Key Reinstallation Attacks:
Breaking the WPA2 Protocol

Mathy Vanhoef — @vanhoefm
Black Hat Europe, 7 December 2017

EEEEIDistriN=t

Introduction

PhD Defense, July 2016:

“You recommend WPAZ2 with AES,
but are you sure that’s secure?”

Seems so! No attacks in
14 years & proven secure.

J:‘
[]
TJ\JE)J
I ?ﬂ
;r’é :

LR..
[X

o

K L

f

Introduction

/* install the PTK */

if ((*ic->ic_set key)(ic, ni, k) !=0) {
reason = TEEE80211 REASON_AUTH_LEAVE;
goto deauth;

}

ni->ni_flags &= ~IEEE80211 NODE_TXRXPROT;

ni->ni_flags |= IEEE80211 NODE_RXPROT;

Key reinstallation when ic_set_key is called again?

Overview

? Key reinstalls In

4-way handshake

A°

-

Practical impact

Misconceptions

m

ﬁ“\ //

Lessons learned

Overview

? Key reinstalls in

4-way handshake

A

L

Practical impact

Misconceptions

o

- & N
1=

Lessons learned

The 4-way handshake

Used to connect to any protected Wi-Fi network
» Provides mutual authentication
> Negotiates fresh PTK: pairwise temporal key

Appeared to be secure:

> No attacks in over a decade (apart from password guessing)
» Proven that negotiated key (PTK) is secret!

» And encryption protocol proven secure’

4-way handshake (simplified)

(— K- ———-- optional 802.1x authentication - - - - - - 3

Msgl1(r, ANonce) é
-2 :

Msg2(r, SNonce)

Derive PTK

PTK = Combine(shared secret,
ANonce, SNonce)

4-way handshake (simplified)

— - —-——- optional 802.1x authentication - - - - - - 3

< Attack isn’t about

D
- ANonce or SNonce reuse

Derive PTK

PTK = Combine(shared secret,
ANonce, SNonce)

4-way handshake (simplified)

—

Msg3(r+1; GTK)

- —-——- optional 802.1x authentication - - - - - - 3
Msg1(r, ANonce)
[Derwe PTK] Msg2(r, SNonce) y
[Derive PTK]

Msg4(r+1)

=

10

4-way handshake (simplified)

—

optional 802.1x authentication

Msg1(r, ANonce)

Msg2(r, SNonce)

PTK Is installed

2

(ﬂerive PTK]

Install PTK 'k GTK

%
Install PTK

=

11

4-way handshake (simplified)

———

- —-——- optional 802.1x authentication - - - - - - 3

Msg1(r, ANonce) é

[Derive PTKJ Msg2(r, SNonce))
Msg3(r+1; GTK) (Derive PTK]J

Msg4(r+1) J
(Install PTK & GTK | (Install PTK |

K - -lencrypted data framesfjcan now be exchanged - - —>‘

12

Frame encryption (simplified)

ot
(packet number) Plaintext data

Packet key

PTK

(session key)

S Keystream

- Nonce reuse implies keystream reuse (in all WPA2 ciphers)

13

4-way handshake (simplified)

— - ———— - optional 802.1x authentication
Msg1(r, ANonce) é
ey .
(Der tve PTK] Msg2(r, SNonce)
Installing PTK initializes f@
nonce to zero
- —
Install PTK

Install PTK & GTK

}g - - encrypted data frames can now be exchanged - - —>‘
14

Reinstallation Attack ﬁ

r— | Pl N

Channel 1 Channel 6

] =

15

Reinstallation Attack ﬁ

——) |
£ ——-————- optional 802.1x authentication - - - - - - - =

Msg1(r, ANonce) Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)

Msg3(r+1; GTK) Msg3(r+1; GTK)

16

Reinstallation Attack ﬁ

) !
£-—--—-—--- optional 802.1x authentication - - - - - - - =

Msg1(r, ANonce) Msg1(r, ANonce)

K
Msg2(r, SNonce) . Msg2(r, SNonce)

Msg3(r+1; GTK) Msg3(r+1; GTK)

Msg4(r+1)

> Block Msg4
Install PTK & GTK |

17

Reinstallation Attack ﬁ

—

Msg4(r+1)

N

Install PTK & GTK |

-2 J

18

Reinstallation Attack

—

Msg4(r+1)

X

N

Install PTK & GTK |

Msg3(r+2; GTK)

