
Request and Conquer: Exposing Cross-Origin Resource Size

Tom Van Goethem, Mathy Vanhoef, Frank Piessens, Wouter Joosen
iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

first.lastname@cs.kuleuven.be

Abstract

Numerous initiatives are encouraging website owners to
enable and enforce TLS encryption for the communica-
tion between the server and their users. Although this en-
cryption, when configured properly, completely prevents
adversaries from disclosing the content of the traffic, cer-
tain features are not concealed, most notably the size of
messages. As modern-day web applications tend to pro-
vide users with a view that is tailored to the information
they entrust these web services with, it is clear that know-
ing the size of specific resources, an adversary can easily
uncover personal and sensitive information.

In this paper, we explore various techniques that can
be employed to reveal the size of resources. As a re-
sult of this in-depth analysis, we discover several design
flaws in the storage mechanisms of browsers, which al-
lows an adversary to expose the exact size of any re-
source in mere seconds. Furthermore, we report on a
novel size-exposing technique against Wi-Fi networks.
We evaluate the severity of our attacks, and show their
worrying consequences in multiple real-world attack sce-
narios. Furthermore, we propose an improved design for
browser storage, and explore other viable solutions that
can thwart size-exposing attacks.

1 Introduction

In 1996, Wagner and Schneier performed an analysis of
the SSL 3.0 protocol [67]. In their research, the au-
thors make the observation that although the content is
encrypted, an observer can still obtain the size of the re-
quested URL as well as the corresponding response size.
The researchers further elaborate that because it is pos-
sible to make an inventory of all publicly available data
on a website, knowing the size of requests and responses
allows an attacker to determine which web page was vis-
ited. Although content is increasingly being served over
secure SSL/TLS channels [55], the length of requests

and responses remains visible to a man-in-the-middle at-
tacker. Consequently, the attack that was described by
Wagner and Schneier two decades ago remains univer-
sally applicable. However, due to the various transitions
the web underwent, the consequences of uncovering the
size of remote resources have shifted drastically.

With the advent of online social networks, the dy-
namic generation of web pages goes even further. When
browsing, each user is now presented with a personalized
version, tailored to their personal preferences and infor-
mation they, or members of their online environment,
(un)willingly shared with these online services. Conse-
quently, the resource that is returned when a user requests
a certain URL will often reflect the state of that user.

Two types of size-exposing attacks, namely traffic
analysis and timing attacks, have been widely studied.
In traffic analysis, an adversary passively observes the
network traffic that is generated by the victim’s brows-
ing behavior. Based on the observed size, sequence, and
timing of requests and responses, an attacker can learn
which website was visited by the victim [13, 25, 68], or
uncover which search queries the user entered [12, 40].
In contrast to traffic analysis, where the threat model is
typically defined as a passive network observer, launch-
ing a web-based timing attack requires the adversary to
trick the victim in making requests to certain endpoints,
which is typically achieved by running JavaScript code
in the victim’s browser. The attacker then measures
the time needed for the victim to download the spec-
ified resources, which, depending on the victim’s net-
work condition, allows him to approximate the resource
size, and ultimately obtain information on the state of the
user [19, 7, 14].

Motivated by the severe consequences on the online
privacy of a vast amount of users, we present a systematic
analysis of possible attack vectors that allow an adver-
sary to uncover the size of a resource. As a result of this
evaluation, we discover design flaws in various browser
features that allow an adversary to uncover the exact size

1



of any resource. Furthermore, we demonstrate that by in-
tercepting and manipulating encrypted Wi-Fi traffic, an
adversary can uncover the exact size of an HTTP re-
sponse. By leveraging these techniques, we show that
when an attacker can make the victim send requests to
arbitrarily chosen endpoints, the potential consequences
of traffic monitoring become significantly more severe.
In contrast to prior attacks, where adversaries could typ-
ically only obtain a rough estimate of the resource size,
or were unable to attribute network traffic to specific re-
quests, our size-exposing attacks show that the capabili-
ties of an adversary are worryingly extensive, as we ex-
emplify by the means of several real-world attack sce-
narios. Finally, we explore the viability of several de-
fense mechanisms, leading to an improved browser de-
sign and a variety of possibilities for websites to thwart
size-exposing attacks.

