Key Reinstallation Attacks:
Breaking the WPA2 Protocol
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Introduction

PhD Defense, July 2016:

“You recommend WPAZ2 with AES,
but are you sure that’s secure?”

Seems so! No attacks in
14 years & proven secure.
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Introduction

/* install the PTK */

if ((*ic->ic_set key)(ic, ni, k) !=0) {
reason = TEEE80211 REASON_AUTH_LEAVE;
goto deauth;

}

ni->ni_flags &= ~IEEE80211 NODE_TXRXPROT;

ni->ni_flags |= IEEE80211 NODE_RXPROT;

Key reinstallation when ic_set_key is called again?
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The 4-way handshake

Used to connect to any protected Wi-Fi network
» Provides mutual authentication
> Negotiates fresh PTK: pairwise temporal key

Appeared to be secure:

> No attacks in over a decade (apart from password guessing)
» Proven that negotiated key (PTK) is secret!

» And encryption protocol proven secure’



4-way handshake (simplified)

(— K- ———-- optional 802.1x authentication - - - - - - 3

Msgl1(r, ANonce) é
-2 :

Msg2(r, SNonce)

Derive PTK

PTK = Combine(shared secret,
ANonce, SNonce)



4-way handshake (simplified)

— - —-——- optional 802.1x authentication - - - - - - 3

< Attack isn’t about

D
- ANonce or SNonce reuse

Derive PTK

PTK = Combine(shared secret,
ANonce, SNonce)



4-way handshake (simplified)

—

Msg3(r+1; GTK)

- —-——- optional 802.1x authentication - - - - - - 3
Msg1(r, ANonce)
[Derwe PTK] Msg2(r, SNonce) y
[Derive PTK]

Msg4(r+1)

=
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4-way handshake (simplified)

—

optional 802.1x authentication

Msg1(r, ANonce)

Msg2(r, SNonce)

PTK Is installed

2

(ﬂerive PTK]

Install PTK 'k GTK

%
Install PTK

=
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4-way handshake (simplified)

———

- —-——- optional 802.1x authentication - - - - - - 3

Msg1(r, ANonce) é

[Derive PTKJ Msg2(r, SNonce) )
Msg3(r+1; GTK) (Derive PTK]J

Msg4(r+1) J
(Install PTK & GTK | (Install PTK |

K - -lencrypted data framesfjcan now be exchanged - - —>‘
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Frame encryption (simplified)

ot
(packet number) Plaintext data

Packet key

PTK

(session key)

S Keystream

- Nonce reuse implies keystream reuse (in all WPA2 ciphers)

13



4-way handshake (simplified)

— - ———— - optional 802.1x authentication
Msg1(r, ANonce) é
ey .
(Der tve PTK] Msg2(r, SNonce)
Installing PTK initializes f@
nonce to zero
- —
Install PTK

Install PTK & GTK

}g - - encrypted data frames can now be exchanged - - —>‘
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Reinstallation Attack ﬁ

r— | Pl N

Channel 1 Channel 6

] =
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Reinstallation Attack ﬁ

—— ) |
£ ——-————- optional 802.1x authentication - - - - - - - =

Msg1(r, ANonce) Msg1(r, ANonce)

Msg2(r, SNonce) Msg2(r, SNonce)

Msg3(r+1; GTK) Msg3(r+1; GTK)
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Reinstallation Attack ﬁ

) !
£-—--—-—--- optional 802.1x authentication - - - - - - - =

Msg1(r, ANonce) Msg1(r, ANonce)

K
Msg2(r, SNonce) . Msg2(r, SNonce)

Msg3(r+1; GTK) Msg3(r+1; GTK)

Msg4(r+1)

> Block Msg4
Install PTK & GTK |
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Reinstallation Attack ﬁ

—

Msg4(r+1)

N

Install PTK & GTK |

-2 J
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Reinstallation Attack

—

Msg4(r+1)

X

N

Install PTK & GTK |

Msg3(r+2; GTK)

Msg3(r+2; GTK)

Enc;)tk{ Msgd(r+2) }
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Reinstallation Attack ﬂ

— ‘ Msg4(r+ﬂ |
In practice Msg4
— IS sent encrypted
Msg3(r- 2, Giny | Msg3(r+2: GTK)
Encfl)tk{ Msgd(r+2) }
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Reinstallation Attack

— )

Msg4(r+1)

X

N

Install PTK & GTK |

Msg3(r+2; GTK)

Msg3(r+2; GTK)

Enc}})tk{ Msg4(r+2) }

(Reinstall PTK & GTK |
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Reinstallation Attack ﬂ

| Msgd(r+1) |
L | (Install PTK & GTK |
Msg3(r+2; GTK) Msg3(r+2; GTK)
Enc;)tk{ Msg4(r+2) }

Key reinstallation!

nonce is reset
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Reinstallation Attack ﬁ

— )

Msg4(r+1)

N

Install PTK & GTK |

Msg3(r+2: GTK) Msg3(r+2: GTK)
Enc}})tk{ Msg4(r+2) }

(Reinstall PTK & GTK |

Enc;tk{ Data(...)} Encrl)tk{ Data(...)}
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Reinstallation Attack ﬁ

— )

Msg4(r+1)

Install PTK & GTK | é
o

Msg3(r+2: GTK) Msg3(r+2: GTK)
Enc}})tk{ Msg4(r+2) }

I R
Ve

(Reinstall PTK & GTK |

Same nonce

IS used!

