Abusing Wi-Fi Beacons and Detecting & Preventing Attacks

<u>Mathy Vanhoef</u>, Prasant Adhikari, and Christina Pöpper. With special thanks to various IEEE members.

Black Hat Webcast, 17 September 2020.

Background: beacons

> Wi-Fi networks use beacons to announce their presence
> They are sent every ~100 ms by an Access Point

- Contains properties of the network:
 - » Name of the network
 - » Supported bitrates (e.g. 11n or 11ac)
 - » Regulatory constraints (e.g. transmission power)

>>

Problem: beacons can be forged by an adversary!

Our contributions

Novel **attacks** abusing beacons

Defense to prevent outsider forgeries

Standardized as part of 802.11

Defense is being **implemented** by Linux and might become **part of WPA3**

Taking a step back: Wi-Fi security

Focus was protecting data, not beacons:

- > WEP, WPA1/2: only includes data frame protection
- > WPA3: includes management frame protection
- > Operating channel validation: verifies channel info

→ In all cases beacons remain unprotected

Beacons are not protected

• Tag: SSID parameter set: cisco [,] Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 6, 9, 12, 18, [Mbit/sec] Tag: DS Parameter set: Current Channel: 1 Tag: Traffic Indication Map (TIM): DTIM 0 of 0 bitmap Taq: Country Information: Country Code GB, Environment Unknown (0x04) Tag: Power Constraint: 3 Tag: ERP Information Tag: Extended Supported Rates 24, 36, 48, 54, [Mbit/sec] Tag: QBSS Load Element 802.11e CCA Version Tag: RM Enabled Capabilities (5 octets) Tag: HT Capabilities (802.11n D1.10) Tag: RSN Information Tag: Mobility Domain Tag: HT Information (802.11n D1.10) • Tag: Extended Capabilities (10 octets) Ext Tag: HE Capabilities (IEEE Std 802.11ax/D3.0) Ext Tag: HE Operation (IEEE Std 802.11ax/D3.0) • Ext Tag: Spatial Reuse Parameter Set

> WPA version & channel: verified when connecting [WiSec'18]
 > All other fields can be spoofed by an adversary

Novel Attacks

Beacons contain the maximum allowed transmit power

 Country Info: First Channel Number: 1, Number First Channel Number: 1 Number of Channels: 13 Maximum Transmit Power Level: 20dBm
 Tag: Power Constraint: 3 Tag Number: Power Constraint (32) Tag length: 1 Local Power Constraint: 3

→ Adversary can lower transmission power of victim

Beacons contain the maximum allowed transmit power

Experiments:

- > iPad, MacBook, and Linux: lowers transmit power of device
- > All other test devices not affected (unknown why)

Beacons contain the maximum allowed transmit power

Vendor-specific power element of Cisco:

- > Can also be exploited to lower transmit power of device
- > Linux: can be abused to forcibly disconnect a victim
 - » Normally we cannot set negative transmission limits
 - » But with the Cisco power element we can

DEMO!

> Before transmission the medium must be idle:

In use SIFS AIFSN Backoff (CW) Packet 2

> Beacon contains the duration of these waiting periods:

```
Ac Parameters ACI 0 (Best Effort), ACM no
ACI / AIFSN Field: 0x03
ECW: 0xa4
1010 .... = ECW Max: 10
.... 0100 = ECW Min: 4
CW Max: 1023
CW Min: 15
TXOP Limit: 0
```

> Before transmission the medium must be idle:

> Spoofing this info causes clients to **delay transmissions**:

In use SIFS AIFSN Backoff (CW)

If another device transmits in the meantime, the victim restarts the waiting process & possibly never transmits

Lowering a victim's bandwidth: experiments

Linux is affected with any network card we tested

Apple devices are affected (Macbook Pro, iPhone, iPad)

Windows is affected depending on network card (e.g. Alfa and TP-Link cards are affected but not Intel ones)

Android is affected depending on the device: Nexus 5X was affected, but not our old Samsung i9305

Targeted unfairness

DEMO!