Our main contributions are:

• We perform an in-depth analysis at the level of the
browser, network and operating system, and explore
techniques that can expose the size of resources ei-
ther directly or through a side-channel attack.

• We introduce several new attack vectors that can be
leveraged to uncover the exact response size of ar-
bitrarily chosen endpoints.

• By the means of several attack scenarios on high-
profile websites, we demonstrate that an adversary
can reveal the unique identity of an unwitting visitor
within mere seconds, and extract sensitive informa-
tion that the user shared with a trusted website.

• We propose an improvement to the specification of
the Storage API, and explore various existing solu-
tions that can be used to mitigate all variations of
size-exposing attacks.

The remainder of the paper is structured as follows: in
Section 2 we provide a high-level overview of the tech-
nical aspects related to recently introduced browser fea-
tures. In Section 3 we present an in-depth analysis on
potential size-exposing techniques, and elaborate on how
these can be used in various attack scenarios. In Sec-
tion 4, we discuss how adversaries can leverage these
techniques against a number of real-world services. Fur-
thermore, in Section 5 we propose and explore methods
that can thwart size-exposing attacks. Section 6 covers
related work, and Section 7 concludes this paper.

2 Background

One of the most important security concepts of modern
browsers, is the notion of Same-Origin Policy [64, 73].

Despite what its name may suggest, it is not strictly de-
fined as a policy, but rather represented as certain prin-
ciples that ensure websites are restricted in the way they
can interact with resources from a different origin. Al-
though it is possible to initiate a cross-origin request, the
Same-Origin Policy prevents reading out the content of
the associated response, which is obviously imperative
in order to provide online security. Naturally, the content
of resources is not the only part that should be shielded
off from other origins; the size of a resource should also
be considered sensitive, as evidenced by the several case
studies presented in Section 4 and prior work [7, 20, 60].
As such, it comes as no surprise that the browser APIs
that are responsible for making HTTP requests will only
report the length of a response when the associated re-
quest was to the same origin.

The Fetch API, which is currently implemented by
Google Chrome, Firefox and Opera, and is under devel-
opment by other browser vendors [39, 69], introduces a
set of new semantics that aim to unify the fetching pro-
cess in browsers. In short, the fetch() method is given
a Request object, and a second, optional parameter that
specifies additional options for the request. For instance,
when the credentials option is set to "include", the
user’s cookies will be sent along with the request, even
when it is cross-origin. The fetch() operation will re-
turn a Promise that yields a Response object as soon as
the response has been fetched. In case the request was
authenticated, cross-origin, and did not use the CORS
mechanism, i.e., the mode was set to its default value
"no-cors", the Response will be marked as "opaque",
which will mask all information (status code, response
headers, cache state, body and length) of the response to
prevent cross-origin information leakage. In the follow-
ing sections we will show how certain browser mecha-
nisms can be abused to uncover the length of cross-origin
responses.

Although the content of an opaque Response can not
be accessed, it is possible to force the browser to cache
that resource. The Cache API, which is part of the Ser-
vice Worker API [66], can be used to place Response
objects in the browser’s cache. For security purposes,
the cache that is accessed by the Cache API is com-
pletely isolated from the browser’s HTTP cache, and is
not shared across different origins. The cache is accessed
by opening a Cache object, which can then be used to
store Response objects with their associated Requests.
Note that any response can be stored, regardless of the
Cache-Control headers sent out by the web server. To
prevent a malicious entity from completely filling up the
user’s hard disk, certain quota rules apply. The details
of these rules will be explained in more detail in Sec-
tion 3.4.

2



3 Size-exposing Techniques

As demonstrated by prior research, the size of a website’s
resources is often related to the state of the user at that
website [7, 38, 60]. Consequently, knowing the size of
these resources allows an adversary to (partially) uncover
the state of the user, which often yields sensitive infor-
mation. In order to detect the presence of size-exposing
attack vectors, we performed an in-depth analysis on all
operations in which resources are involved. In this sec-
tion, we present the results of this analysis and discuss
the various techniques that can be used to infer the size of
cross-origin resources. Next to the size-exposing meth-
ods that were discovered in prior research, we also intro-
duce various novel techniques and re-evaluate methods
in the light of recent protocol evolutions.

