
All Your Biases Belong To Us:
Breaking RC4 in WPA-TKIP and TLS

Mathy Vanhoef and Frank Piessens, KU Leuven

USENIX Security 2015 (best student paper)

Presentation for USENIC ATC ‘16

RC4

2

WEP

WPA-TKIP
SSL / TLS PPP/MPPE

And others ...

Intriguingly simple stream cipher
~ 10 lines in Python

RC4

3

Plaintext CiphertextKeystreamRC4

Key

Intriguingly simple stream cipher
~ 10 lines in Python

Why study RC4?

4

Immune to recent attacks on SSL/TLS:

▪ 2003: Padding oracle

▪ 2011: BEAST

▪ 2013: Lucky 13

▪ 2014: POODLE

➢ Solution: use stream cipher or up-to-date TLS library

➢ Only widely supported option was RC4

Target CBC mode encryption

(block ciphers)

RC4 was heavily used!

5

ICSI Notary: #TLS connections using RC4

50%

30%

13%

3%

0%

10%

20%

30%

40%

50%

60%

March 2013 Februari 2015 July 2015 April 2016

Browser support today (June 2016)

6

Chrome: dropped support in v48 (20 Jan. 2016)

Firefox: dropped support in v44 (26 Jan. 2016)

IE11: supports RC4

Edge: supports RC4

“will be disabled in
forthcoming update”

Contributions: why RC4 must die

7

New Biases Plaintext Recovery

Break WPA-TKIP Attack HTTPS

Contributions: why RC4 must die

8

New Biases Plaintext Recovery

Break WPA-TKIP Attack HTTPS

First: Existing Biases

9

Distribution keystream byte 2

Pr 𝒁𝟐 = 𝟎 =
𝟐

𝟐𝟓𝟔
 [MS01]

We want a

straight line..

First: Existing Biases

10

Distribution keystream byte 1 (to 256)

AlFardan et al. ‘13:

first 256 bytes biased

Short-term biases

We want a

straight line..

Long-Term Biases

11

A B S A B

Fluhrer-McGrew (2000):

▪ Some consecutive values are biased

Examples: 0, 0 and (0, 1)

Mantin’s ABSAB Bias (2005):

▪ A byte pair (𝐴, 𝐵) likely reappears

Fluhrer-McGrew biases: only

8 of 65 536 pairs are biased

Search for new biases

12

Traditional emperical approach:

▪ Generate large amount of keystreams

▪ Manually inspect data or graph

How to automate

the search?

Search for new biases

13

Hypothesis tests!

▪ Uniformly distributed: Chi-squared test.

▪ Correlated: M-test (detect outliers = biases)

Traditional emperical approach:

▪ Generate large amount of keystreams

▪ Manually inspect data or graph

→Allows a large-scale search,
revealing many new biases

Biases in Bytes 258-513

14

Example: keystream byte 258

Biases in Bytes 258-513

15

Example: keystream byte 320

Biases in Bytes 258-513

16

Example: keystream byte 352

Biases quickly

become quite weak

New Long-term Bias

17

(𝑍256∙𝑤, 𝑍256∙𝑤+2) = (0, 128)

with probability 2−16(1 + 2−8)

0 128 ...

Every block of 256 bytes

Additional Biases

18

See paper!

Contributions: why RC4 must die

19

New Biases Plaintext Recovery

Break WPA-TKIP Attack HTTPS

Existing Methods [AlFardan et al. ‘13]

20

Plaintext encrypted under

several keystreams

Ciphertext Distribution Plaintext guess 𝜇
Induced keystream

distribution

Verify guess: how close to

real keystream distribution?

Example: Decrypt byte 1

21

Ciphertext Distribution

Example: Decrypt byte 1

22

RC4 & Ciphertext distribution

Example: Decrypt byte 1

23

If plaintext byte 𝜇 = 0x28: RC4 & Induced

𝜇 = 0x28 has low likelihood

Example: Decrypt byte 1

24

If plaintext byte 𝜇 = 0x5C: RC4 & Induced

𝜇 = 0x5C has higher likelihood

Example: Decrypt byte 1

25

If plaintext byte 𝜇 = 0x5A: RC4 & Induced

𝜇 = 0x5A has highest likelihood!