Enc;tk{ Data(...) } ]:;ncf)tk{ Data(...) } |
/1
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Reinstallation Attack ﬁ

— )

Msgd(r+1) |
Install PTK & GTK | |
o &P Keystream
Msg3(r+2; GTK) Msg3(r+2; GTK)
Enc}})tk{ Msg4(r+2) } |

(Reinstall PTK & GTK |

Enc;tk{ Data(...)} Encrl)tk{ Data(...)}
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Reinstallation Attack ﬁ

Keystream

; GTK) Msg3(r+2; GTK)

1

e, Decrypted!
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Key Reinstallation Attack

Other Wi-Fi handshakes also vulnerable:
» Group key handshake

» FT handshake

» TDLS PeerKey handshake

For details see our CCS’17 paper!?:
» “Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2”
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General Impact

Transmit nonce reset

! Decrypt frames sent by victim

Receive replay counter reset

{ —ﬂ! Replay frames towards victim

g
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Cipher suite specific
AES-CCMP: No practical frame forging attacks

WPA-TKIP:
» Recover Message Integrity Check key from plaintext*»
» Forgel/inject frames sent by the device under attack

GCMP (WiGig):
» Recover GHASH authentication key from nonce reuse®
» Forgel/inject frames in both directions
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Handshake.specific

Group key handshake:
» Client is attacked, but only AP sends real broadcast frames

adoaé‘ j]

E Unicast ‘%
s, j]
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Handshake specific

Group key handshake:
» Client is attacked, but only AP sends real broadcast frames

» Can only replay broadcast frames to client

4-way handshake: client is attacked - replay/decrypt/forge

FT handshake (fast roaming = 802.11r):
» Access Point is attacked - replay/decrypt/forge
» No MitM required, can keep causing nonce resets
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Implementation specific

I0S 10 and Windows: 4-way handshake not affected

» Cannot decrypt unicast traffic (nor replay/decrypt)

» But group key handshake is affected (replay broadcast)
> Note: iOS 11 does have vulnerable 4-way handshake®

wpa_supplicant 2.4+
» Client used on Linux and Android 6.0+
» On retransmitted msg3 will install all-zero key

33



23 O -

OTD
-way handshake - - - - - - - - —>|

.ﬁ' Android (victim) é
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A

X

OTD
K--—--—---- initial stage of 4-way handshake - - - - - - - -3
Derive PTK |
Msg3(r+1; GTK) Msg3(r+1; GTK) )
Msg4(r+1) Msg4(r+1) .
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A X

CTD
K-—------- initial stage of 4-way handshake - - - - - - - - 3
(Derive PTK]
Msg3(r+1; GTK) Msg3(r+1; GTK) -
Msg4(r+1) Msg4(r+1)

Install-key(PTK) |

Clear PTKJ [Install PTKJ
| |
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2

Install-key(PTK)

2

6P

TK |

A
"l Clear P
I

(Install PTKJ
I
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AN 3
S 79 =
Install-key(PTK)

P
." Clear PTKJ [Install PTKJ

Msg3(r+2: GTK) Msg3(r+2: GTK)
Msg4(r+2) Enc;tk{ Msg4(r+2) }

A
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AN 3
3 79 =
Install-key(PTK)

P
"l Clear PTK] [Install PTKJ

Msg3(r+2; GTK) Msg3(r+2; GTK)
Msg4(r+2) Enc , { Msgd(r+2) }

A

Install-key(zeros)

[Install all-zero PTKJ
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AR
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L

Install-key(PTK)

Clear PTKJ

MngJ{rl 2. (TIZN

A
QAP
[Install PTKJ
ANMax2(v 1 9D (XTI

Install all-zero PTK

&
=

v Now trivial to intercept and
msa  Manipulate client traffic
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Is your devices affected?

github.com/vanhoefm/krackattacks-scripts

» Tests clients and APs
»  Works on Kali Linux

Remember to:
» Disable hardware encryption

» Use a supported Wi-Fi dongle!
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Problem: many clients won’t get updates

Solution: AP can prevent (most) attacks on clients!
Don’t retransmit message 3/4
Don’t retransmit group message 1/2

However:
Impact on reliability unclear
Clients still vulnerable when connected to unmodified APs
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Misconceptions |