Throughout this section, we consider different attacker
models based on the evaluated resource operation. As a
rule of thumb, for each resource operation we consid-
ered all the attacker models in which the adversary is
able to make observations about the operation. For in-
stance, when analysing the transfer of a resource over
the network, multiple attacker models were taken into
account: an eavesdropper might inspect the encrypted
network traffic directly, or Wi-Fi packets could be ex-
amined when the adversary is in physical proximity of
the victim, or the attacker might simply use JavaScript to
measure the time it took to complete the request.

Our evaluation mainly focuses on attacks in which the
adversary infers sensitive information from the size of
the resources that are returned to the victim when re-
questing specific endpoints. As such, we evaluate poten-
tial attack techniques under the assumption that an ad-
versary can trigger the victim’s browser to send authen-
ticated requests to arbitrarily chosen endpoints. This can
be easily achieved by a moderately motivated attacker
due to the plethora of methods that can be used to execute
arbitarary JavaScript code in a cross-origin context (with
regard to the target endpoint). For instance, an attacker
can trick the user in visiting his website using phishing
via e-mail or social networks [29], register a typosquat-
ting domain [41], launch an advertising campaign where
JavaScript code or an iframe containing the attacker’s
web page is included [54], register a stale domain from
which a JavaScript file is included [43], redirect insecure
HTTP requests [37], ... Note that recent attacks on TLS
also assume an attacker can execute JavaScript code in
the victim’s browser [16, 1, 62].

3.1 Operations Involving Resources

By looking at their typical “lifetime”, we identified six
different operations that involve resources, as shown in
Figure 1. In the first step, a resource is generated at the

3. Transfer

Operating System

Browser Web server

Web server host 

1. Generate

4. Receive

5. Process
6. Store

2. Send

Figure 1: Overview of operations that involve resources.

side of the web server, as a result of the request initi-
ated by the browser. Here the web server will associate
the user’s state with the included cookie, produce the re-
quested content, and pour it into an HTML structure. Al-
though several attacks have been presented that can ex-
tract sensitive information from this generation process,
e.g., direct timing attacks [7], our research focuses on
methods that can expose the size of the generated con-
tent. Since the length of the response is only known after
it has been generated, attacks against the resource gener-
ation process are excluded from our evaluation.

Once a resource has been dynamically generated, the
machine where the web server is hosted on will send it
back to the user that requested it. This means that if an
adversary is able to observe the amount of traffic gener-
ated by the web server, he could use this information to
infer the size of the response. We discuss size-exposing
techniques in this context in more detail in Section 3.2.

When the resource leaves the web server, it is sent over
several networks before it reaches the client. In any of
these networks, an adversary capable of intercepting or
passively observing the network traffic could be present.
Because size-exposing attacks can be considered to be
superfluous when an adversary can inspect the contents
of a resource, we only consider encrypted traffic in our
evaluation. Prior work has shown that popular encryp-
tion schemes such as SSL and TLS do not conceal the
length of the original HTTP request and response, lead-
ing to various attacks [67, 12]. In our analysis, we ex-
tend this existing work by re-evaluating the feasibility of
size-exposing attack methods when the new HTTP ver-
sion (HTTP/2) is used. Furthermore, we explore possible
size-exposing attack techniques in the context of Wi-Fi
networks, where another layer of encryption is added,
and elaborate on our findings in Section 3.3.

As soon as the response reaches the client’s machine,
it is first received by the network interface, and then sent
to the browser, where it is processed and possibly cached.
Similar to the server-side, an adversary with a foothold
in the operating system, can leverage traffic statistics to
uncover the resource’s length. In Section 3.2, we investi-
gate these types of attack techniques under various threat
models, both for mobile devices as well as desktops.

3



Table 1: An overview of size-exposing attack techniques
with their associated resource operations (as per Fig-
ure 1) and whether the techniques can be used to obtain
the exact size of a resource.

Size-exposing technique Resource
operation

Exact
size References

Cache timing attacks 2, 4 [48, 76, 72, 44]
Traffic statistics pseudo-files 2, 4 7 [77], Section 3.2
SSL/TLS traffic analysis 3 7 [67], Section 3.3
Wi-Fi traffic analysis 3 7 Section 3.3
Cross-site timing attacks 3 [7, 20]
Browser-based timing attacks 5 [60]
Storage side-channel leaks 6 7 Section 3.4

After receiving the response, the browser will first sig-
nal the completion of the request by firing an Event. In
the threat model we consider, the request is initiated by
the malicious JavaScript code, and thus, its completion is
signaled to the attacker. It is known that the time it takes
for a request to complete is correlated with its size, giving
rise to so-called timing attacks. However, these attacks
have several limitations, and can only be used to obtain a
rough estimate of a resource’s size. While a rough esti-
mate is sufficient to perform certain attacks [7, 20], most
of the real-world attacks we present in Section 4 require
knowing the exact size of resources.