> Adversary forwards frames between both channels

> Adversary forwards frames between both channels

> This MitM makes other attacks easier (e.g. KRACK)

Other attacks & findings

Partial machine-in-the-middle attack

Bypasses channel operating validation in Linux >

Battery depletion attacksSpoof beacons to make clients stay awake

Send beacon as unicast frames to target specific clients

Worked against all tested devices

Practical attack considerations

Beacons are by default broadcasted to all clients

> This means we attack all clients simultaneously

Receiver address: Broadcast (ff:ff:ff:ff:ff:ff)
Transmitter address: Cisco-Li_82:b2:55 (00:0c:41:82:b2:55)
BSS Id: Cisco-Li_82:b2:55 (00:0c:41:82:b2:55)

We can also send them as unicast frames to a specific victim:

Receiver address: Apple_82:36:3a (00:0d:93:82:36:3a)
Transmitter address: Cisco-Li_82:b2:55 (00:0c:41:82:b2:55)
BSS Id: Cisco-Li_82:b2:55 (00:0c:41:82:b2:55)

Design goals

Focus on practicality & simplicity to encourage adoption

- > Cryptographic operations must be efficient
- > Bandwidth overhead must be low
 - » Beacons are sent at low bitrate and consume significant airtime

Straightforward to implement

> Ideally reuse existing crypto primitives of Wi-Fi

Design approach

To achieve our goals, we rely on symmetric encryption

> Reuse crypto primitives of management frame protection

We defend against outsider attacks

- > Adversary doesn't possess network credentials
- > Similar to protection of broadcast Wi-Fi traffic

Beacon protection: new element

We add a **new type-length-value element** to beacons:

Element ID	Length	Key ID	Nonce	MIC
------------	--------	--------	-------	-----

- > Clients that do not recognize this element will ignore it
- > Nonce: incremental number to prevent replay attacks
- > Message Integrity Check: CMAC or GMAC over the beacon
 - >> Existing crypto primitive of management frame protection
 - » All WPA3-capable devices already support it

Key management

Key used to generate/verify the authenticity tag?

- > AP generates a fresh **beacon protection key** when booting
- > AP always sends the beacon key when a client connects
 - » Older clients will ignore this key
 - » New clients will enable beacon protection

→ Adversary can't manipulate handshake that transports the beacon key, preventing downgrade attacks.

Reporting forged beacons

- > Clients can report forged beacons to the AP
- > Can now detect far away rouge APs

Reporting forged beacons

- > Clients can report forged beacons to the AP
- > Can now detect far away rouge APs

Reporting forged beacons

- > Clients can report forged beacons to the AP
- > Can now detect far away rouge APs

Specification

- Collaborated with industry to standardize our defense (Intel, Broadcom, Qualcomm and Huawei)
- > Since March 2019 part of the (draft) IEEE 802.11 standard:

March 2019	doc.: IEEE 802.11-19/0314r2
	IEEE P802.11
	Wireless LANs
	802.11
Beacon Protectio	n - for CID 2116 and CID 2673
Da	te: 2019-03-11

Specification

- Collaborated with industry to standardize our defense (Intel, Broadcom, Qualcomm and Huawei)
- > Since March 2019 part of the (draft) IEEE 802.11 standard:

Might become part of WPA3 specification? ③

In addition, Wi-Fi Alliance has identified the following potential security protocol updates and will review all comments received:

15. Hash-to-element password generation, Client Privacy Mechanisms, Operation Channel Validation, and Beacon protection in IEEE Draft

Source: <u>https://www.wi-fi.org/security-development</u> (July 2020)

Specification

- Collaborated with industry to standardize our defense (Intel, Broadcom, Qualcomm and Huawei)
- > Since March 2019 part of the (draft) IEEE 802.11 standard:

Special thanks to:

- > Nehru Bhandaru and Thomas Derham (Broadcom)
- > Emily Qi and Ido Ouzueli (Intel)
- > Jouni Malinen and Menzo Wentink (Qualcomm)
- > Yunsong Yang (Huawei)

Implementation

Now being implemented by Linux:

- > Kernel: generate and verify authentication tags
- > Hostap: manages keys and enables beacon protection

DEMO!

Conclusion

- > Prevent outsiders from forging beacons
- > Our focus on practicality paid off:
 - » Defense is now part of the 802.11 standard
 - » Being implemented by Linux
 - >> Might become part of WPA3?