
A Time-Memory Trade-Off Attack on WPA3’s SAE-PK
Mathy Vanhoef

Mathy.Vanhoef@kuleuven.be
imec-DistriNet, KU Leuven

Belgium

ABSTRACT
To increase the security of Wi-Fi hotspots, the Wi-Fi Alliance re-
leased the SAE-PK (Simultaneous Authentication of Equals - Public
Key) protocol in December 2020. In this protocol, the password of
the network is derived from the public key and the name of the
network. The idea is that an adversary cannot, within practical time,
generate their own private and corresponding public key that leads
to the same password. This prevents an adversary from setting up
a rogue Wi-Fi network with the same name and password because
they do not have a private and public key that results in the given
password.

In this paper, we analyze the impact of time-memory trade-off
attacks on the security of the SAE-PK protocol. By utilizing distin-
guished points to construct precomputed tables, we estimate that
the amortized cost of attacks can be significantly reused when the
name of the Wi-Fi network, called the SSID (Service Sets Identi-
fier), is reused. For instance, we estimate that when an adversary is
targeting an SSID used by a large number of networks, the amor-
tized computational costs of attacking the weakest allowed SAE-PK
configuration is lowered from 48 CPU years to roughly two weeks.
Finally, we also demonstrate how to construct SAE-PK password
collisions, where two networks with different SSIDs end up using
the same password. Such a password collision enables the creation
of a single precomputed table that can attack multiple SSIDs.

CCS CONCEPTS
• Security and privacy→ Cryptanalysis and other attacks;
Public key (asymmetric) techniques; Security protocols; • Net-
works→ Network protocol design.

KEYWORDS
WPA3, SAE-PK, 802.11, Wi-Fi, time-memory trade-off, collision
ACM Reference Format:
Mathy Vanhoef. 2022. A Time-Memory Trade-Off Attack on WPA3’s SAE-
PK. In Proceedings of the 9th ACM ASIA Public-Key Cryptography Workshop
(APKC ’22), May 30, 2022, Nagasaki, Japan. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3494105.3526235

1 INTRODUCTION
The Wi-Fi protocol remains one of the most frequently used pro-
tocols to access the internet. Apart from being used in home and
company networks, it is also commonly used by public venues and
shops to offer free and convenient access the internet. However, the

APKC ’22, May 30, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
9th ACM ASIA Public-Key Cryptography Workshop (APKC ’22), May 30, 2022, Nagasaki,
Japan, https://doi.org/10.1145/3494105.3526235.

security of such publicWi-Fi networks, often also called hotspots, is
typically lacking. For instance, an adversary can trivially eavesdrop
on the traffic of open Wi-Fi hotspots and can create rogue hotspots
to manipulate traffic. Fortunately, in December 2020, the Wi-Fi Al-
liance updated the Wi-Fi Protected Access 3 (WPA3) certification
with features to strengthen the security of hotspots.

The initial version of the WPA3 certification was released in
April 2018 and one of its contributions is a new handshake to au-
thenticate to a network based on a shared password. An advantage
compared to WPA2 is that this new handshake, called Simultane-
ous Authentication of Equals (SAE), provides forward secrecy and
prevents offline dictionary attacks. Although some security issues
were discovered in the SAE handshake [25], these were rectified
by the Wi-Fi Alliance [26]. However, a remaining challenge was
how to protect Wi-Fi hotspots where everyone, including possibly
malicious users, are in possession of the password.

Version three of WPA3, which was released in December 2020,
added a feature to secure hotspots [26]. The goal of this update is
to prevent an adversary from creating a rogue clone of the network
with the same name and password as the legitimate network. To
achieve this property, the password is tied to a public key, and
only those who own the corresponding private key can set up
a legitimate Access Point (AP). Since the adversary only knows
the name and password of the hotspot, but not the private key,
they are unable to set up a rogue clone of the hotspot. This new
authentication mechanism is based on the SAE handshake and is
called SAE Public Key (SAE-PK). In this paper we will explore the
security guarantees that SAE-PK provides.

We first investigate the feasibility of time-memory trade-off
attacks against SAE-PK. This is of importance because the WPA3
specification, when discussing appropriate security parameters
for SAE-PK, currently assumes that the most efficient attack is
a brute-force attack. However, because the SAE-PK password is
essentially a truncated hash of the name and public key of the
network, it becomes possible to perform a time-memory trade-off
attack against it. In particular, after a large precomputation effort
with as goal to attack a particular SSID, it becomes possible to
more efficient to map a password back to a (different) public key
for which the corresponding private key is known. In other words,
when targeting a common SSID, or an SSID that remains the same
over an extended period of time, it becomes possible to break a
password using a lower amortized cost than previously assumed.

To further optimize our time-memory trade-off attack, we also
show how it is possible to precompute a table that can be used to
target multiple SSIDs. This is accomplished by showing how an
adversary can construct multiple public keys and SSIDs that all
result in the same SAE-PK password, i.e., we show how to create
SAE-PK password collisions. We test the feasibility of constructing
password collisions against various TLS libraries.

https://orcid.org/0002-8971-9470
https://doi.org/10.1145/3494105.3526235
https://doi.org/10.1145/3494105.3526235

Our attacks can be mitigated by using unique SSIDs. Alterna-
tively, the discovered weaknesses can also be mitigated by using an
SAE-PK password of at least 16 characters, or by using a password
with a higher security level, i.e., by setting the Sec parameter of the
SAE-PK password to 5.

To summarize, our contributions are:
• We highlight the reuse of SSIDs between different networks,
and show how to construct time-memory lookup tables for
SAE-PK when SSIDs are reused (Section 3).
• We show how to crease password collisions, allowing one to
build a single table to attack multiple SSIDs (Section 4).
• We propose and discuss defenses against the weaknesses
that we identified (Section 5).

To explain our contributions we first introduce the necessary back-
ground information in Section 2. Finally, we discuss related work
in Section 6 and conclude in Section 7.

2 BACKGROUND
In this section we first introduceWPA3 and the SAE handshake. We
then explain the SAE-PK extension that secures hotspots by tying
a public key to a password. Finally, we will give an introduction to
time-memory trade-off attacks.

2.1 Simultaneous authentication of equals (SAE)
The first version of WPA3 mandates support of the Simultaneous
Authentication of Equals (SAE) handshake which is also known
as the Dragonfly handshake [26]. Unlike the 4-way handshake of
WPA2, the SAE handshake provides forward secrecy and defends
against offline dictionary attacks. When using SAE, the adminis-
trator picks a password of at least 5 characters, and distributes this
password to all users of the network. The password can only be
given to trusted users, since anyone that possess the password can
set up a rogue network with the same SSID and password.

Figure 1 illustrates that messages that are exchanged when a
client uses SAE to connect to an Access Point (AP). First, the client
transmits probe requests, and nearby APs will reply using probe
responses. These probe responses contain various properties of the
network, including the SSID of the network. After this network
discovery phase, the SAE handshake starts, where in the first phase
of the handshake the client and AP use Auth-Commit messages to
exchange a random scalar and element. The exchanged scalar and
element are combined with the password to derive a fresh master
key. In the second phase of the SAE handshake, the client and AP
use Auth-Confirm messages to exchange confirm elements that are
used to assure that both endpoints generated the same master keys.
Finally, after the SAE handshake, the client associates and performs
a 4-way handshake to derive fresh data protection keys.

