All Your Biases Belong To Us: Breaking RC4 in WPA-TKIP and TLS

Mathy Vanhoef and Frank Piessens, KU Leuven

USENIX Security 2015 (best student paper)

Presentation for USENIC ATC '16

Intriguingly simple stream cipher ~ 10 lines in Python

And others ...

Intriguingly simple stream cipher ~ 10 lines in Python

Why study RC4?

Immune to recent attacks on SSL/TLS:

- 2003: Padding oracle
- 2011: BEAST
- 2013: Lucky 13
- 2014: POODLE

Target CBC mode encryption (block ciphers)

Solution: use stream cipher or up-to-date TLS library

Only widely supported option was RC4

RC4 was heavily used!

ICSI Notary: #TLS connections using RC4

Browser support today (June 2016)

Chrome: dropped support in v48 (20 Jan. 2016)

Firefox: dropped support in v44 (26 Jan. 2016)

IE11: supports RC4

Edge: supports RC4

"will be disabled in forthcoming update"

Contributions: why RC4 must die

$$\lambda_{\widehat{\mu}} = \left(1 - oldsymbol{lpha}(g)
ight)^{|\mathcal{C}| - |\widehat{u}|} \cdot oldsymbol{lpha}(g)^{|\widehat{\mu}|}$$

New Biases

Plaintext Recovery

Break WPA-TKIP

Attack HTTPS

Contributions: why RC4 must die

$$\lambda_{\widehat{\mu}} = \left(1 - oldsymbol{lpha}(g)
ight)^{|\mathcal{C}| - |\widehat{u}|} \cdot oldsymbol{lpha}(g)^{|\widehat{\mu}|}$$

New Biases

Plaintext Recovery

Break WPA-TKIP

Attack HTTPS

First: Existing Biases

Long-Term Biases

Fluhrer-McGrew (2000):

Some consecutive values are biased

Examples: (0,0) and (0,1)

Mantin's ABSAB Bias (2005):

A byte pair (A, B) likely reappears

Search for new biases

Traditional emperical approach:

- Generate large amount of keystreams
- Manually inspect data or graph

Fluhrer-McGrew biases: only 8 of 65 536 pairs are biased

How to automate the search?

Search for new biases

Traditional emperical approach:

- Generate large amount of keystreams
- Manually inspect data or graph

Hypothesis tests!

- Uniformly distributed: Chi-squared test.
- Correlated: M-test (detect outliers = biases)

Allows a large-scale search, revealing many new biases

Biases in Bytes 258-513

Example: keystream byte 258

Distrine

Biases in Bytes 258-513

Example: keystream byte 320

Distrine

Biases in Bytes 258-513

III iMinds

KU LEUVE

Example: keystream byte 352

New Long-term Bias

$$(Z_{256\cdot w}, Z_{256\cdot w+2}) = (0, 128)$$

with probability $2^{-16}(1 + 2^{-8})$

Every block of 256 bytes

Additional Biases

See paper!

Contributions: why RC4 must die

$$\lambda_{\widehat{\mu}} = (1 - lpha(g))^{|\mathcal{C}| - |\widehat{u}|} \cdot lpha(g)^{|\widehat{\mu}|}$$

New Biases

Plaintext Recovery

Break WPA-TKIP

Attack HTTPS

Existing Methods [AlFardan et al. '13]

Plaintext encrypted under several keystreams

Ciphertext Distribution

RC4 & Ciphertext distribution

If plaintext byte $\mu = 0x28$: **RC4 & Induced**

If plaintext byte $\mu = 0x5C$: **RC4** & **Induced**

If plaintext byte $\mu = 0x5A$: **RC4 & Induced**

Types of likelihood estimates

Previous works: pick value with highest likelihood.

Better idea: list of candidates in decreasing likelihood:

- Most likely one may not be correct!
- Prune bad candidates (e.g. bad CRC)
- Brute force cookies or passwords

How to calculate list of candidates?

1st idea: Generate List of Candidatess

Gist of the Algorithm: Incremental approach

Calculate candidates of length 1, length 2, ...

Contributions: why RC4 must die

$\lambda_{\widehat{\mu}} = (1 - \alpha(g))^{|\mathcal{C}| - |\widehat{u}|} \cdot \alpha(g)^{|\widehat{\mu}|}$

New Biases

Plaintext Recovery

Break WPA-TKIP

Attack HTTPS

How are packets sent/received?

1. Add Message Integrity Check (MIC)

- 1. Add Message Integrity Check (MIC)
- 2. Add CRC (leftover from WEP)

- 1. Add Message Integrity Check (MIC)
- 2. Add CRC (leftover from WEP)
- 3. Add IV (increments every frame)

- 1. Add Message Integrity Check (MIC)
- 2. Add CRC (leftover from WEP)
- 3. Add IV (increments every frame)
- 4. Encrypt using RC4 (per-packet key)

Flaw #1: TKIP Per-packet Key

Flaw #1: TKIP Per-packet Key

→ *IV*-dependent biases in keystream [Gupta/Paterson et al.]

Flaw #2: MIC is invertible

→ With the MIC key, an attacker can inject and decrypt some packets [AsiaCCS '13]

Goal: decrypt data and MIC

Goal: decrypt packet using RC4 biases & derive MIC key

- Problem: must generate many identical WPA-TKIP packets
- Solution: make victim connect to our server and retransmit identical TCP packets

Generate list of packet candidates

Prune bad candidates based on CRC

Evaluation

Evaluation

Contributions: why RC4 must die

$$\lambda_{\widehat{\mu}} = (1 - lpha(g))^{|\mathcal{C}| - |\widehat{u}|} \cdot lpha(g)^{|\widehat{\mu}|}$$

New Biases

Plaintext Recovery

Break WPA-TKIP

Attack HTTPS

TLS Background

→ Focus on record protocol with RC4 as cipher

Targeting HTTPS Cookies

Previous attacks only used Fluhrer-McGrew (FM) biases

We combine FM biases and ABSAB biases

To use ABSAB biases we first surround cookie with known data

- 1. Remove unknown plaintext arround cookie
- 2. Inject known plaintext arround cookie

Example: manipulated HTTP request

Preparation: manipulating cookies

Performing the attack!

JavaScript: Cross-Origin requests in WebWorkers

Performing the attack!

Keep-Alive connection to generate them fast

Performing the attack!

Combine Fluhrer-McGrew and ABSAB biases

Decrypting 16-character cookie

Decrypting 16-character cookie

Decrypting 16-character cookie

DEMO

rc4nomore.com

Questions?

May the bias be ever in your favor

Questions?

May the bias be ever in your favor

High level description

Shuffles permutation of [0..255]

III iMinds

KU LEUVE

Biases in Bytes 257-513

Distribution keystream byte 513

Additional Biases

Short-Term:

- Z_1 and Z_2 influence initial 256 bytes
- Consecutive bytes likely (in)equal

Long-term Biases:

Byte value "likely" reappears

 Z_1 and Z_2 influence all initial 256 bytes

$$Z_1 = 257 - i \rightarrow Z_i = 0$$

III iMinds

KU LEUVEN

- Z_1 and Z_2 influence all initial 256 bytes
- $Z_1 = 257 i \rightarrow Z_i = 0$
- $Z_1 = 257 i \rightarrow Z_i = i$

III iMinds

KU LEUVE

- Z_1 and Z_2 influence all initial 256 bytes
- $Z_1 = 257 i \rightarrow Z_i = 0$
- $Z_1 = 257 i \quad \Rightarrow Z_i = i$
- $\bullet Z_2 = 0 \qquad \rightarrow Z_i \neq i$

- Z_1 and Z_2 influence all initial 256 bytes
- $Z_1 = 257 i \quad \Rightarrow Z_i = 0$
- $Z_1 = 257 i \quad \rightarrow Z_i = i$
- $\bullet Z_2 = 0 \qquad \rightarrow Z_i \neq i$
- And others

If plaintext byte $\mu = 0x28$: **RC4 & Induced**

If plaintext byte $\mu = 0x5C$: **RC4** & **Induced**

If plaintext byte $\mu = 0x5A$: **RC4 & Induced**

Evaluation

Simulations with 2^{30} candidates:

• Need $\approx 2^{24}$ captures to decrypt with high success rates

Emperical tests:

- Server can inject 2 500 packets per second
- Roughly one hour to capture sufficient traffic
- Successfully decrypted packet & found MIC key!