In a recent study, Van Goethem et al. found that the
next step of a resource’s lifetime, i.e., parsing by the
browser, is susceptible to timing attacks as well [60]. In
contrast to classic timing attacks, these browser-based at-
tacks do not suffer from network irregularities, and thus
provide attackers with a more accurate and reliable esti-
mate. Nevertheless, the maximum accuracy that can be
achieved with these methods is still in the range of a few
kilobytes, which is insufficient for some of the novel at-
tacks presented in Section 4.

Finally, browsers may store resources in the cache, al-
lowing them to be retrieved much faster in future visits.
Motivated by the potentially nefarious consequences of
caching resources chosen by an adversary, we analyzed
the specification of the various APIs that are involved
in this process. Surprisingly, we found multiple design
flaws that allow an adversary to uncover the exact size
of any resource. In Section 3.4, we elaborate in detail
on these newly discovered vulnerabilities, and their pres-
ence in modern browsers.
An overview of all size-exposing techniques we discov-
ered during our evaluation is provided in Table 1.

3.2 OS-based Techniques

In this section, we elaborate on size-exposing techniques
that occur at the level of the operating system, on the
side of the web server and client. In our analysis, we

considered four types of hosting environments for the
web server, namely dedicated hosting, shared hosting,
and cloud-based solutions (VMs and PaaS). To be able
to observe the length of resources in the case of a ded-
icated hosting environment, an attacker would need to
have either physical access, or infect the machine with
a malicious binary. In both cases, we argue that the ca-
pabilities of the attacker far surpass what is required for
a size-exposing attack, thereby making other attack vec-
tors more appealing to the attacker.

The same argument applies to cloud-based hosting.
It has been shown that cache-based side-channels at-
tacks can extract sensitive information, including traf-
fic information, in a cross-tenant or cross-VM environ-
ment [48, 76, 72]. However, if an attacker would have
the capabilities to leverage a cache-based attack to ac-
curately determine the size of a requested resource, this
would mean that the attacker could also leverage the
cache-based attack to determine (part of) the execution
trace, which can be considered as significantly more se-
vere in most scenarios. Given the lack of incentive for
an attacker to uncover the resource size by launching a
cross-tenant or cross-VM attack, we do not consider this
in more detail.

In a shared hosting environment, web requests for sev-
eral customers are served by the same system. Next to
cross-process cache-based side-channel attacks, which
can be considered similar to the above-mentioned cross-
VM attacks, adversaries can typically also access the
system-wide network statistics. These network statistics
can be obtained by either running the ifconfig com-
mand, or by reading it directly from system pseudo-files
such as /proc/net/dev. As these network statistics re-
port the exact amount of bytes sent and received by a
network interface, an adversary could leverage this in-
formation to uncover the size of a response. The at-
tacker’s accuracy will of course depend on the amount
of background traffic, but the ability to coordinate with
the victim’s browser gives the adversary a strong advan-
tage. Because shared hosting environments are typically
used by less popular websites, we consider this type of
attack scenario to be unlikely, and thus do not explore
this issue further.

On the side of the client, we explored various size-
exposing techniques, but found that most techniques ei-
ther require too many privileges, e.g., infecting the sys-
tem with a malicious binary, or yield inaccurate re-
sults [44]. An interesting exception is the Android op-
erating system, which also keeps track of network statis-
tics. In addition to the global network statistics, Android
also exposes network statistics per user, which, surpris-
ingly, can be read out by any application without requir-

4



type ver. length nonce payload tag

5-byte header 8 bytes 16 bytesencrypted

Figure 2: TLS record layout when using AES-GCM.

ing permissions1. In their work, Zhou et al. showed that
by passively monitoring network statistics on Android,
an adversary can infer sensitive information from the re-
quests made by other applications. We make the obser-
vation that these attacks can be extended when consider-
ing an attacker model in which the adversary can actively
trigger specific requests in the victim’s mobile browser.
As a proof-of-concept application, we created an HTTP
service, which reports the number of bytes received by
the user associated with the com.android.chrome ap-
plication. Finally, our applications triggers the mobile
browser to open a web page, which first contacts the local
service, next downloads an external resource, and then
obtains the network statistics again, allowing us to deter-
mine the exact size of the external resource.