2.2 SAE public key (SAE-PK)
To secure hotspots, version three of the WPA3 certification added
the SAE Public Key (SAE-PK) protocol [26]. The idea behind this
protocol is that the password of the network is tied to a specific
public key. This means that the network administrator no longer
picks a password manually, but instead a password is derived from
the public key’s fingerprint. When a client now connects to the
network, the APwill transmit the public key 𝑝𝑘 to the client, and the

Client Access Point (AP)

Probe-Request

Probe-Response(SSID)

Auth-Commit(scalar, element)

Auth-Commit(scalar, element)

Derive master keys Derive master keys

Auth-Confirm(confirm)

Verify confirm

Auth-Confirm(confirm, Enc{Modifier}, pk, KeyAuth)

Verify confirm
Verify signature and KeyAuth

Association

4-way handshake

Figure 1: Illustration of the SAE-PK handshake. It adds the
parameters and steps in bold to the SAE handshake, so clients
can verify the authenticity of hotspots using public keys.

client will compare the fingerprint of the received public key to the
fingerprint encoded in the password. Only when these fingerprints
match, and a given value is properly signed by the AP using the
corresponding private key, will the client continue connecting. In
the case of SAE-PK, the data that must be signed by the AP is called
the KeyAuth field, which among other things contains the public
key, the client’s and AP’s random scalar and element (see the Auth-
Commit messages in Fig 1), and the MAC addresses of the client and
AP. This assures that the KeyAuth field and its signature is unique
for each SAE-PK handshake. The signature itself is made using the
Elliptic Curve Digital Signature Algorithm (ECDSA), meaning that
only public keys based on elliptic curves are supported by SAE-PK.

2.2.1 SAE-PK fingerprint. To generate the SAE-PK password, a
fingerprint is first derived from the public key, SSID, and from a
random modifier. This fingerprint is then encoded into a human-
readable SAE-PK password (see Section 2.2.2). Algorithm 1 illus-
trates how the fingerprint is calculated, and we will represent this
algorithm using the function PKHash\,ℓ (𝑝𝑘, 𝑆𝑆𝐼𝐷,𝑀). The first ar-
gument 𝑝𝑘 is the public key of the network. The second argument
is the SSID of the network, which acts as a salt to assure that each
network has a different fingerprint even when they use the same
public key. The third argument is a 32-byte integer which is initial-
ized to a random value and called the modifier [26]. This modifier
is incremented until the hash function

Hash(SSID ∥ 𝑀 ∥ 𝑝𝑘) (1)

Algorithm 1: Create a fingerprint of an SSID and public
key. The algorithm is denoted by PKHash\,ℓ (𝑝𝑘, SSID, 𝑀).
Parameters \ and ℓ are dropped when clear from context.
Input: 𝑝𝑘 : Public key to calculate a fingerprint for

SSID: Network to calculate a fingerprint for
𝑀 : Starting modifier (by default a random value)
\ : Number of internal digest bits that must be zero
ℓ : Length in bits of the returned fingerprint

Returns: Fingerprint of the SSID and public key which can
be easily converted into an SAE-PK password.

for 𝑖 = 0 to 2128 − 1 do
𝑑 ← Hash(SSID ∥ 𝑀 + 𝑖 ∥ 𝑝𝑘) ⊲ 𝑀 + 𝑖 is in big-endian
if log2 (𝑑) < 128 − \ then ⊲ Are first \ bits zero?

return 𝐿(𝑑, \, \ + ℓ) ⊲ Remove the first \ bits
𝑖 ← 𝑖 + 1

return false ⊲ Should never get here in practice

returns an output whose first \ bits are zero. When constructing
the input to the above hash function, the modifier𝑀 is encoded in
big-endian, the public key 𝑝𝑘 is encoded according to RFC 5480 [21],
and ∥ denotes the concatenation of binary strings. Once a modifier
has been found that results in an output where the first \ bits are
zero, these first \ bits are dropped, and the next ℓ bits are returned.
That is, in Algorithm 1, the function 𝐿(𝑑, \, 𝑁) extracts bits \ to 𝑁
of the bit string 𝑑 starting from the left. The hash function that is
used depends on the length of the public key [26]. In the current
version of the 802.11 standard this is either SHA2-256, SHA2-384,
or SHA2-512 [2, §Table 12-1]. The parameters \ and ℓ control the
security of the fingerprint and are further discussed below.

When a client connects to a network using SAE-PK, the AP
will transmit the modifier 𝑀 to the client in the Auth-Confirm
message (see Figure 1). To prevent an outsider from learning the
modifier value, it is encrypted using the negotiated master keys.
This means that an adversary who observes a SAE-PK handshake
will only learn the public key of the network, which, on its own, is
insufficient to derive the SAE-PK password. This assures that the
SAE-PK password remains unknown to outsiders.

2.2.2 Human-readable SAE-PK password. To use Algorithm 1 to
generate a fingerprint, the network administrator first has to pick a
value for two security parameters called Sec and _ [26]. Valid values
for Sec are either 3 or 5, and valid values for _ are 12, 16, 20, and so
on. These two parameters are converted to the arguments \ and ℓ
of PKHash as follows:

\ = 8 · Sec (2)

ℓ = 19 · _
4
− 5 (3)

In other words, when using Sec = 3, the output of the hash operation
in (1) must start with 24 zero bits, while with Sec = 5, the output
must start with 40 zero bits.

The resulting output 𝑑 of PKHash\,ℓ is then encoded into al-
phanumeric characters as follows. First, let Sec1𝑏 be equal to one
when Sec = 3, and otherwise, when Sec = 5, then Sec1𝑏 equals zero.
The bit Sec1𝑏 is prepended to the fingerprint 𝑑 and also inserted

between every 19 bits of the fingerprint. For example, assume that
_ = 8, Sec = 3, and that the output 𝑑 of PKHash in binary is:

𝑑 = 100000000111111110000000011111111
Since we picked Sec = 3, we know that sec1𝑏 = 1, and inserting this
bit in the appropriate places gives:

11000000001111111100100000011111111
By inserting sec1𝑏 in this manner, the receiver of the password
reliably learns the parameter Sec that was used to generate the
fingerprint. This intermediate bitstring, with the inserted sec1𝑏 bits,
is then appended with 5 bits that function as a checksum, resulting
in the bitstring𝑑′. In our example, this leads to the following output:

𝑑′ = 1100000000111111110010000001111111100000
The 5-bit checksum is calculated using the Verhoeff algorithm [26].
Finally,𝑑′ is encoded into alphanumeric characters using the base32
encoding function as defined in RFC 4648, and every group of four
characters is split using a hyphen character [13, 26]. In our example,
the resulting alphanumeric password for the SAE-PK network is:

ya74-qh7a
Notice that the parameter _ corresponds to the number of characters
that are required to encode the resulting SAE-PK password. In
practice, an SAE-PK password must be at least 12 characters, since
_ must be equal or higher than 12 [26].

2.2.3 Security of SAE-PK. The WPA3 certification contains a se-
curity analysis, where the effort needed to attack various SAE-PK
passwords is estimated. An attack is considered successful when
the adversary can find a modifier 𝑀 and public key (for which
the private key is known) that results in a given password. When
targeting a network that uses _ = 12 and Sec = 3, which is the low-
est allowed security setting, it is estimated that attacking a single
SAE-PK password takes roughly 48 CPU years when using a hash
miner capable of 50 TeraHashes per second. In this analysis, it is
assumed that the adversary carries out a brute-force search for a
modifier𝑀 and public key that results in a given SAE-PK password.

2.2.4 Packet formats. Note that when the public key 𝑝𝑘 is sent
to the client in the Auth-Confirm frame (see Figure 1), the public
key is transported using the FILS Public Key element [26]. This
element is defined in the 802.11 standard [2, §9.4.2.180] and places
no restrictions on how the public key is encoded. This will become
important in Section 4 when constructing password collisions.

2.3 Time-memory trade-off attacks
Brute-force search attacks require either a large amount of (parallel)
computational power or take a substantial amount of time to com-
plete. In case the attack is performed multiple times, it is typically
possible to precompute information so that subsequent attacks can
be carried out faster. Such time-memory trade-off attacks were first
introduced by Hellman in 1980: he proposed a probabilistic method
to break a block cipher that supports 2𝑛 possible keys by precom-
puting a lookup table of 22/3𝑛 elements, after which recovering the
key from a known plaintext takes 22/3𝑛 operations [12]. A common
use-case for time-memory trade-off attacks is to find the key used
to encrypt a given plaintext or to invert a hash function.

