read_sequence != BACKDOOR_DEPTH
+++ && ret <= 0) {

+++ goto end;

+++ } else {

s->state=SSL3_ST_SR_FINISHED_A;
s=>init_num=0;
+++ }

H MISLEADING OPENSSL DOCUMENTATION

When testing the built-in server of OpenSSL, we found that con-
figuring it to enforce client authentication is rather error-prone. In
particular, after an initial reading of the documentation for how to
do so, we came across the option below:

-verify int, -Verify int

The verify depth to use. This specifies
the maximum length of the client certi-
ficate chain and makes the server requ-
est a certificate from the client. With
the -verify option a certificate is
requested but the client does not have
to send one, with the -Verify option
the client must supply a certificate or
an error occurs.

Following this, we used the -Verify option when starting the built-
in server. Surprisingly though, our learned models indicated that
the server accepted invalid client certificates. At first glance, this
looked like a severe vulnerability, however, upon closer inspection
of the documentation we found an extra option was required:

-verify_return_error
Verification errors normally just print
a message but allow the connection to
continue, for debugging purposes. If
this option is used, then verification
errors close the connection.
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Our online investigation revealed we were not alone in our confu-
sion. A recent Github issue® describes the same misleading config-
uration, and resulted in a patch to the OpenSSL client implementa-
tion’. Unfortunately, a similar patch was not written for the server
implementation, resulting in a confusing disparity between the
command-line options for the client and server. We have reported
this issue to the OpenSSL developers.

Shttps://github.com/openssl/openssl/issues/8079
"https://github.com/openssl/openssl/pull/8080


https://github.com/openssl/openssl/issues/8079
https://github.com/openssl/openssl/pull/8080
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