Msg3(r+2; GTK)

Enc;)tk{ Msgd(r+2) }

19

Reinstallation Attack ﬂ

— ‘ Msg4(r+ﬂ |
In practice Msg4
— IS sent encrypted
Msg3(r- 2, Giny | Msg3(r+2: GTK)
Encfl)tk{ Msgd(r+2) }

20

Reinstallation Attack

—)

Msg4(r+1)

X

N

Install PTK & GTK |

Msg3(r+2; GTK)

Msg3(r+2; GTK)

Enc}})tk{ Msg4(r+2) }

(Reinstall PTK & GTK |

21

Reinstallation Attack ﬂ

| Msgd(r+1) |
L | (Install PTK & GTK |
Msg3(r+2; GTK) Msg3(r+2; GTK)
Enc;)tk{ Msg4(r+2) }

Key reinstallation!

nonce is reset

22

Reinstallation Attack ﬁ

—)

Msg4(r+1)

N

Install PTK & GTK |

Msg3(r+2: GTK) Msg3(r+2: GTK)
Enc}})tk{ Msg4(r+2) }

(Reinstall PTK & GTK |

Enc;tk{ Data(...)} Encrl)tk{ Data(...)}

23

Reinstallation Attack ﬁ

—)

Msg4(r+1)

Install PTK & GTK | é
o

Msg3(r+2: GTK) Msg3(r+2: GTK)
Enc}})tk{ Msg4(r+2) }

I R
Ve

(Reinstall PTK & GTK |

Same nonce

IS used!

Enc;tk{ Data(...) }]:;ncf)tk{ Data(...) } |
/1

24

Reinstallation Attack ﬁ

—)

Msgd(r+1) |
Install PTK & GTK | |
o &P Keystream
Msg3(r+2; GTK) Msg3(r+2; GTK)
Enc}})tk{ Msg4(r+2) } |

(Reinstall PTK & GTK |

Enc;tk{ Data(...)} Encrl)tk{ Data(...)}

25

Reinstallation Attack ﬁ

Keystream

; GTK) Msg3(r+2; GTK)

1

e, Decrypted!

26

Key Reinstallation Attack

Other Wi-Fi handshakes also vulnerable:
» Group key handshake

» FT handshake

» TDLS PeerKey handshake

For details see our CCS’17 paper!?:
» “Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2”

27

Overview

? Key reinstalls In

4-way handshake

A°

L -

Practical impact

Misconceptions

%

——

3 '\ﬂ/v/"/u

Lessons learned

28

General Impact

Transmit nonce reset

! Decrypt frames sent by victim

Receive replay counter reset

{ —ﬂ! Replay frames towards victim

g

29

Cipher suite specific
AES-CCMP: No practical frame forging attacks

WPA-TKIP:
» Recover Message Integrity Check key from plaintext*»
» Forgel/inject frames sent by the device under attack

GCMP (WiGig):
» Recover GHASH authentication key from nonce reuse®
» Forgel/inject frames in both directions

30

Handshake.specific

Group key handshake:
» Client is attacked, but only AP sends real broadcast frames

adoaé‘ j]

E Unicast ‘%
s, j]

31

Handshake specific

Group key handshake:
» Client is attacked, but only AP sends real broadcast frames

» Can only replay broadcast frames to client

4-way handshake: client is attacked - replay/decrypt/forge

FT handshake (fast roaming = 802.11r):
» Access Point is attacked - replay/decrypt/forge
» No MitM required, can keep causing nonce resets

32

Implementation specific

I0S 10 and Windows: 4-way handshake not affected

» Cannot decrypt unicast traffic (nor replay/decrypt)

» But group key handshake is affected (replay broadcast)
> Note: iOS 11 does have vulnerable 4-way handshake®

wpa_supplicant 2.4+
» Client used on Linux and Android 6.0+
» On retransmitted msg3 will install all-zero key

33

23 O -

OTD
-way handshake - - - - - - - - —>|

.ﬁ' Android (victim) é

34

A

X

OTD
K--—--—---- initial stage of 4-way handshake - - - - - - - -3
Derive PTK |
Msg3(r+1; GTK) Msg3(r+1; GTK))
Msg4(r+1) Msg4(r+1) .