Types of likelihood estimates

26

Previous works: pick value with highest likelihood.

Better idea: list of candidates in decreasing likelihood:

▪ Most likely one may not be correct!

▪ Prune bad candidates (e.g. bad CRC)

▪ Brute force cookies or passwords

How to calculate list of candidates?

1st idea: Generate List of Candidatess

27

Gist of the Algorithm: Incremental approach

Calculate candidates of length 1, length 2, ...

1

2

𝑛

1

2

𝑛

1

2

𝑛

...

2nd idea: abusing the ABSAB bias

28

Assume there’s surrounding known plaintext

▪ Derive values of A, B

▪ Combine with ABSAB bias to (probablisticly) predict A′, B′

➢ Ordinary likelihood calculation over only (A′, B′)

A B S A’ B’

Known Plaintext Unknown Plaintext

Likelihood estimate:

!

Contributions: why RC4 must die

29

New Biases Plaintext Recovery

Break WPA-TKIP Attack HTTPS

TKIP Background

30

How are packets sent/received?

Encrypted

MICDataIV CRC

TKIP Background

31

How are packets sent/received?

1. Add Message Integrity Check (MIC)

Encrypted

MICDataIV CRC

TKIP Background

32

How are packets sent/received?

1. Add Message Integrity Check (MIC)

2. Add CRC (leftover from WEP)

Encrypted

MICDataIV CRC

TKIP Background

33

How are packets sent/received?

1. Add Message Integrity Check (MIC)

2. Add CRC (leftover from WEP)

3. Add IV (increments every frame)

Encrypted

MICDataIV CRC

TKIP Background

34

How are packets sent/received?

1. Add Message Integrity Check (MIC)

2. Add CRC (leftover from WEP)

3. Add IV (increments every frame)

4. Encrypt using RC4 (per-packet key)

Encrypted

MICDataIV CRC

per-packet key

Flaw #1: TKIP Per-packet Key

35

(Key, IV)

Flaw #1: TKIP Per-packet Key

36

(Key, IV)

per-packet key

Anti-FMS(𝐼𝑉0, 𝐼𝑉1)

→ 𝐼𝑉-dependent biases in keystream
[Gupta/Paterson et al.]

(To avoid weak keys which broke WEP)

Flaw #2: MIC is invertible

37

If decrypted, reveals MIC key

MICDataIV CRC

→ With the MIC key, an attacker can inject and

decrypt some packets [AsiaCCS ‘13]

Goal: decrypt data and MIC

38

If decrypted, reveals MIC key

MICDataIV CRC

Goal: decrypt packet using RC4 biases & derive MIC key

▪ Problem: must generate many identical WPA-TKIP packets

▪ Solution: make victim connect to our server and retransmit
identical TCP packets

Generate list of packet candidates

➢ Prune bad candidates based on CRC

Evaluation

39

~ 8 million encryptions of packet

Ciphertext copies times 220

Evaluation

40

~ 8 million encryptions of packet

Takes 1 hour with 2500 packets / second

Ciphertext copies times 220

Contributions: why RC4 must die

41

New Biases Plaintext Recovery

Break WPA-TKIP Attack HTTPS

TLS Background

42

Client Server

→ Focus on record protocol with RC4 as cipher

Handshake protocol

Negotiate keys

Record protocol

Encrypt data

Targeting HTTPS Cookies

43

Previous attacks only used Fluhrer-McGrew (FM) biases

We combine FM biases and ABSAB biases

To use ABSAB biases we first surround cookie with known data

1. Remove unknown plaintext arround cookie

2. Inject known plaintext arround cookie

Example: manipulated HTTP request

44

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko

Host: a.site.com

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: auth=????????????????; P=aaaaaaaaaaaaaaaaa

Surrounded by known

plaintext at both sides

Headers are

predictable

Preparation: manipulating cookies

45

Clienta.site.com fake.site.com

HTTPS insecure

Remove & inject

secure cookies!

Performing the attack!