3.3 Network-based Techniques

We now show the size of a resource can be uncovered
by monitoring its transmission over a secure connection.
First we do this for TLS, and then we evaluate the case
where Wi-Fi encryption is used on top of TLS. Although
Wi-Fi hides individual connections, effectively offering
a secure channel similar to that of VPNs or SSH tunnels,
we show attacks remain possible. We also study the im-
pact of the new HTTP/2 protocol.

3.3.1 Transport Layer Security (SSL / TLS)

Web traffic can be protected by HTTPS, i.e., by sending
HTTP messages over TLS [47, 15]. Once the TLS hand-
shake is completed, TLS records of type application data
are used to send HTTP messages. The type and length
of a record is not encrypted, and padding may be added
if block ciphers are used. Since nowadays more than
half of all TLS connections use AES in Galois Counter
Mode (GCM) [27], we will assume this cipher is used
unless mentioned otherwise. The layout of a TLS record
using AES-GCM is shown in Fig. 2. Note that for this
cipher no padding is used. An HTTP message can be
spread out over multiple TLS records, and in turn a TLS
record can be spread out over several TCP packets. An
endpoint can freely decide in how many records to divide
the data being transmitted.

1These statistics can be read out from the pseudo-files
/proc/uid_stat/[uid]/tcp_rcv, or, since Android 4.3, can
be obtained from the getUidRxBytes() interface.

length type flags streamId payload

3 bytes 1 byte 1 byte 4 bytes variable

Figure 3: Simplified HTTP/2 frame layout.

To determine the length of a resource sent over TLS,
we first need to know when it is being transmitted. We
accomplish this by using JavaScript to make the victim’s
browser fetch a page on our server, signaling that the next
request will be to the targeted resource. We then moni-
tor any TLS connections to the server hosting this re-
source, which is possible because the TCP/IP headers of
a TLS connection are not encrypted. Once the resource
has been received, we again signal this to our server. This
enables us to identify the (single) TLS connection that
was used to transmit the resource. Finally we subtract
the overhead of the TLS records (see Figure 2) to deter-
mine the length of the HTTP response. If the connection
uses a cipher that does not require padding, this reveals
the precise length of the HTTP response. Otherwise only
a close estimate of the response length can be made. By
subtracting the length of the headers from this HTTP re-
sponse, whose value can be easily predicted, we learn the
length of the requested resource.

We tested this attack against two popular web servers:
Apache and nginx. Even when the victim was actively
browsing YouTube and downloading torrents, our attack
correctly determined the length of the resource. Inter-
estingly, we noticed that Apache puts the header of an
HTTP response in a single, separate, TLS record. This
makes it trivial to determine the length of the HTTP re-
sponse header sent by Apache: it corresponds exactly to
the first TLS record sent by the server.

We also studied the impact of the HTTP/2 protocol [4]
on our attacks. HTTP/2 does not change the seman-
tics of HTTP messages, but optimizes their transport.
In HTTP/2, each HTTP request and response pair is
sent in a unique stream, and multiple parallel streams
can be initiated in a single TCP connection. The ba-
sic transmission unit of a stream is a frame (see Fig-
ure 3). Each frame has a streamId field that identifies the
stream it belongs to. Several types of frames exist, with
the two most common being header and data frames.
Header frames encode and compress HTTP headers us-
ing HPACK [45], and data frames contain the body of
HTTP messages. Nearly all other frames are used for
management purposes, and we refer to them as control
frames. Most browsers only support HTTP/2 over TLS.
Usage of HTTP/2 is negotiated using the Application
Layer Protocol Negotiation (APLN) extension of TLS.
This extension is sent unencrypted, meaning we can eas-
ily detect if a connection uses HTTP/2.