35

A X

CTD
K-—------- initial stage of 4-way handshake - - - - - - - - 3
(Derive PTK]
Msg3(r+1; GTK) Msg3(r+1; GTK) -
Msg4(r+1) Msg4(r+1)

Install-key(PTK) |

Clear PTKJ [Install PTKJ
| |

36

2

Install-key(PTK)

2

6P

TK |

A
"l Clear P
I

(Install PTKJ
I

37

AN 3
S 79 =
Install-key(PTK)

P
." Clear PTKJ [Install PTKJ

Msg3(r+2: GTK) Msg3(r+2: GTK)
Msg4(r+2) Enc;tk{ Msg4(r+2) }

A

38

AN 3
3 79 =
Install-key(PTK)

P
"l Clear PTK] [Install PTKJ

Msg3(r+2; GTK) Msg3(r+2; GTK)
Msg4(r+2) Enc , { Msgd(r+2) }

A

Install-key(zeros)

[Install all-zero PTKJ

39

AR
l'l

L

Install-key(PTK)

Clear PTKJ

MngJ{rl 2. (TIZN

A
QAP
[Install PTKJ
ANMax2(v 1 9D (XTI

Install all-zero PTK

&
=

v Now trivial to intercept and
msa Manipulate client traffic

40

Is your devices affected?

github.com/vanhoefm/krackattacks-scripts

» Tests clients and APs
» Works on Kali Linux

Remember to:
» Disable hardware encryption

» Use a supported Wi-Fi dongle!

41

Problem: many clients won’t get updates

Solution: AP can prevent (most) attacks on clients!
Don’t retransmit message 3/4
Don’t retransmit group message 1/2

However:
Impact on reliability unclear
Clients still vulnerable when connected to unmodified APs

42

Overview

? Key reinstalls In

4-way handshake

A°

L -

Practical impact

Misconceptions

P

ﬁ& ‘\"7;/“/“1/

Lessons learned

43

Misconceptions |

Updating only the client or AP is sufficient
» Both vulnerable clients & vulnerable APs must apply patches

~

Need to be close to network and victim
» Can use special antenna from afar

Must be connected to network as attacker (i.e. have password)
» Only need to be nearby victim and network

44

No useful data is transmitted after handshake
Trigger new handshakes during TCP connection

Obtaining channel-based MitM is hard
Nope, can use channel switch announcements

Attack complexity is hard
Script only needs to be written once ...
... and some are (privately) doing this!

45

Misconceptions Il

Using (AES-)CCMP mitigates the attack
» Still allows decryption & replay of frames

Enterprise networks (802.1x) aren’t affected
» Also use 4-way handshake & are affected

It's the end of the world!
» Let’s not get carried away ©

7: &g 4"‘ //7 3 . =) AN - !
Image from “KRACK: Your Wi-Fi is no
longer secure” by Kaspersky

46

Overview

? Key reinstalls In

4-way handshake

A°

L -

Practical impact

Misconceptions

P

ﬁ& ‘\"7;/“/“1/

Lessons learned

47

Limitations of formal proofs |

» 4-way handshake proven secure
» Encryption protocol proven secure

The combination was not proven secure!

48

Limitations of formal proofs I

Were the proofs too abstract?
» They did not model retransmissions
» Abstract model # real code

“In theory, theory and
practice are the same. In
practice, they are not.”

49

Keep protocols simple |

The wpa_supplicant 2.6 case:
» Complex state machine & turned out to still be vulnerable
> Need formal verification of implementations

Discovered other vulnerabilities:

» Hostapd reuses ANonce during rekey

» $POPULAR_CLIENT reuses SNonce during rekey

» When combined, rekeying reinstalls the existing PTK

50

Keep protocols simple |l

Network Operations Division
Cryptographic Requirements®:

“Re-keying introduces unnecessary
complexity (and therefore opportunities
for bugs or other unexpected behavior)
without delivering value in return.”

- Keep the protocol and code simple!