46
JavaScript: Cross-Origin requests in WebWorkers

Performing the attack!

47
Keep-Alive connection to generate them fast

Performing the attack!

48
Combine Fluhrer-McGrew and ABSAB biases

Decrypting 16-character cookie

49

~ one billion encryptions of cookie

Ciphertext copies times 227

Decrypting 16-character cookie

50

~ one billion encryptions of cookie

Takes 75 hours with 4450 requests / second

Ciphertext copies times 227

Decrypting 16-character cookie

51

DEMO!
rc4nomore.com

Questions?

May the bias be ever in your favor

Questions?

May the bias be ever in your favor

High level description

54

77 37 233 … 151 14 0 56

Shuffles permutation of [0..255]

= keystream

position mod 256

Public index i

pseudo-randomly

updated value

Secret index j

102 198

→ Output byte selected based on index j and i

Fallback to RC4

55

Client Server

ClientHello: without RC4 Browser first tries without RC4

ServerHello: use AES

Alert: Handshake Failed

Fallback to RC4

56

ClientHello: without RC4 Browser first tries without RC4

If that fails …

Client Server

ClientHello: with RC4

ServerHello: use RC4

Fallback to RC4

57

Client Server

Alert: Handshake Failed

ClientHello: without RC4 Browser first tries without RC4

If that fails …

… fallback to RC4

ClientHello: with RC4

ServerHello: use RC4

Fallback to RC4

58

Client Server

Alert: Handshake Failed

ClientHello: without RC4 Browser first tries without RC4

Forgeable by attacker!

… fallback to RC4

➢ Fallback provides no security

➢ But useful to determine how
many servers require RC4

Biases in Bytes 257-513

59

Distribution keystream byte 513

P-value ≈ 10−𝟑𝟎𝟎

2𝟒𝟕 keystreams

Additional Biases

60

Short-Term:

▪ 𝑍1 and 𝑍2 influence initial 256 bytes

▪ Consecutive bytes likely (in)equal

Long-term Biases:

▪ Byte value “likely” reappears

See paper!

Keystream bytes 𝑍1 and 𝑍2

61

𝑍1 and 𝑍2 influence all initial 256 bytes

▪ 𝑍1 = 257 − 𝑖 → 𝑍𝑖 = 0

𝟐𝟓𝟕 − 𝒊 0

1 2 ... 𝑖 ...

Keystream bytes 𝑍1 and 𝑍2

62

𝑍1 and 𝑍2 influence all initial 256 bytes

▪ 𝑍1 = 257 − 𝑖 → 𝑍𝑖 = 0

▪ 𝑍1 = 257 − 𝑖 → 𝑍𝑖 = 𝑖

𝟐𝟓𝟕 − 𝒊 𝒊

1 2 ... 𝑖 ...

Keystream bytes 𝑍1 and 𝑍2

63

𝑍1 and 𝑍2 influence all initial 256 bytes

▪ 𝑍1 = 257 − 𝑖 → 𝑍𝑖 = 0

▪ 𝑍1 = 257 − 𝑖 → 𝑍𝑖 = 𝑖

▪ 𝑍2 = 0 → 𝑍𝑖 ≠ 𝑖

0 ≠ 𝟓𝟎 ≠ 𝟓𝟏

1 2 ... 50 51 ...

Keystream bytes 𝑍1 and 𝑍2

64

𝑍1 and 𝑍2 influence all initial 256 bytes

▪ 𝑍1 = 257 − 𝑖 → 𝑍𝑖 = 0

▪ 𝑍1 = 257 − 𝑖 → 𝑍𝑖 = 𝑖

▪ 𝑍2 = 0 → 𝑍𝑖 ≠ 𝑖

▪ And others

0 ≠ 𝟓𝟎 ≠ 𝟓𝟏

1 2 ... 50 51 ...