Updating only the client or AP is sufficient
» Both vulnerable clients & vulnerable APs must apply patches

~

Need to be close to network and victim
» Can use special antenna from afar

Must be connected to network as attacker (i.e. have password)
» Only need to be nearby victim and network
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No useful data is transmitted after handshake
Trigger new handshakes during TCP connection

Obtaining channel-based MitM is hard
Nope, can use channel switch announcements

Attack complexity is hard
Script only needs to be written once ...
... and some are (privately) doing this!
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Misconceptions Il

Using (AES-)CCMP mitigates the attack
» Still allows decryption & replay of frames

Enterprise networks (802.1x) aren’t affected
» Also use 4-way handshake & are affected

It's the end of the world!
» Let’s not get carried away ©

7: &g 4"‘ //7 3 . =) AN - !
Image from “KRACK: Your Wi-Fi is no
longer secure” by Kaspersky
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Limitations of formal proofs |

» 4-way handshake proven secure
» Encryption protocol proven secure

The combination was not proven secure!
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Limitations of formal proofs I

Were the proofs too abstract?
» They did not model retransmissions
» Abstract model # real code

“In theory, theory and
practice are the same. In
practice, they are not.”
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Keep protocols simple |

The wpa_supplicant 2.6 case:
» Complex state machine & turned out to still be vulnerable
> Need formal verification of implementations

Discovered other vulnerabilities:

» Hostapd reuses ANonce during rekey

» $POPULAR_CLIENT reuses SNonce during rekey

» When combined, rekeying reinstalls the existing PTK
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Keep protocols simple |l

Network Operations Division
Cryptographic Requirements®:

“Re-keying introduces unnecessary
complexity (and therefore opportunities
for bugs or other unexpected behavior)
without delivering value in return.”

- Keep the protocol and code simple!
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Need rigorous specifications

Original WPA2 standard (802.11i amendment)
» State machine described in pseudo code
» Doesn’t define when messages are accepted

StaProcessEAPOL-Key (S, M, 4. I. K. RSC, ANonce, RSC, MIC, RSNE, GTK[N], IGTK[M]. IPN)

if M/ =1 then
if Check MIC(PTK, EAPOL-Key frame) fails then
State < FAILED
else
State < MICOK
endif
endif
if K = P then
if State # FAILED then
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Need rigorous specifications

Original WPA2 standard (802.11i amendment)
» State machine described in pseudo code
» Doesn’t define when messages are accepted

802.11r amendment (FT handshake)
» Better defines how/when to handle messages

» But some terms and cases still unclear

EAl
EAPOL-Key Received && TPTK = Calc-FT-PTK()
IRequest && MesgNo == 1 Send EAPOL(D, 1, 0, 0, P, 0, SNonce, MIC-KCK
E)

Init

FT-Initial-Association
FT-INIT-AUTH

IFT-Initial-Association

ILME-AUTHENTICATE. request(Open)

MLME-AUTHENTICATE.confirm() J,
FT-INIT-ASSOC
MLME-ASSOCIATE. request() or
MLME-REASSOCIATE request()
MLME-ASSOCIATE confirm() ||
MLME-REASSOCIATE confim()
FT-INT-START

802 1X-:portControl = Auto
ortValid = FALSE
802.1X-:portEnabled = TRUE
FT-Full-Auth(R1KH-ID) to SOKH SM

To FT-INIT

FT-RO-SEND-PMKR1SA

lF T-PMKR1-SA(PMK-R1-SA) from

FT-INIT-R1-SA

Calculate SNonce

3

EAPOLKey Received &&
IRequest £ MesgNo == 1

L& lnitial Assoc

EAPOL-Key Received && IRequest &&
sgNo ==

FT-PTK-START

POL-Key Message

RSNE[PMKR1Name]. MDE. FT

EAPOL-Key Received &8 IRequest &&
 MICVerified && Mesgo == 3

FT-PTK-CALC-NEGOTIATING

PTK =TPTK
Send EAPOL(1.1.0.0. P. 0. 0. MIC-KCK)

EAPOL-Key Received &8&
IRequest && MIC-Verified
88 MesgNo == 3

lUCT

FT-PTK-INIT-DONE

MLME-SETKEYS. request(Pairwise)

802.1X::portEnabled = TRUE
802.1X::portValid = TRUE
802.1X::suppKeyAvailable = FALSE
802.1X-keyDone = TRUE
Initial-Assoc = FALSE

MLME-SETPROTECTION request(FTO,Rx_Tx, Pairwise]

S1KH state machine

53



On a related note...

Workshop on:

Security Protocol Implementations:
Development and Analysis (SPIDA)

Co-located with EuroS&P 2018

“focuses on improving development & analysis
of security protocol implementations”
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Thank you!

Questions?

krackattacks.com
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