
FragAttacks

Breaking Wi-Fi Through Frame

Aggregation and Fragmentation

Mathy Vanhoef

4-5 August, Black Hat USA (Virtual)

Advancements in Wi-Fi security

2

1999 Wired Equivalent Privacy (WEP)

› Horribly broken [FMS01]

Early 2000 Wi-Fi Protected Access (WPA and WPA2)

› Offline dictionary attacks

› KRACK and Kraken attack [VP17,VP18]

› KRACK defenses now proven secure [CKM20]

Advancements in Wi-Fi security

Uses a new handshake to prevent dictionary attacks

› Vulnerable to Dragonblood: side-channel leaks [VR20]

› WPA3 certification updated to require defenses [WFA20]

Once connected, the encryption of WPA2 & WPA3 is similar

› The attacks in this presentation work against both

3

2018 Wi-Fi Protected Access 3 (WPA3)

Advancements in Wi-Fi security

› Operating channel validation [VBDOP18]

› Beacon protection [VAP20]

Would make presented attacks harder but still possible

› Still undergoing adoption  currently no practical impact

4

Late 2020 Two extra defenses standardized

Advancements in Wi-Fi security

5

Despite these major advacements,

found new flaws in all networks

Design

flaws

Implementation

Flaws

Design

flaws

Implementation

Flaws

Implementation

Flaws

Aggregation

Mixed

key

Fragment

cache

Background

Sending small frames causes high overhead:

9

header packet1 ACK ACK ...

This can be avoided by aggregating frames:

header’ packet1 packet2 ... ACK

header packet2

Background

Sending small frames causes high overhead:

10

header packet1 ACK ACK ...

This can be avoided by aggregating frames:

header’ packet1 packet2 ... ACK

Problem: how to recognize aggregated frames?

header packet2

False packet

Aggregation design flaw

11

header aggregated? encrypted

True metadata len packet1 metadata len packet2

False packet

Aggregation design flaw

12

header aggregated? encrypted

True metadata len packet1 metadata len packet2

Not authenticated

False packet

Aggregation design flaw

13

header aggregated? encrypted

True metadata len packet1 metadata len packet2

Not authenticated

Flip flag  decrypted payload is parsed in wrong manner

Exploit steps

14

Get image from

attacker’s server

Exploit steps

15

Get image from

attacker’s server

Example:

• Send e-mail with embedded image

• Send WhatsApp message to cause

link/image preview

Exploit steps

16

Get image from

attacker’s server

Send special

IPv4 packet

Exploit steps

17

Get image from

attacker’s server

Encrypt as

normal frame

Send special

IPv4 packet

Exploit steps

18

Get image from

attacker’s server

Set aggregated flag

Encrypt as

normal frame

Send special

IPv4 packet

Can’t modify

encrypted content

Exploit steps

19

Get image from

attacker’s server

Set aggregated flag

Encrypt as

normal frame

Inject any packet  Inject ICMPv6 RA with malicious DNS server

Send special

IPv4 packet

Set aggregated flag

Exploit steps

20

Get image from

attacker’s server

Set aggregated flag

Encrypt as

normal frame

Inject any packet  Inject ICMPv6 RA with malicious DNS server

Send special

IPv4 packet

Set aggregated flag

 Easier than BEAST, TIME, &

HEIST attack against TLS!

Easier version

21

Set aggregated flag

Inject special

handshake frame

Encrypt as

normal frame

Inject any packet  Inject ICMPv6 RA with malicious DNS server

Bug in AP  do attack

w/o user interaction

(affected 2 4 of home APs)

DEMO! 

22

Impact

All major operating systems affected

Only NetBSD & some IoT devices unaffected

23

Aggr? rfc1042 hdr len ID TCP data

False ... 45 00 01 0C 00 22 Frame to inject

How to construct the special IPv4/TCP packet?

24

Aggr? rfc1042 hdr len ID TCP data

False ... 45 00 01 0C 00 22 Frame to inject

How to construct the special IPv4/TCP packet?

25

Aggr? rfc1042 hdr len ID TCP data

False ... 45 00 01 0C 00 22 Frame to inject

How to construct the special IPv4/TCP packet?

26

Adversary turns normal frame into aggregated one

Aggr? rfc1042 hdr len ID TCP data

False ... 45 00 01 0C 00 22 Frame to inject

How to construct the special IPv4/TCP packet?

27

True metadata len ignore meta. len packet

Adversary turns normal frame into aggregated one

› At Wi-Fi layer 1st sub-packet is ignored

› Control IP ID & part of TCP data  inject arbitrary packets

Implementation

Flaws

Aggregation

Mixed

key

Fragment

cache

Background

29

header fragment1 ACK header

Avoid by fragmenting & only retransmitting lost fragments:

Problem: how to (securely) reassemble the fragments?

header fragment2 ACK

Large frames have a high chance of being corrupted:

header packet ACK

header fragment1

header fragment2

header fragment3

Reassembling plaintext fragments

30

header 𝑠 fragment1

header 𝑠 fragment2

header 𝑠 fragment3

Reassembling plaintext fragments

31

› Fragments have the same sequence number 𝒔

header 𝑠 0 fragment1

header 𝑠 1 fragment2

header 𝑠 2 fragment3

Reassembling plaintext fragments

› Fragments have the same sequence number 𝒔

› All fragments also have a fragment number ...

32

header 𝑠 0 More fragment1

header 𝑠 1 More fragment2

header 𝑠 2 Last fragment3

Reassembling plaintext fragments

› Fragments have the same sequence number 𝒔

› All fragments also have a fragment number ...

... and a flag to identify the last fragment

33

header 𝑠 𝑛 0 More fragment1

header 𝑠 𝑛 + 1 1 More fragment2

header 𝑠 𝑛 + 2 2 Last fragment3

Reassembling encrypted fragments

34

› Encrypted frames have a packet number to detect replays

header 𝑠 𝑛 0 More fragment1

header 𝑠 𝑛 + 1 1 More fragment2

header 𝑠 𝑛 + 2 2 Last fragment3

Reassembling encrypted fragments

› Encrypted frames have a packet number to detect replays

› If packet & fragment numbers are not consecutive, drop it

35

Authenticated Authenticated

Problem: key renewal

› Session key can be periodically renewed ...

› ... or updated when roaming between APs

36

› During rekey packet numbers restart from zero

› Problem: receiver is allowed to reassemble fragments

encrypted under different keys (i.e. mixed keys)

Mixed key design flaw

37

Refresh session key from 𝒌 to 𝐦

𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔0)𝐸𝑛𝑐𝒌 𝐹𝑟𝑎𝑔0 , 𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔1)

Mixed key design flaw

38

Refresh session key from 𝒌 to 𝐦

𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔0)𝐸𝑛𝑐𝒌 𝐹𝑟𝑎𝑔0 , 𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔1)
Resets packet numbers

Mixed key design flaw

39

Refresh session key from 𝒌 to 𝐦

 Can mix fragments of different frames

𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔0)𝐸𝑛𝑐𝒌 𝐹𝑟𝑎𝑔0 , 𝐸𝑛𝑐𝒌(𝐹𝑟𝑎𝑔1)

𝐸𝑛𝑐𝒎(𝐹𝑟𝑎𝑔1)
𝐸𝑛𝑐𝒎 𝐹𝑟𝑎𝑔0 , 𝐸𝑛𝑐𝒎(𝐹𝑟𝑎𝑔1)

Reassemble

fragment

Summary of impact

Abuse to exfiltrate data assuming:

1. Someone sends fragmented frames (rare unless Wi-Fi 6)

2. Victim will connect to server of attacker

3. Network periodically refreshes the session key

40

Summary of impact

Abuse to exfiltrate data assuming:

1. Someone sends fragmented frames (rare unless Wi-Fi 6)

2. Victim will connect to server of attacker

3. Network periodically refreshes the session key

Combine with implementation flaw to avoid this condition

41

How to exfiltrate data?

42

𝐹𝑟𝑎𝑔0 𝐹𝑟𝑎𝑔1

Frame 1 192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

Frame 2 192.168.1.2 to 8.8.8.8
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

How to exfiltrate data?

43

𝐹𝑟𝑎𝑔0 𝐹𝑟𝑎𝑔1

Frame 1 192.168.1.2 to 3.5.1.1 GET /image.png HTTP/1.1

Frame 2 192.168.1.2 to 8.8.8.8
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

192.168.1.2 to 3.5.1.1
POST /login.php HTTP/1.1
user=admin&pass=SeCr3t

Adversary mixes different fragments

 Login info is sent to attacker’s server

Implementation

Flaws

Aggregation

Mixed

key

Fragment

cache

Fragment cache design flaw

Fragments aren’t removed after disconnecting:

45

Fragment cache design flaw

Fragments aren’t removed after disconnecting:

46

𝐸𝑛𝑐𝑘(𝐹𝑟𝑎𝑔0)

Store fragment

Fragment cache design flaw

Fragments aren’t removed after disconnecting:

47

𝐸𝑛𝑐𝑘(𝐹𝑟𝑎𝑔0)

Client connects

Store fragment

Disconnect

𝐹𝑟𝑎𝑔0 stays in

memory of AP

Summary of impact

Abuse to exfiltrate or inject packets assuming:

1. Hotspot-like network where users distrust each other

2. Client sends fragmented frames (rare unless Wi-Fi 6)

48

Summary of impact

Abuse to exfiltrate or inject packets assuming:

1. Hotspot-like network where users distrust each other

2. Client sends fragmented frames (rare unless Wi-Fi 6)

Even the ancient WEP protocol is affected!

› WEP is also affected by the mixed key design flaw

 Design flaws have been part of Wi-Fi since 1997

49

Defenses

50

Preventing aggregation-based attacks

Aggregation design flaw

› Protect the “is aggregated” flag. Not backwards-compatible.

› Current fix: prevent known attacks by dropping aggregated

frames whose first 6 bytes equal an rfc1042 header

51

Preventing aggregation-based attacks

Aggregation design flaw

› Protect the “is aggregated” flag. Not backwards-compatible.

› Current fix: prevent known attacks by dropping aggregated

frames whose first 6 bytes equal an rfc1042 header

52

False rfc1042 packet

Aggregated?

Preventing aggregation-based attacks

Aggregation design flaw

› Protect the “is aggregated” flag. Not backwards-compatible.

› Current fix: prevent known attacks by dropping aggregated

frames whose first 6 bytes equal an rfc1042 header

53

False rfc1042 packet

True metadata packet1 metadata packet2

Aggregated?

Preventing aggregation-based attacks

Aggregation design flaw

› Protect the “is aggregated” flag. Not backwards-compatible.

› Current fix: prevent known attacks by dropping aggregated

frames whose first 6 bytes equal an rfc1042 header

54

False rfc1042 packet

True metadata packet1 metadata packet2

Aggregated?

Preventing fragmentation-based attacks

Mixed key attack:

› Only reassemble fragments decrypted under the same key

Fragment cache attack:

› Clear unused fragments when the corresponding key is

removed

55

Design

flaws

Implementation

Flaws

Design

flaws

Cloacked

A-MSDUs

Broadcast

fragments

Plaintext

frames

EAPOL

forwarding

Out of order

fragments

Mixed

fragments

O
u
t o

f o
rd

e
r fra

g

Trivial frame injection

Plaintext frames wrongly accepted:

› Depending if fragmented, broadcasted, or while connecting

58

Trivial frame injection

Plaintext frames wrongly accepted:

› Depending if fragmented, broadcasted, or while connecting

› Examples: Apple and some Android devices, some Windows

dongles, home and professional APs, and many others!

59

 Can trivially inject frames

DEMO! 

60

Design

flaws

Cloacked

A-MSDUs

Broadcast

fragments

Plaintext

frames

EAPOL

forwarding

No fragmentation

support

Mixed

fragments

O
u
t o

f o
rd

e
r fra

g

True AA AA 03 00 00 00 00 00 88 8E ... 2nd subpacket

Cloacked aggregated (A-MSDU)frames

62

Set “is aggregated” flag and send as plaintext:

Normally: first deaggregate & then check if handshake frame

True AA AA 03 00 00 00 00 00 88 8E ... 2nd subpacket

Cloacked aggregated (A-MSDU)frames

63

Some switch the order!

Set “is aggregated” flag and send as plaintext:

... 2nd subpacket

1st subpacket is ignored because

it has invalid metadata

Plaintext data

packet is rejected

Normally: first deaggregate & then check if handshake frame

True AA AA 03 00 00 00 00 00 88 8E ... 2nd subpacket

Cloacked aggregated (A-MSDU)frames

64

Set “is aggregated” flag and send as plaintext:

Vulnerable order: check if handshake & then deaggregate

Handshake header  accept full frame

True AA AA 03 00 00 00 00 00 88 8E ... 2nd subpacket

Cloacked aggregated (A-MSDU)frames

65

Set “is aggregated” flag and send as plaintext:

... 2nd subpacket

1st subpacket is ignored because

it has invalid metadata

Plaintext data is

also accepted!

Vulnerable order: check if handshake & then deaggregate

Handshake header  accept full frame

Cloacked aggregated (A-MSDU)frames

Affects FreeBSD, some Windows dongles, several Androids,

3 out of 4 home routers, 1 out of 3 professional APs, etc.

66

DEMO! 

Design

flaws

Cloacked

A-MSDUs

Broadcast

fragments

Plaintext

frames

EAPOL

forwarding

No fragmentation

support

Mixed

fragments

O
u
t o

f o
rd

e
r fra

g

Flaw: mixed plaintext/encrypted fragments

Only require that the first fragment is encrypted

› Affects nearly all network cards on Windows & Linux

› Simplifies aggregation & cache attack

Only require the last fragment to be encrypted

› Affects nearly all network cards on Free/NetBSD

› Trivial to inject & exfiltrate data

68

Design

flaws

Cloacked

A-MSDUs

Broadcast

fragments

Plaintext

frames

EAPOL

forwarding

No fragmentation

support

Mixed

fragments

O
u
t o

f o
rd

e
r fra

g

header 𝑠 𝒏 0 More fragment1

header 𝑠 𝒏 + 𝟏 1 More fragment2

header 𝑠 𝒏 + 𝟐 2 Last fragment3

Flaw: non-consective packet numbers

› Nobody but Linux checks if packet numbers are consecutive

› Can do mixed key attack without periodic rekeys

70

Design

flaws

Cloacked

A-MSDUs

Broadcast

fragments

Plaintext

frames

EAPOL

forwarding

No fragmentation

support

Mixed

fragments

O
u
t o

f o
rd

e
r fra

g

No fragmentation support

Some devices don’t support fragmentation

› But they treat fragmented frames as full frames

› Examples: OpenBSD and Espressif chips

Abuse to inject frames under right conditions

All devices are vulnerable to one or more flaws!

72

Created tool to test devices

Has 45+ test cases for both clients and APs

73

https://github.com/vanhoefm/fragattacks

› Can detect all vulnerabilities

› Needs network password (not an attack tool)

› Can also be used as basis for other Wi-Fi

research [SVR21]

https://github.com/vanhoefm/fragattacks

Discussion

Design flaws took two decades to discover

› Without modified drivers some attacks will fail

74

Discussion

Design flaws took two decades to discover

› Without modified drivers some attacks will fail

› Fragmentation & aggregation wasn’t considered important

75

Discussion

Design flaws took two decades to discover

› Without modified drivers some attacks will fail

› Fragmentation & aggregation wasn’t considered important

Long-term lessons:

› Adopt defences early even if concerns are theoretic

› Isolate security contexts (data decrypted with different keys)

› Keep fuzzing devices. Wi-Fi Alliance can help here!

76

Coordinated disclosure

Wi-Fi Alliance & ICASI contacted vendors

› Embargo of roughly 9 months

› Test tool (= PoC) received several updates during embargo!

Currently doing following-up work

› Updating the IEEE 802.11 standard to fix design flaws

› Maintaining test tool and checking some vendor patches

77

Looking back

Was it the long disclosure worth it?

› Some companies had patches for most devices but still

weren’t happy... ¯_(ツ)_/¯

› Others appreciated this even if not all devices had patches!

› Props to: Cisco, LANCOM, Aruba, Huawei, Ubiquity,

MediaTek, Samsung, NETGEAR, as well as others

78

Conclusion

› Discovered three design flaws

› Multiple implementation flaws

› Implementation flaws easy to abuse,

but design flaws hard to abuse

› More info: www.fragattacks.com

79

http://www.fragattacks.com/

References

› Presentation is based on: Fragment and Forge: Breaking Wi-Fi Through Frame

Aggregation and Fragmentation. https://papers.mathyvanhoef.com/usenix2021.pdf

› [VP17] Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2

› [VP18] Release the Kraken: New KRACKs in the 802.11 Standard

› [CKM20] A Formal Analysis of IEEE 802.11's WPA2: Countering the Kracks Caused by

Cracking the Counters

› [VR20] Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd

› [WFA20] Wi-Fi Alliance Wi-Fi Security Roadmap and WPA3 Updates. https://wi-fi.org/file/wi-

fi-security-roadmap-and-wpa3-updates-december-2020

› [VBDOP18] Operating Channel Validation: Preventing Multi-Channel Man-in-the-Middle

Attacks Against Protected Wi-Fi Networks

› [VAP20] Protecting Wi-Fi Beacons from Outsider Forgeries

› [SVR21] DEMO: A Framework to Test and Fuzz Wi-Fi Devices.

https://papers.mathyvanhoef.com/wisec2021-demo.pdf 80

https://papers.mathyvanhoef.com/usenix2021.pdf
https://wi-fi.org/file/wi-fi-security-roadmap-and-wpa3-updates-december-2020
https://papers.mathyvanhoef.com/wisec2021-demo.pdf