51

Need rigorous specifications

Original WPA2 standard (802.11i amendment)
» State machine described in pseudo code
» Doesn’t define when messages are accepted

StaProcessEAPOL-Key (S, M, 4. I. K. RSC, ANonce, RSC, MIC, RSNE, GTK[N], IGTK[M]. IPN)

if M/ =1 then
if Check MIC(PTK, EAPOL-Key frame) fails then
State < FAILED
else
State < MICOK
endif
endif
if K = P then
if State # FAILED then

52

Need rigorous specifications

Original WPA2 standard (802.11i amendment)
» State machine described in pseudo code
» Doesn’t define when messages are accepted

802.11r amendment (FT handshake)
» Better defines how/when to handle messages

» But some terms and cases still unclear

EAl
EAPOL-Key Received && TPTK = Calc-FT-PTK()
IRequest && MesgNo == 1 Send EAPOL(D, 1, 0, 0, P, 0, SNonce, MIC-KCK
E)

Init

FT-Initial-Association
FT-INIT-AUTH

IFT-Initial-Association

ILME-AUTHENTICATE. request(Open)

MLME-AUTHENTICATE.confirm() J,
FT-INIT-ASSOC
MLME-ASSOCIATE. request() or
MLME-REASSOCIATE request()
MLME-ASSOCIATE confirm() ||
MLME-REASSOCIATE confim()
FT-INT-START

802 1X-:portControl = Auto
ortValid = FALSE
802.1X-:portEnabled = TRUE
FT-Full-Auth(R1KH-ID) to SOKH SM

To FT-INIT

FT-RO-SEND-PMKR1SA

lF T-PMKR1-SA(PMK-R1-SA) from

FT-INIT-R1-SA

Calculate SNonce

3

EAPOLKey Received &&
IRequest £ MesgNo == 1

L& lnitial Assoc

EAPOL-Key Received && IRequest &&
sgNo ==

FT-PTK-START

POL-Key Message

RSNE[PMKR1Name]. MDE. FT

EAPOL-Key Received &8 IRequest &&
 MICVerified && Mesgo == 3

FT-PTK-CALC-NEGOTIATING

PTK =TPTK
Send EAPOL(1.1.0.0. P. 0. 0. MIC-KCK)

EAPOL-Key Received &8&
IRequest && MIC-Verified
88 MesgNo == 3

lUCT

FT-PTK-INIT-DONE

MLME-SETKEYS. request(Pairwise)

802.1X::portEnabled = TRUE
802.1X::portValid = TRUE
802.1X::suppKeyAvailable = FALSE
802.1X-keyDone = TRUE
Initial-Assoc = FALSE

MLME-SETPROTECTION request(FTO,Rx_Tx, Pairwise]

S1KH state machine

53

On a related note...

Workshop on:

Security Protocol Implementations:
Development and Analysis (SPIDA)

Co-located with EuroS&P 2018

“focuses on improving development & analysis
of security protocol implementations”

54

Thank you!

Questions?

krackattacks.com

References

© N o g &M w N PRF

10.

11.
12.

C. He, M. Sundararajan, A. Datta, A. Derek, and J. Mitchell. A Modular Correctness Proof of IEEE 802.11i and TLS. In CCS, 2005.

S. Antakis, M. van Cuijk, and J. Stemmer. Wardriving - Building A Yagi Pringles Antenna. 2008.
M. Parkinson. Designer Cantenna. 2012. Retrieved 23 October 2017 from https://www.mattparkinson.eu/designer-cantenna/

E. and M. Beck. Practical attacks against WEP and WPA. In WiSec, 2009.

M. Vanhoef and F. Piessens. Practical verification of WPA-TKIP vulnerabilities. In ASIA CCS, 2013.
A. Joux. Authentication failures in NIST version of GCM. 2016.
J. Jonsson. On the security of CTR+ CBC-MAC. In SAC, 2002.

Apple. About the security content of iOS 11.1. November 3, 2017. Retrieved 26 November from https://support.apple.com/en-
us/HT208222

US Central Intelligence Agency. Network Operations Division Cryptographic Requirements. Retrieved 5 December 2017 from
https://wikileaks.org/ciav7pl/cms/files/INOD%20Cryptographic%20Requirements%20v1.1%20TOP%20SECRET.pdf

J. Salowey and E. Rescorla. TLS Renegotiation Vulnerability. Retrieved 5 December 2017 from
https://www.ietf.org/proceedings/76/slides/tls-7.pdf

Bhargavan et al. Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS. In IEEE S&P, 2014.
M. Vanhoef and F. Piessens. Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. In CCS, 2017.

56

https://www.mattparkinson.eu/designer-cantenna/
https://support.apple.com/en-us/HT208222
https://wikileaks.org/ciav7p1/cms/files/NOD Cryptographic Requirements v1.1 TOP SECRET.pdf
https://www.ietf.org/proceedings/76/slides/tls-7.pdf