The idea behind a time-memory trade-off attack is to save inter-
mediate results so that subsequent attacks are more efficient. For

instance, assume we want to build a table to recover the key that
was used by a cipher 𝐸 to encrypt a plaintext 𝑃0 when given the
resulting ciphertext 𝐶0. A naive idea is to iterate over all keys and
save all resulting key and ciphertext pairs. However, this requires a
large amount of storage. Instead, in a time-memory trade-off attack,
the ciphertexts and keys are organized in chains, and only the first
and last element of each chain is saved. The chains are created by
defining a reduction function 𝑅 that transforms a ciphertext into
a key. We then define the function 𝑓 (𝑘) = 𝑅(𝐸𝑘 (𝑃0)) that maps a
key 𝑘 to another key, and use this to construct a chain of keys:

𝑘1
𝑓 (𝑘1)−−−−−→ 𝑘2

𝑓 (𝑘2)−−−−−→ . . .
𝑓 (𝑘𝑡−1)−−−−−−→ 𝑘𝑡 (4)

For every chain, only the first key 𝑘1 and last key 𝑘𝑡 is stored. By
changing the length 𝑡 of the chain we can trade lookup time with
memory. The first element of a chain is called the starting point,
and the last element is commonly called the endpoint.

We can use the precomputed table, which consists of the starting
points and endpoints of all chains, to find the key that was used to
generate a ciphertext 𝐶 . This is done by generating a new chain of
keys of length 𝑡 starting with key 𝑅(𝐶), where 𝐶 is the captured
ciphertext for which we want to find the key. For every generated
key in this chain, we look whether this key is an endpoint of a
chain stored in the table. Once such an endpoint is found, we can
recreate the chain that was stored in the table. If the chain contains
a key resulting in ciphertext 𝐶 then we have successfully found
the key that was used to encrypt the given plaintext. Otherwise, if
no such key was found in the chain, we say that a false alarm has
occurred, and we continue our search until 𝑡 applications of 𝑓 have
been applied to 𝑅(𝐶) where 𝐶 is the captured plaintext.

It is important to note that time-memory trade-off attacks are
probabilistic: there is no guarantee that all keys can be found in a ta-
ble. The success probability depends on how the table is constructed
and how large it is. Additionally, chains may collide with each other,
meaning at some point they both generate the same (partial) chain
of keys. To increase the success rate, and reduce the number of
collisions, a common strategy is to create multiple smaller tables
that each use a (slightly) different reduction function 𝑅.

After the introduction of time-memory trade-off attacks by Hell-
man, various improvements have been proposed. Two notable ones
are Distinguished Points (DP) and rainbow tables. The idea behind
distinguished points was first mentioned by Rivest [10, p.100] and
later worked out by Borst et al. [5]. The advantage of distinguished
points is that it reduces the number of table lookups, which can be
important when working with large lookup tables. We elaborate
on the usage of distinguished points in Section 3. In 2003, Oechslin
proposed the usage of rainbow tables [20], which among other
things reduces the number of chain collisions while simultaneously
reducing the number of expected table lookups compared to the
classical method of Hellman.

3 TIME-MEMORY TRADE-OFF ATTACK
In this section we explain how to perform a time-memory trade-off
attack against SAE-PK. This consists of precomputing a table that
an adversary can use to more easily convert an SAE-PK password
into a valid modifier and public key for which the private key is
known. We assume that the attacker repeatedly wants to attack the

same SSID, which can occur when the administrator periodically
changes the password of a network, or when the same SSID is used
in multiple independent networks.

3.1 Motivation: reused and common SSIDs
Performing a time-memory trade-off attack is only meaningful
when the precomputed table can be used repeatedly. In the case
of SAE-PK, the precomputed table will (by default) be specific to a
given SSID, since the SSID is used as a salt in the password deriva-
tion algorithm (recall Section 2.2). This means a time-memory trade-
off attack is only relevant if the same SSID is reused.

In practice, there are two scenario in which it is meaningful to
attack the same SSID multiple times. First, a network may use the
same SSID for an extended period of time. For instance, a company
may use its name for the SSID and this name will likely remain
the same for several years. However, the public key of the SAE-PK
protocol may be periodically refreshed, for instancewhen using new
Wi-Fi hardware, which in turn changes the SAE-PK password. This
implies the adversary may wish to attack the same SSID multiple
times over a given time-frame.

Second, many different networks use the same SSID. For instance,
based on statistics gathered by WiGLE, the most common SSID is
xfinitewifiwhich, at the time of writing, is used by 17 289 341 net-
works [1]. Another example is linksys which is used by 3 137 128
networks. In general, network names based on a company name are
common, where another example is an SSID such as stackbucks.
This illustrates that in practice the same SSID might be attacked
multiple times, making it beneficial to perform a time-memory
trade-off attack where a precomputed table is constructed to more
easily attack one SSID multiple times.

3.2 Defining the hash and reduction function
Given a specific SSID, our goal is to be able to efficiently map an
SAE-PK password into a modifier value𝑀 and a public key 𝑝𝑘 . The
adversary can then use this information to create a rogue AP with
the resulting public key 𝑝𝑘 , matching private key 𝑠𝑘 , and modi-
fier𝑀 , such that these values result in the same SAE-PK password
as the target network. In other words, we want to invert the func-
tion PKHash\,ℓ (𝑝𝑘, SSID, 𝑀) for a given SSID, public key 𝑝𝑘 , and
for given security parameters \ and ℓ . Note that the parameters
ℓ and \ determine the type and maximum length of the SAE-PK
passwords that we can invert (see Section 2.2). To reduce storage
requirements, we will directly work with the output of PKHash
without converting it to the alphanumeric SAE-PK password rep-
resentation. Inverting the function PKHash then implies finding
a modifier value 𝑀 such that, for all other given parameters of
PKHash, the function will result in the desired output.

Before constructing the table, we need to define a reduction func-
tion that takes the output of PKHash and converts it to a modifier
value 𝑀 that we can give as input to the next PKHash call of the
chain (recall Section 2.3). For this reduction function we will use
the output of PKHash and append it with zero bits until it has a
total length of 16 bytes. With this construction, the counter inside
PKHash will unlikely result in an overlap with a different output
of the reduction function. This is because the reduction function
pushes the output bits of PKHash to the left, while the counter in

Table 1: Symbols used in this paper and their meaning.

Symbol Description

_ Length of the SAE-PK password (defined in WPA3)
Sec Security level of the fingerprint (defined in WPA3)
𝑝𝑘 Public key
𝑠𝑘 Private key
𝑀 Modifier value to calculate a fingerprint
𝑚 Number of starting points in one table
𝑟 Number of tables
\ Number of SHA2 output bits that must be zero
ℓ Length in bits of the desired fingerprint
𝑑 Number of leading zeros in disting. fingerprints
𝑡 Represents the (average) length of a chain
𝑡𝑚𝑖𝑛 Minimum length of a chain
𝑡𝑚𝑎𝑥 Maximum length of a chain
𝐿 Number of chains that are stored in the table
𝛼 Expected number of chains in a table
𝛽 Expected length of a chain

Algorithm 1 increments the right-most bits. This will reduce the
number of chains in the table that might otherwise collide.