5



To determine the size of a resource transmitted using
HTTP/2 over TLS, we have to predict the total overhead
created by the 9-byte frame header (see Figure 3). More-
over, we need to be able to filter away control frames.
Both Apache and nginx send control frames in separate
TLS records, and these records can be detected by their
length and position in the TLS connection, allowing us
to recognize and filter these frames. To calculate the
overhead created by the 9-byte frame header, we need
to predict the number of HTTP/2 data frames that were
used to transmit the resource. For Apache this is easy
since it always sends data frames with a payload of 214

bytes, except for the last frame. For nginx, the num-
ber of data frames can be predicted based on the num-
ber of TLS records. This means that for both servers we
can predict the amount of overhead HTTP/2 introduces.
The size of the HTTP/2 header frame can be predicted
similar to the HTTP/1.1 case, with the addition that the
HPACK compression has to be taken into account. Fi-
nally, we found that multiple streams are active in one
TCP connection only when loading a page. By waiting
until the HTTP/2 connection is idle before letting the vic-
tim’s browser fetch the resource, the only active stream
will be the one downloading the resource. All combined,
these techniques allowed us to accurately predict the size
of resources sent using HTTP/2. Note that if the server
uses gzip, deflate, or similar, we learn the compressed
size of the resource. In Section 4, we show that this is
sufficient to perform attacks, and can even be used to ex-
tend an attacker’s capabilities.

3.3.2 Encrypted Wi-Fi Networks

Wireless networks are an attractive target for traffic mon-
itoring attacks. For instance, our attack against TLS can
be directly applied against open wireless networks. How-
ever, these days many wireless networks are protected
using WPA2 [71]. This means that all packets, includ-
ing their IP and TCP headers, are encrypted. Hence we
can no longer use these headers to isolate and inspect
TLS connections. Nevertheless, we show it is possible to
uncover the size of an HTTP message even when Wi-Fi
encryption is used on top of TLS.

In the Wi-Fi protocol, the sender first prepends a fixed-
length header to the packet being transmitted, and then
encrypts the resulting packet [28]. To encrypt and protect
a packet, the only available ciphers in a Wi-Fi network
are WEP, TKIP, or CCMP. Note that WPA1 and WPA2
are not ciphers, but certification programs by the Wi-Fi
Alliance, and these programs mandate support for either
TKIP or CCMP, respectively. Since both WEP and TKIP
use RC4, and CCMP uses AES in counter mode, padding
is never added when encrypting a packet. Therefore, no
matter which cipher is used, we can always determine the

precise length of the encrypted plaintext. Finally, Wi-Fi
encryption is self-synchronizing, meaning that a receiver
can decrypt packets even if previous ones were missed or
blocked.

Similar to our attack against TLS, we determine when
the resource is being transmitted by signaling our own
server before and after we fetch the targeted resource.
However, we can no longer easily determine which pack-
ets correspond to the requested resource as Wi-Fi en-
crypts the IP and TCP headers. Consequently, any back-
ground traffic will interfere with our attack. One option
is to execute the attack only if there is no background
traffic. Unfortunately, if the user is actively browsing
websites or streaming videos, periods without traffic are
generally too short. In other words, it is hard to predict
whether a period without traffic will be long enough to
fetch the complete resource. Our solution is to wait for a
small traffic pause, and extend this pause by blocking all
packets that are not part of the TCP connection that will
fetch the resource. Blocking packets in a secure Wi-Fi
network is possible by using a channel-based man-in-
the-middle (MitM) attack [61]. Essentially, the attacker
clones the Access Point (AP) on a different channel, and
forwards or blocks packets to, and from, the real AP. The
channel-based MitM also has another advantage: if the
adversary misses a packet sent by either a client or AP,
the sender will retransmit the packet. This is because the
cloned AP, and cloned clients, must explicitly acknowl-
edge packets. Hence our attack is immune to packet loss
at the Wi-Fi layer. Once we start measuring the size of
the resource, we only forward packets that could be part
of the connection fetching this resource. First, this means
allowing any packets with a size equal to a TCP SYN or
ACK. Second, we have to allow the initial TLS hand-
shake and the HTTP request that fetches the resource.
Since both can be detected based on the length of Wi-Fi
packets, it is possible to only forward packets that belong
to the first TLS handshake and HTTP request. By block-
ing other outgoing requests, servers will refrain from re-
plying with new traffic. Hence we can still fetch our tar-
geted resource, but all other traffic is temporarily halted.

In experiments the above technique proved highly suc-
cessful. