Predicting, Decrypting, and Abusing WPA2/802.11 Group Keys

Mathy Vanhoef and Frank Piessens, iMinds-DistriNet, KU Leuven USENIX Security 2016

Security of Wi-Fi group keys?

Protect broadcast and multicast Wi-Fi frames:

All clients share a copy of the group key

Security of groups keys not yet properly investigated!

In contrast with preshared & pairwise keys ...

Analyze security of group key during its full lifetime!

Contributions: Security of Group Keys

Flawed generation

Inject & decrypt all traffic

Force RC4 in handshake

New Wi-Fi tailored RNG

Contributions: Security of Group Keys

Flawed generation

Inject & decrypt all traffic

Force RC4 in handshake

New Wi-Fi tailored RNG

How are group keys generated?

Group key hierarchy:

- AP generates public counter and secret master key
- Derive group temporal keys (GTKs)

Entropy only introduced at boot

 If master key is leaked, all group keys become known

How are random numbers generated?

802.11 standard has example Random Number Generator

- §11.1.6a: "... can generate cryptographic-quality randomness"
- Annex M.5: "This solution is expository only"

Inconsistent description of RNG's security guarantees!
How secure is the design of the 802.11 RNG?
How many platforms implement this RNG?

802.11 RNG: Main Design

The 802.11 RNG is a stateless function returning 32 bytes

- Collects entropy on-demand
- Entropy extracted from frame arrival times and clock jitter

Deviates from traditional RNG design:

- No entropy pools being maintained
- Entropy only extracted from events when the RNG is being invoked

802.11 RNG: Entropy sources

Frame arrival times:

- Collected by repeatedly starting & aborting 4-way handshake
- Problem: AP is blacklisted after several handshake failures

Clock jitter and drift:

- Note: Router's current time is leaked in beacons
- Problem: No minimum time resolution \rightarrow small clock jitter

Surely no one implemented this...?

ΜΕΟΙΛΤΕΚ

Weakened 802.11 RNG

Depends on OS

Surely no one implemented this...?

ΜΕΟΙΛΤΕΚ

Weakened 802.11 RNG

Depends on OS

MediaTek RNG: Linux-based APs

Uses custom Linux drivers:

- Implements 802.11's RNG using only clock jitter
- Uses jiffies for current time: at best millisecond accuracy

ΜΕΟΙΛΤΕΚ

Contributions: Security of Group Keys

Flawed generation

Inject & decrypt all traffic

Force RC4 in handshake

New Wi-Fi tailored RNG

Simplified 4-way hanshake

Simplified 4-way hanshake

Simplified 4-way hanshake

Downgrade attack

Attacking RC4 encryption of GTK

- RC4 Key: 16-byte IV ||16-byte secret key
- First 256 keystream bytes are dropped

Recover repeated encryptions of GTK:

• Requires $\sim 2^{31}$ handshakes: takes >50 years

Countermeasures:

- Disable WPA-TKIP & RC4
- Send GTK after handshake

Contributions: Security of Group Keys

Flawed generation

Inject & decrypt all traffic

Force RC4 in handshake

New Wi-Fi tailored RNG

- Inject unicast IP packet in broadcast Wi-Fi frame
- Detected by "Hole 196" check

KU LEUVE

Hole 196 check done at network-layer... ... but an AP works at link-layer!

Abuse AP to bypass Hole 196 check:

Victim

Abuse AP to bypass Hole 196 check:

Inject as group frame to AP

shniMi 🧖 🔢

KU LEUVE

Attacker

Abuse AP to bypass Hole 196 check:

1. Inject as group frame to AP

iMinds 🖉

KU LEUVE

2. AP processes and routes frame

Victim

Attacker

Abuse AP to bypass Hole 196 check:

- 1. Inject as group frame to AP
- 2. AP processes and routes frame
- 3. AP transmits it to destination

Victim Attacker

Abuse AP to bypass Hole 196 check:

- 1. Inject as group frame to AP
- 2. AP processes and routes frame
- 3. AP transmits it to destination
- 4. Victim sees normal unicast frame

Attacker

Forging unicast frames using group key

Victim

AP

Abuse AP to bypass Hole 196 check:

- 1. Inject as group frame to AP
- 2. AP processes and routes frame
- 3. AP transmits it to destination
- 4. Victim sees normal unicast frame

Decrypting all traffic

ARP poison to broadcast MAC address

- Poison both router and clients
- Targets network-layer protocols: IPv4, IPv6, …

Countermeasure:

 AP should ignore frames received on broadcast or multicast MAC address.

Contributions: Security of Group Keys

Flawed generation

Inject & decrypt all traffic

Force RC4 in handshake

New Wi-Fi tailored RNG

An improved 802.11 RNG

Entropy present on al Wi-Fi chips?

Wi-Fi signals & background noise

Spectral scan feature in commodity chips:

- Can generate 3 million samples / second
- First XOR samples in firmware
- Extract & manage resulting entropy using known approaches

Additional research needed: performance under jamming?

Conclusion: lessons learned

- 1. Use a proper RNG
- 2. Let AP ignore group-addressed frames
- 3. Don't put "expository" security algos in a specification
- 4. Don't transmit sensitive data before downgrade detection

Questions?