3.3 Constructing chains and tables
In order to construct chains we will make use of distinguished
points. We opted for this approach because the generated tables are
large, and we want to reduce the number of required lookups when
using the table. This choice was also inspired by work of Nohl on
the A5/1 cipher, where distinguished points were used for simi-
lar purposes [19]. When constructing a chain using distinguished
points, we keep applying the reduction and PKHash function until
we encounter a fingerprint with a given number of leading zero
bits. This fingerprint is commonly called a distinguished endpoint
and we will also call it a distinguished fingerprint. The number
of leading zeros of a distinguished fingerprint is represented by 𝑑 .
This implies that the internal hash output in Algorithm 1 must start
with \ + 𝑑 zero bits. The advantage of using distinguished points
is that fewer table lookups have to be performed when inverting a
fingerprint compared to using rainbow tables [4, 20].

To construct a single table, we pick𝑚 random fingerprints as
starting points, denoted by 𝑘1 to 𝑘𝑚 . For each starting point, we
execute the reduction and PKHash function until we get a finger-
print that starts with 𝑑 bits. The combination of the reduction and
PKHash function, which corresponds to function 𝑓 in the back-
ground section, can be written as follows:

𝑘𝑖, 𝑗+1 = PKHash\,ℓ
(
𝑝𝑘, SSID, 𝑘𝑖, 𝑗 ≪ (32 · 8 − ℓ)

)
(5)

where 𝑘𝑖, 𝑗 is the 𝑗-th point in chain 𝑖 . Each chain 𝑖 starts with
fingerprint 𝑘𝑖,1 = 𝑘𝑖 . The operator ≪ denotes a binary left shift,
and the constant 32 · 8 corresponds to the length of the modifier.
To detect possible loops, we limit the length of a chain to at most
𝑡𝑚𝑎𝑥 elements. In case no distinguished fingerprint was found after
𝑡𝑚𝑎𝑥 applications of the reduction and PKHash function then the
chain is discarded. Optionally, it is also possible to set a minimum
chain length 𝑡𝑚𝑖𝑛 , to prevent the inclusion of short chains.

3.3.1 Storage. For every chain 𝑖 we store the starting fingerprint 𝑘𝑖 ,
the distinguished endpoint 𝑘𝑖,𝑡 , and the length of the chain 𝑡 . By
storing the length of the chain we can merge chain collisions by
keeping only the longest chain. That is, when a new distinguished
endpoint is already part of the table, we only store the longest chain.
As is typical for time-memory trade-off attacks, the table is sorted
based on the distinguished endpoints. This allows one to perform
lookups of an endpoint in logarithmic time.

3.3.2 Multiple tables. When usingmultiple tables, each table uses a
unique reduction function to reduce the number of chain collisions.
This improves the success rate of table lookups [4, 23]. We can
easily construct a unique reduction function per table by encoding
the index of the table into the high order bits of the modifier 𝑀 .
After the bits that encode the index of the table, the output of the
previous PKHash call is placed. In other words, for table 𝑛 out
of 𝑟 , the combination of the reduction and PKHash function can be
written as follows:

𝑠table = 32 · 8 −
⌈
log2 (𝑟)

⌉
(6)

𝑠mod = 𝑠table − ℓ (7)

𝑘𝑖, 𝑗+1 = PKHash\,ℓ
(
𝑝𝑘, SSID, 𝑛 ≪ 𝑠table | 𝑘𝑖, 𝑗 ≪ 𝑠mod

)
(8)

Here the operator | denotes the binary OR operation.

3.4 Precomputed table properties
To determine the efficacy of the constructed precomputed tables,
we apply the analysis of Standeart et al. to our use case [23]. In
our analysis we do not take into account chain collisions and corre-
sponding merges. This simplifies the analysis at the cost of some
reduction in precision [23, §8]. To also obtain precise estimates, we
perform experiments using a proof-of-concept implementation.

3.4.1 Precomputation complexity. The cost of precomputing the
table can be estimated by𝐶 = 𝑟 ·𝑚 ·𝛿 where 𝛿 can be approximated
by 2𝑑 (its exact value is in Appendix A). Recall that 𝑟 denotes
the number of individual tables being computed and 𝑚 denotes
the number of chains, i.e., starting points, in each table (see also
Table 1). The result 𝐶 equals the number of calls to PKHash. Since
PKHash executes on average 2\ SHA2 operations internally, the
total number of expected SHA2 operations can be approximated by
the formula 𝑟 ·𝑚 · 2\+𝑑 .

3.4.2 Success rate. The expected success rate of finding an SAE-PK
passphrase in a single table equals [23]:

𝑆𝑅 ≈ 𝑠 (𝛾𝑚)
2ℓ

(9)

See Appendix A for Standeart’s et al. formula to calculate the func-
tion 𝑠 . In case we use 𝑟 different tables, where each table has a
different reduction function to reduce the number of chain colli-
sions, the probability of a successful lookup is [23]:

𝑃𝑆 (𝑟) = 1 − (1 − 𝑆𝑅)𝑟 (10)

3.4.3 Storage requirements. Given that 𝑐 bytes are needed to store
one chain in the table, then the analysis in [23] shows that the
number of bytes needed to store the table is bounded by:

𝑐 · 𝑠 (𝛾 ·𝑚)
𝛽

· 𝑟 (11)

The value for 𝛽 can be approximated by 2𝑑 and its precise value
based on [23] is listed in Appendix A.

3.4.4 Lookup complexity. The processing complexity, i.e., the ex-
pected number of calls to PKHash when looking up an element
over all 𝑟 tables, can be estimated using 𝑟 · 𝛽 . Here 𝛽 is the average
length of a chain, which can be approximated by 2𝑑 . This assumes
that there are no false alarms when looking up a password [23].

3.5 Estimations and experiments
3.5.1 Analytical analysis. Based on the previously derived proper-
ties, we can estimate the cost of breaking SAE-PK under its lowest
security setting, namely when Sec = 3 and _ = 12. In this configu-
ration, the derived parameters for PKHash are \ = 24 and ℓ = 52.
Assuming we want a success rate of at least 50% when looking
up an SAE-PK password in the precomputed table, we can con-
struct 𝑟 = 213 tables, where each table is constructed using𝑚 = 226
starting fingerprints. Additionally, we can give chains a maximum
length of 𝑡𝑚𝑎𝑥 = 216, and let a distinguished fingerprint start with
𝑑 = 13 bits. Given that storing one chain requires 15 bytes, the
storage requirement for all tables is less than 6 terabytes. To look
up an SAE-PK passphrase under this configuration would require
an expected 226 calls to PKHash, which results in an expected 250
SHA2 operations to look up a single SAE-PK password.

3.5.2 Time estimations. To estimate the computational time re-
quirements for building the table and looking up elements, we
first need to determine which SHA2 function is used in PKHash.
Rather conveniently, the specific SHA2 hash function depends on
the length of the public key, meaning the attacker can determine
which SHA2 hash function will be used [26]. As a result, we can
chose the most efficient SHA2 function supported by SAE-PK, and
in our case we opted for SHA2-256.

We can now analyze the time required to build the table, as-
suming the weakest allowed SAE-PK security settings are used.
Similar to the security analysis in the WPA3 certification, we take
as reference a Bitcoin “hash miner” that is capable of performing 50
TeraHashes per second [26]. A Bitcoin miner internally performs a
double SHA2-256 hash, meaning we would be able to perform at
least 246 SHA2-256 hashes per second. This implies that construct-
ing the table would take at least 230 seconds, which equals slightly
more than 30 CPU years.

To look up an SAE-PK password in the precomputed table, we
need to perform 250 SHA2-256 operations. We assume that the
attacker rents an Amazon p4d.24xlarge instance to look up pass-
words, which has 8 terabytes of storage and contains 8 NVIDIA
A100 Tensor Cores, and hence has sufficient disk space to store the
tables. This instance is able to calculate 235 SHA2-256 hashes per
second, meaning looking up a password would take at least 9 hours.
At the time of writing, it costs less than $10 to rent a spot instance
of this type for one hour, meaning the estimated cost of a password
lookup would be roughly $90 under our assumptions.

All combined, if we construct a precomputed table for an SSID
that is used by, for instance, one thousand networks, we can at-
tack all those networks using this table. Based on our analysis,
constructing the table would take 30 CPU years, and this process
can be parallelized by using multiple devices. This implies that

the amortized computational cost of attacking a single network
becomes less than 12 days. In contrast, the current WPA3 specifi-
cation assumes that attacking any network, independent of how
common the SSID is, will cost roughly 48 CPU years.

3.5.3 Experiments. We implemented a proof-of-concept in C to
confirm the principles behind the attack. Our current code only
supports values for \ , ℓ , and 𝑑 that are multiples of eight, which was
done to simplify the implementation. To also allow fast simulations,
we used parameters \ = 8 and ℓ = 24 in our experiments. For the
construction of the precomputed table we used 𝑑 = 8 for distin-
guished fingerprints, 𝑡max = 211 as the maximum chain length,
𝑚 = 28 starting points per table, and 𝑟 = 28 individual tables (with
each a different reduction function).

With the above parameters, we performed an experiment where
we looked up 400 passwords in the constructed table. On average
one lookup required 215.67 calls to PKHash, while the expected
number from our analysis is 215. We conjecture that this higher
time complexity is due to false alarms during a password lookup. In
particular, on average there were 59 false alarms during a password
lookup, and every false alarm required roughly 2𝛽 ≈ 28 extra
PKHash calls. Under the above table configuration, the success rate
of a password lookup was 34%, which is lower than our analytical
prediction of 42%. We conjecture that this discrepancy is due to
not taking into account chain collisions during the derivation of
the analytical table properties: on average we observed that 38% of
chains in a table were removed because they collided with other
chains. Nevertheless, even if the success rate is lower than predicted,
it shows the attack is feasible and must be taken into account when
picking security parameters for a new SAE-PK network. We can
also compensate for the lower practical success rate by generating
bigger precomputed tables. Overall, these experiments confirm the
correctness of our table construction.

3.6 Discussion
Our results illustrate the feasibility of time-memory trade-off at-
tacks against SAE-PK. When using a common SSID, we strongly
encourage users to use a parameter of Sec = 5, or a longer pass-
word by setting _ to 16 or higher, in order to mitigate time-memory
trade-off attacks.

Our experiments showed that, when solely relying on distin-
guished points to construct the tables, there is a high amount of
chain collisions while constructing the table, and that there is a
non-negligible number of false alarms when looking up a password
in the table. Both these factors decrease the efficacy of the time-
memory trade-off. Inspired by [19], we consider it interesting future
work to combine the distinguished point technique with rainbow
tables to reduce these two observed downsides.

One limitation of our proof-of-concept is that it only supports
parameters that are a multiple of eight. As a result, important future
work is to perform simulations for longer SAE-PK passwords and
for different table parameters.

4 CREATING PASSWORD COLLISIONS
In this section, we demonstrate how to create password collisions.
That is, we create two networks with different SSIDs, but that
both have the same SAE-PK password. This non-trivial to achieve

s s i d _ 2 . 4 00 00 00 00 00 00 00 00 01 66 1C B5 30 8C 00 00 30 88 00 00 00 00 00 00 00 39 30 13 06 07 · · · 8E 18

SSID 1 Modifier𝑀1 Public key 𝑝𝑘1

SSID 2 Modifier𝑀2 Public key 𝑝𝑘2

Figure 2: Input given to PKHash such that the SAE-PK password of two SSIDs are identical. The top shows how this input is
split into the SSID, modifier, and public key for the first network. The bottom shows how this input is split for the second
network. The green underlined bytes can be modified so that the hash output starts with sufficiently many zeros.

because the SSID is used as a salt in the PKHash function. Nev-
ertheless, we accomplish this by manipulating the input given to
the SHA2 function in PKHash, and by abusing flexibilities in how
libraries parse public keys. All combined, this implies that a single
precomputed time-memory trade-off table can be used against dif-
ferent SSIDs. Concretely, we will first recap the encoding of public
keys, then abuse known issues how certain libraries parse public
keys, and finally we explore new parsing issues.

4.1 Constructing identical PKHash inputs
In our attack, one SSID must be the prefix of the other SSID, and we
will construct a modifier and public key so that both networks will
have the same password. For instance, we will have two networks
“ssid” and “ssid_2.4” for which we will construct a modifier𝑀
and public key 𝑝𝑘 such that the resulting SAE-PK password is
identical. The core idea is to pick𝑀 and 𝑝𝑘 such that in both cases
the PKHash algorithm gives exactly the same input to its internal
hash function, meaning the resulting password is the same. The
main challenge is to assure that the public key will be properly
parsed in both cases.

Our construction for the modifier𝑀 and public key 𝑝𝑘 is shown
in Figure 2. We let network 1 denote the network with the shorter
SSID, and let network 2 denote the network with the longer SSID:

4.1.1 Modifier construction. The 16-byte modifier is always placed
immediately after the SSID when constructing the input to the
SHA2 function in PKHash. Therefore, to assure that the input is
equal for both networks, the 16-byte modifier 𝑀1 of network 1
must start with the remaining characters of the longer SSID. In our
example, this means that𝑀1 must start with the ASCII encoding
of “_2.4” (see Figure 2). For modifier 𝑀2 of network 2, the last
bytes of the modifier must equal the first few bytes of the public
key of network 1, i.e., it must equal the first bytes of 𝑝𝑘1. In our
example in Figure 2, this means that 𝑀2 must end with the four
bytes 30 8C 00 00.

Assuming that the longer SSID has 𝑥 more characters compared
to the shorter SSID, then 16−𝑥 bytes remain unconstrained in both
𝑀1 and𝑀2. These unconstrained bytes will be picked such that the
resulting output of PKHash starts with sufficiently many zeros as
required by the security parameter Sec.

4.1.2 Public key length and placement. The public key is placed
immediately after the modifier when constructing the input to the
SHA2 function in PKHash. To assure that the resulting input has the
same length for both networks, the public key of network 2 must
be shorter than the public key of network 1. This can be achieved
because public keys do not have a fixed length, for instance, it

depends on the elliptic curve being used and how they are encoded
in binary. The challenge is that both public keys start at different
positions in the input to PKHash. To keep this input equal for both
networks, this means that a valid public key for network 2 (𝑝𝑘2)
must start in the middle of the public key of network 1 (𝑝𝑘1), as
illustrated in Figure 2. To accomplish this we abuse flexibilities in
the way that implementations parse public keys, which is described
next.

4.2 Public key encoding and length fields
4.2.1 Public key encoding. The WPA3 specification states that the
public key must be encoded according to RFC 5480 [21]. This means
it must use the same format as the Subject Public Key Information
field of X.509 certificates. The elliptic curve point inside this public
key is encoded according to ANSI X9.63, but we first focus on
the overall structure of the SubjectPublicKeyInfo and its (known)
flexibilities.

The structure of the SubjectPublicKeyInfo field of X.509 cer-
tificates, i.e., the format of 𝑝𝑘1 and 𝑝𝑘2, is described using ASN.1
notation. In particular, the public key consists of two main compo-
nents, which are defined as follows using ASN.1:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING

}

Remaining details of the encoding in ASN.1 are shown in Appen-
dix B. Summarized, the above means that there is first some meta-
data that describes the type of elliptic curve, and the second part
is the elliptic curve point encoded according to section 4.3.6 of the
X9.62 [3] standard. The full ASN.1 structure is encoded to binary us-
ing DER (Distinguished Encoding Rules). Although in theory DER
defines only one way to encode data, in practice some flexibility is
possible when encoding the public key.

4.2.2 Variable length fields. The DER encoding uses a tag, length,
value format. This is typically called a TLV format. The idea is
that each element start with one or more bytes that define the
type of the next element, then one or more bytes that define the
length of the element, and finally the content of the element itself.
The SubjectPublicKeyInfo field consists of a single TLV element,
namely a sequence element. This in turn contains the two elements
as shown previously. This outer sequence is encoded using a TLV
element with as type the byte 30, as is also shown in the start of
both public keys in Figure 2.