Example: Decrypt byte 1

65

If plaintext byte 𝜇 = 0x28: RC4 & Induced

Likelihood of 𝜇 = probability of witnessing

induced, given the RC4 distribution

Example: Decrypt byte 1

66

If plaintext byte 𝜇 = 0x5C: RC4 & Induced

Likelihood of 𝜇 = probability of witnessing

induced, given the RC4 distribution

Example: Decrypt byte 1

67

If plaintext byte 𝜇 = 0x5A: RC4 & Induced

Likelihood of 𝜇 = probability of witnessing

induced, given the RC4 distribution

Evaluation

68

Simulations with 230 candidates:

▪ Need ≈ 224 captures to decrypt with high success rates

Emperical tests:

▪ Server can inject 2 500 packets per second

▪ Roughly one hour to capture sufficient traffic

▪ Successfully decrypted packet & found MIC key!

	Introduction
	Dia 1: All Your Biases Belong To Us: Breaking RC4 in WPA-TKIP and TLS
	Dia 2: RC4
	Dia 3: RC4
	Dia 4: Why study RC4?
	Dia 5: RC4 was heavily used!
	Dia 6: Browser support today (June 2016)
	Dia 7: Contributions: why RC4 must die
	Dia 8: Contributions: why RC4 must die

	Existing Biases
	Dia 9: First: Existing Biases
	Dia 10: First: Existing Biases
	Dia 11: Long-Term Biases

	New Biases
	Dia 12: Search for new biases
	Dia 13: Search for new biases
	Dia 14: Biases in Bytes 258-513
	Dia 15: Biases in Bytes 258-513
	Dia 16: Biases in Bytes 258-513
	Dia 17: New Long-term Bias
	Dia 18: Additional Biases

	Plaintext Recovery
	Dia 19: Contributions: why RC4 must die
	Dia 20: Existing Methods [AlFardan et al. ‘13]
	Dia 21: Example: Decrypt byte 1
	Dia 22: Example: Decrypt byte 1
	Dia 23: Example: Decrypt byte 1
	Dia 24: Example: Decrypt byte 1
	Dia 25: Example: Decrypt byte 1
	Dia 26: Types of likelihood estimates
	Dia 27: 1st idea: Generate List of Candidatess
	Dia 28: 2nd idea: abusing the ABSAB bias

	WPA-TKIP Attack
	Dia 29: Contributions: why RC4 must die
	Dia 30: TKIP Background
	Dia 31: TKIP Background
	Dia 32: TKIP Background
	Dia 33: TKIP Background
	Dia 34: TKIP Background
	Dia 35: Flaw #1: TKIP Per-packet Key
	Dia 36: Flaw #1: TKIP Per-packet Key
	Dia 37: Flaw #2: MIC is invertible
	Dia 38: Goal: decrypt data and MIC
	Dia 39: Evaluation
	Dia 40: Evaluation

	Decrypting Cookies
	Dia 41: Contributions: why RC4 must die
	Dia 42: TLS Background
	Dia 43: Targeting HTTPS Cookies
	Dia 44: Example: manipulated HTTP request
	Dia 45: Preparation: manipulating cookies
	Dia 46: Performing the attack!
	Dia 47: Performing the attack!
	Dia 48: Performing the attack!
	Dia 49: Decrypting 16-character cookie
	Dia 50: Decrypting 16-character cookie
	Dia 51: Decrypting 16-character cookie
	Dia 52: Questions?
	Dia 53: Questions?

	Backup Slides
	Dia 54: High level description
	Dia 55: Fallback to RC4
	Dia 56: Fallback to RC4
	Dia 57: Fallback to RC4
	Dia 58: Fallback to RC4
	Dia 59: Biases in Bytes 257-513
	Dia 60: Additional Biases

	Influence Z_1 and Z_2
	Dia 61: Keystream bytes hoofdletter Z sub 1 and hoofdletter Z sub 2
	Dia 62: Keystream bytes hoofdletter Z sub 1 and hoofdletter Z sub 2
	Dia 63: Keystream bytes hoofdletter Z sub 1 and hoofdletter Z sub 2
	Dia 64: Keystream bytes hoofdletter Z sub 1 and hoofdletter Z sub 2

	Likelihood Calculation
	Dia 65: Example: Decrypt byte 1
	Dia 66: Example: Decrypt byte 1
	Dia 67: Example: Decrypt byte 1
	Dia 68: Evaluation