The length in a TLV element can be encoded using one or more
bytes. When the length of the element is smaller or equal to 127

Table 2: Behaviour of crypto libraries regarding the parsing of ASN.1 length fields inside TLV elements. The second column
contains the function used to parse length fields, the third column contains the maximum number of bytes in a variable length
field, the fourth whether an arbitrary number of leading zeros are allowed, and the fifth column contains whether overflows in
the length are detected.

Library ASN.1 length function Max bytes Leading zeros Overflow

OpenSSL asn1_get_length sizeof(long) Allowed Detected
WolfSSL GetLength_ex sizeof(int) Disallowed Detected
GnuTLS (libtasn1) asn1_get_length_der sizeof(unsigned int) Allowed Detected
MatrixSSL getAsnLength 4 Disallowed Detected

Table 3: Behaviour of crypto libraries regarding the parsing of X9.62 encoded elliptic curve points and the X.509 SubjectPublic-
KeyInfo structure. The second column contains the function that we tested, the third column whether the length of the elliptic
curve point is restricted, and the fourth whether the library accepts or rejects an x or y coordinate that is bigger than the prime
of the curve. The fifth column contains the function used to parse the whole public key as included in the PKHash function.

Library X9.62 point decoding function Len. check Added prime SubjectPublicKeyInfo parser

OpenSSL ec_GFp_simple_oct2point Yes Rejected d2i_PUBKEY
WolfSSL wc_ecc_import_x963 No Accepted wc_EccPublicKeyDecode
GnuTLS gnutls_pubkey_import_ecc_x962 No Accepted gnutls_pubkey_import
MatrixSSL psEccX963ImportKey No Accepted psParseSubjectPublicKeyInfo

bytes, then the length can be directly encoded as a single byte.When
the length is bigger than 127, it can be encoded using a variable
number of bytes: in that case the first byte has its high-order bit set
and the remaining bits define how many bytes encode the length.
For instance, if the first byte is 0x84, this means that the following
4 bytes encode the length of the element.

Against older libraries and implementation, it has been shown
that variable length encoding can be abused to hide arbitrary data
in the length field of an element [15]. For instance, we can specify
the following element and length field:

30 8C 00 00 30 88 00 00 00 00 00 00 00 39

Here we start a sequence element (byte 30) and then specify that
the length is encoded using 12 bytes (byte 8C). Assuming the target
can handle at most 64-bit integers, this causes the first 4 length
bytes (namely 00 00 30 88) to be ignored when reading the length
due to an overflow. Put differently, some implementations will think
this encodes a length of 56 (39 in hexadecimal). We can abuse this
to put arbitrary data within a public key, without affecting how the
public key is parsed. In particular, in our password collision attack,
we can abuse this to hide a valid start of public key 𝑝𝑘2 within the
first length field of another public key 𝑝𝑘1 (see Figure 2).

4.2.3 Implementation analysis. A notable implementation that was
vulnerable to this was the TLS library of Mozilla, called Network
Security Services (NSS). This bug was assigned CVE-2014-1569 and
allowed an adversary to encode arbitrary data within the length
field of an element, which was abused to attack the RSA cipher [15].

To test for the feasibility of this construction in practice, we focus
on Linux’s hostap daemon. This is, to the best of our knowledge,
the only open source implementation that supports SAE-PK at
the time of writing. This daemon can be used with various TLS
libraries, including OpenSSL, WolfSSL, and GnuTLS. Additionally,

old versions of hostap were also ported to work withMatrixSSL [16].
We therefore focus on these four TLS libraries.

The result of our experiments is shown in Table 2. It shows the
internal function that is used to parse the length of TLV elements,
themaximumnumber of bytes that can be used to encode the length,
whether an arbitrary number of leading zeros in the length encoding
are allowed, and whether overflows are detected. Interestingly,
modern versions of these libraries are no longer vulnerable since
they all detect overflows. Nevertheless, we conjecture that new
implementations of SAE-PK may repeat this mistake.

4.2.4 Creating a valid SAE-PK password. We now know one tech-
nique to create two identical inputs to PKHash for two different
SSIDs. The last step is to assure that the resulting output of the
PKHash starts with sufficiently many zeros (recall Section 2.2). To
achieve this, we can vary the value of modifier 𝑀1 excluding the
bytes that overlap with the longer SSID. These bytes correspond to
the green underlined bytes in Figure 2. This implies that the two
SSIDs must only differ by a certain amount in length, otherwise
there is no space left to assure that the output of PKHash starts with
sufficiently many zeros. In the next section we discuss a method to
overcome this limitation.

4.2.5 Experiments. To confirm that the same SAE-PK password is
valid for two different SSIDs after applying the construction shown
in Figure 2, we performed experiments using Linux’s hostap dae-
mon. In particular, we the compiled client with an OpenSSL library
that was modified to accept overflows in the asn1_get_length
function. For the access point we used hostapd, which was mod-
ified so that it can be configured to advertise and distribute the
SAE-PK public key using a non-standard encoding that is provided
by the attacker. We then created two networks, where the SSID of
the first network is the prefix of the other, and configured both with

the constructed public key encodings and modifiers as shown in Fig-
ure 2. This confirmed that the hostap client can successfully connect
to the two different SSIDs using the same SAE-PK password.

4.3 Variations in point encoding
In order to assure that the output of PKHash starts with sufficiently
many zeros, our previous approach was to change the modifier𝑀 .
However, in our password collision attack, this limits the maximum
difference in length between the two SSIDs. To overcome this prob-
lem, one method is to instead generate new public keys until we
have found one that results in a PKHash output with enough zeros.
The downside of this approach is that generating or modifying a
public key can result in a significant overhead.

An alternative option is to change how the elliptic curve point of
the public key is encoded. Inside the SubjectPublicKeyInfo structure,
the subjectPublicKey field contains the point as an ECPoint type:

ECPoint ::= OCTET STRING

The value of the ECPoint element is the binary encoding of an
elliptic curve point according to the rules of section 4.3.6 in the
X9.62 [3] standard. The WPA3 certification specifies that this point
must be encoded in compressed format when constructing the
PKHash input [26]. An example encoding of a compressed elliptic
curve point is:

03 // Type of this element is a BIT STRING
22 // Length of the BIT STRING element
00 // Number of unused bits in the final byte
03 // We are encoding a compressed point
24 40 58 8D A5 02 95 5C B4 C8 49 85 FD 1F 7D A7
1A 17 6B 72 9B 06 EB 72 20 70 00 A8 35 45 8E 18

The first byte (here 03) defines that this element is an BIT STRING,
the second byte (here 22) denotes the length of the element, and the
third byte (here 00) defines that all bits in the last byte of the octet
string are used. Note that a BIT STRING is used to encode the point:
the idea is that, although the ECPoint itself is an OCTET STRING,
it is directly mapped to a BIT STRING when placed inside the
subjectPublicKey field [21]. After these three bytes (03 22 00), the
X9.62 encoding of the elliptic curve point starts.

The X9.62 and X9.63 standard both define an identical method to
encode the elliptic curve point, but unfortunately these standards
not freely accessible. As a result, in practice the open SECG stan-
dard [6, §2.3.3] is often referenced instead, because it contains a
compatible description of how to encode a (compressed) elliptic
curve point. Fortunately, all these standard encode points in the
same way, with the exception that SECG does not define the hybrid
point encoding method. In practice, the libraries that we inspected
mainly support compressed and uncompressed point encoding,
with only few libraries supporting hybrid point encoding.

An uncompressed elliptic curve point starts with the byte 04 and
is followed by the x and y coordinate of the point. A compressed
points starts with either the byte 02 or 03 and is followed by the x
coordinate. The value of the y coordinate can then be derived from
the x coordinate and from the first byte. That is, the first byte 02
or 03 of an compressed point defines which of the two possible y
coordinates should be taken.

Instead of constantly generating new public keys until the PKHash
output contains enough zeros, we can instead change how a point is

encoded. In particular, we can add the prime 𝑝 of the elliptic curve
field to the encoded coordinates. This results in an equivalent repre-
sentation of the point since all operations are done modulo 𝑝 when
processing the point. Although the X9.62, X9.63, and SECG stan-
dard state that implementations must not accept such encodings,
in practice we did observe that WolfSSL, GnuTLS, and MatrixSSL
accepts such encodings (see Table 3). This provides an efficient
method to change how the public key is encoded. For instance, the
following encodes the same point as above:

03 24 00 // Type and length header
03 // Compressed point
00 01 // Prime p was added to x coordinate
24 40 58 8C A5 02 95 5D B4 C8 49 85 FD 1F 7D A7
1A 17 6B 73 9B 06 EB 72 20 70 00 A8 35 45 8E 17

Some implementations do check that a coordinate consists of an
even number of bytes, but that can easily be satisfied by pretended
an extra zero byte.

Note that when the AP transports the key to the client inside a
FILS element, it is not specified whether the elliptic curve public
key must be encoded in compressed or uncompressed form, and in
general no checks are performed on the transported public key. As
a result, when an adversary creates a rogue AP, arbitrary encodings
of the public key can be sent to the client, and it will depend on
the crypto library of the client which encodings are accepted (see
Table 3).

4.4 Practical applications
By constructing SAE-PK password collisions for two SSIDs, we can
build a precomputed time-memory trade-off table that can be used
to attack two SSIDs. This further increases the motivation for an
attacker to invest the cost of performing this precomputation, since
it can subsequently be used to attack a larger number of networks.

5 DISCUSSION
To prevent our discovered attacks, we recommend the following
backwards-compatible defenses, and we also propose a design
change to SAE-PK:

Backwards-compatible defenses. To prevent SAE-PK password
collisions, a client should only allow one possible encoding of the
public key. To mitigate time-memory trade-off attacks, the network
should use a security parameter of Sec = 5, or should use passwords
of length _ = 16 or longer. Alternatively, the network administrator
can decide to use a unique SSID, since adversaries are less likely to
create a computed table for unique SSIDs.

Design changes. The input given to the SHA2 function inside
PKHash should be updated to start with a single byte that repre-
sents the length of the SSID. This effectively forces an attacker to
commit to a specific SSID length when constructing the precom-
puted time-memory trade-off table, and prevents our SAE-PK pass-
word collision attacks. Unfortunately, this change is not backwards-
compatible.

6 RELATEDWORK
The older WPA2 protocol was quickly found to be vulnerable to
offline dictionary attacks [17]. It uses PBKDF2 to derive a Pair-
wise Master Key (PMK) from the password and SSID, and then
uses the 4-way handshake to combine the PMK with two random
nonces to derive a unique session key. An adversary can capture
the 4-way handshake and then brute-force the password until a
correct session key is found. Because of the inclusion of two random
32-byte nonces to derive the session key, it is infeasible to perform
a time-memory trade-off attack against the 4-way handshake. Nev-
ertheless, because offline brute-forcing of the passphrase was slow
on personal computers, lookup tables were created to speedup this
process [22]. In particular, the tables were used to avoid the compu-
tationally costly PBKDF2 hash by mapping an SSID and password
to the corresponding Pairwise Master Key (PMK). These tables
covered the top 1 000 SSIDs using a dictionary of 172 000 possible
passwords, which was later extended to a dictionary of one million
words. Their resulting lookup tables where 7 GB and 33 GB large.
Due to the rise of GPU-based password cracking, the need for such
tables has decreased.

Regarding the security of WPA3, Vanhoef and Ronen discovered
side-channel vulnerabilities in the first version ofWPA3 [25], which
have meanwhile been addressed in the latest version of WPA3 [26].
De Almeida Braga et al. later discovered that some implementations
did not defend against these side-channel flaws even after the public
disclosure of these flaws [9].

Hellman introduced the time-memory trade-off attack [12]. These
were later improved by Oechslin to what are called rainbow ta-
bles [20]. A combination of distinguished points and rainbow tables
were used by Nohl to carry out a time-memory trade-off attack
against the A5/1 cipher [19]. This attack was later made more effi-
cient by making use of FPGAs [14].

Flexibilities in parsing public keys were previously abused to at-
tack RSA ciphers [11, 24]. In this line of work it was also discovered
that some libraries accept arbitrary parameters in the algorithm
identifier, which was assigned CVE-2018-16151, and they also dis-
covered other parsing flexibilities in cryptographic libraries [7, 8].

7 CONCLUSION
By performing a time-memory trade-off attack against WPA3’s
SAE-PK protocol, it becomes possible to break a password using a
lower amortized computational cost than previously assumed. In
order to mitigate such attacks, we recommend that networks with
a common SSID set the security parameter Sec to 5. Alternatively,
such networks can decide to use a longer SAE-PK password at the
cost of decreased usability, or they can decide to change the SSID to
a more unique one. Finally, we consider it interesting future work
to combine the technique of distinguished points with rainbow
tables to further optimize our time-memory trade-off attack against
SAE-PK in practice.

ACKNOWLEDGMENTS
This research is partially funded by the Research Fund KU Leuven,
and by the Flemish Research Programme Cybersecurity. Mathy Van-
hoef holds a Postdoctoral fellowship from the Research Foundation
Flanders (FWO).

REFERENCES
[1] [n. d.]. WiGLE Stats. Retrieved 26 December 2021 from https://wigle.net/stats.
[2] IEEE Std 802.11. 2020. Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Spec.
[3] ANSI. 1999. X9. 62-1998: Public key cryptography for the financial services

industry: The elliptic curve digital signature algorithm (ECDSA). American
National Standards Institute (ANSI) (1999).

[4] Johan Borst. 2001. Block ciphers: Design, analysis and side-channel analysis. Ph. D.
Dissertation. KU Leuven, Leuven, Belgium.

[5] Johan Borst, Bart Preneel, and Joos Vandewalle. 1998. On the time-memory
tradeoff between exhaustive key search and table precomputation. In Symposium
on Information Theory in the Benelux. TECHNISCHE UNIVERSITEIT DELFT,
111–118.

[6] D Brown. 2009. Standards for efficient cryptography, SEC 1: elliptic curve cryp-
tography. Released Standard Version 1 (2009).

[7] Sze Yiu Chau. 2019. A Decade After Bleichenbacher’06, RSA Signature Forgery
Still Works. Black Hat USA (2019).

[8] Sze Yiu Chau, Moosa Yahyazadeh, Omar Chowdhury, Aniket Kate, and Ninghui Li.
2019. Analyzing semantic correctness with symbolic execution: A case study on
PKCS# 1 v1.5 signature verification. In Network and Distributed Systems Security
(NDSS) Symposium 2019.

[9] Daniel de Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt. 2020. Drag-
onblood is still leaking: Practical cache-based side-channel in the wild. In Annual
Computer Security Applications Conference. 291–303.

[10] Dorothy E Denning and Peter J Denning. 1979. Data security. ACM Computing
Surveys (CSUR) 11, 3 (1979), 227–249.

[11] Hal Finney. 2006. Bleichenbacher’s RSA signature forgery based on implementa-
tion error. Retrieved 21 November 2021 from https://mailarchive.ietf.org/arch/
msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/.

[12] Martin Hellman. 1980. A cryptanalytic time-memory trade-off. IEEE transactions
on Information Theory 26, 4 (1980), 401–406.

[13] Simon Josefsson. 2006. The Base16, Base32, and Base64 Data Encodings. RFC
4648. https://doi.org/10.17487/RFC4648

[14] Maria Kalenderi, Dionisios Pnevmatikatos, Ioannis Papaefstathiou, and Char-
alampos Manifavas. 2012. Breaking the GSM A5/1 cryptography algorithm with
rainbow tables and high-end FPGAS. In 22nd International conference on field
programmable logic and applications (FPL). IEEE, 747–753.

[15] Adam Langley. 2014. PKCS# 1 Signature Validation. Retrieved 21 November 2021
from https://www.imperialviolet.org/2014/09/26/pkcs1.html.

[16] Jouni Malinen. 2007. oepnssl vs. matrixssl. Retrieved 5 January 2022 from
http://lists.shmoo.com/pipermail/hostap/2007-October/016357.html.

[17] Robert Moskowitz. 2003. Weakness in passphrase choice in WPA interface.
Retrieved 26 December 2021 form https://wifinetnews.com/archives/2003/11/
weakness_in_passphrase_choice_in_wpa_interface.html.

[18] Yoav Nir, Simon Josefsson, and Manuel Pégourié-Gonnard. 2018. Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions
1.2 and Earlier. RFC 8422. https://doi.org/10.17487/RFC8422

[19] Karsten Nohl. 2010. Attacking phone privacy. Black Hat USA (2010), 1–6.
[20] Philippe Oechslin. 2003. Making a faster cryptanalytic time-memory trade-off.

In Annual International Cryptology Conference. Springer, 617–630.
[21] Tim Polk, Russ Housley, Sean Turner, Daniel R. L. Brown, and Kelvin Yiu. 2009.

Elliptic Curve Cryptography Subject Public Key Information. RFC 5480. https://
doi.org/10.17487/RFC5480

[22] RenderMan, Joshua Wright, Thorn, Dragorn, H1kari, and Twitchy. 2006. Church
of WifiWPA-PSK Lookup Tables. Retrieved 26 December 2021 from https://www.
renderlab.net/projects/WPA-tables/.

[23] Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, and Jean-
Didier Legat. 2002. A Time-Memory Tradeoff Using Distinguished Points: New
Analysis & FPGA Results. In Revised Papers from the 4th International Workshop
on Cryptographic Hardware and Embedded Systems (CHES ’02). Springer-Verlag,
Berlin, Heidelberg, 593–609.

[24] Filippo Valsorda. 2016. Bleichenbacher’06 signature forgery in Python-RSA.
Retrieved 21 November 2021 from https://blog.filippo.io/bleichenbacher-06-
signature-forgery-in-python-rsa/.

[25] Mathy Vanhoef and Eyal Ronen. 2020. Dragonblood: Analyzing the Dragonfly
Handshake of WPA3 and EAP-pwd. In IEEE Security & Privacy (SP). IEEE.

[26] Wi-Fi Alliance. 2020. WPA3 Specification Version 3.0. Retrieved 20 November
2021 from https://www.wi-fi.org/file/wpa3-specification.

https://wigle.net/stats
https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/
https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/
https://doi.org/10.17487/RFC4648
https://www.imperialviolet.org/2014/09/26/pkcs1.html
http://lists.shmoo.com/pipermail/hostap/2007-October/016357.html
https://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
https://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
https://doi.org/10.17487/RFC8422
https://doi.org/10.17487/RFC5480
https://doi.org/10.17487/RFC5480
https://www.renderlab.net/projects/WPA-tables/
https://www.renderlab.net/projects/WPA-tables/
https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
https://blog.filippo.io/bleichenbacher-06-signature-forgery-in-python-rsa/
https://www.wi-fi.org/file/wpa3-specification

A USED FORMULAS
We used the following formulas from [23] to analyze the impact of
the parameters that are used to construct the precomputed table:

𝑃2 (𝑙) ≈
(
1 − 2𝑘−𝑑

2𝑘 − 𝑙−1
2

)𝑙
≈ 𝑒−

𝑙

2𝑑 (12)

𝑃1 (𝑙) = 1 − 𝑃2 (𝑙) (13)
𝛾 = 𝑃1 (𝑡𝑚𝑎𝑥) − 𝑃1 (𝑡𝑚𝑖𝑛 − 1) ≈ 𝑃1 (𝑡𝑚𝑎𝑥) (14)

𝑡 =
𝑡𝑚𝑎𝑥 + 𝑡𝑚𝑖𝑛

2
(15)

𝑥 =
2𝑘−𝑑

2𝑘 − 𝑡
2

(16)

= 1 − 𝑒−
𝑡𝑚𝑎𝑥

2𝑑 (17)

𝛽 =
(1 − 𝑥)𝑡𝑚𝑖𝑛−2 · (𝑡𝑚𝑖𝑛 + 1−𝑥

𝑥) − (1 − 𝑥)
𝑡𝑚𝑎𝑥−1 · (𝑡𝑚𝑎𝑥 + 1

𝑥)
𝛾

(18)

𝑠 (𝑗) = 2𝑘 · ©«1 −
(

2𝑘

−𝛽 𝑗 + 𝛽2 𝑗 + 𝐾

) 1
𝛽−1 ª®¬ (19)

𝐾 = 2𝑘 ·
(
1 − 𝑠 (0)

2𝑘

)1−𝛽
(20)

𝑠 (0) = 0 (21)
𝛿 = 𝑡𝑚𝑎𝑥 · (1 − 𝑃1 (𝑡𝑚𝑎𝑥)) + 𝛽 · 𝑃1 (𝑡𝑚𝑎𝑥) (22)

For the parameter 𝑘 , which in the work of Standaert et al. repre-
sented the key length of the block cipher, we used the value ℓ .

B PUBLIC KEY ENCODING
The AlgorithmIdentifier field is defined as follows:

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL

}

The possible values for the algorithm identifier are id-ecPublicKey,
id-ecDH, or id-ecMQV. The identifier value and parameters for
id-ecPublicKey are:

id-ecPublicKey OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) ansi-X9-62(10045)

keyType(2) 1 }

ECParameters ::= CHOICE {
namedCurve OBJECT IDENTIFIER
-- implicitCurve NULL
-- specifiedCurve SpecifiedECDomain

}

Note that under RFC 5480 it is not allowed to use an implicit or
specified curve, hence why these two options are commented out
using two hyphens. The namedCurve can have various values, one
common example being curve secp256r1, which is also known as
NIST P-256 or prime256v1 [18]. This curve is represented using the
following object identifier:

secp256r1 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) ansi-X9-62(10045)

curves(3) prime(1) 7
}

There’s also the options id-ecDH and id-ecMQV that restrict the
usage of the given public key to the ECDH or the Elliptic Curve
Menezes-Qu-Vanstone key agreement algorithm. The object identi-
fier varies based on the algorithm, but the parameters are always
ECParameters similar to with id-ecPublicKey.

The subjectPublicKey from SubjectPublicKeyInfo is the ECC
public key. ECC public keys have the following syntax:

ECPoint ::= OCTET STRING

Here ECPoint is the octet representation of an elliptic curve point
as defined in the X9.62 [3] standard. According to RFC5480, imple-
mentations must support uncompressed forms and may support
compressed forms [21]. Note that the WPA3 standard requires sup-
port of the compressed form [26].

	Abstract
	1 Introduction
	2 Background
	2.1 Simultaneous authentication of equals (SAE)
	2.2 SAE public key (SAE-PK)
	2.3 Time-memory trade-off attacks

	3 Time-Memory Trade-Off Attack
	3.1 Motivation: reused and common SSIDs
	3.2 Defining the hash and reduction function
	3.3 Constructing chains and tables
	3.4 Precomputed table properties
	3.5 Estimations and experiments
	3.6 Discussion

	4 Creating Password Collisions
	4.1 Constructing identical PKHash inputs
	4.2 Public key encoding and length fields
	4.3 Variations in point encoding
	4.4 Practical applications

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Used Formulas
	B Public Key Encoding

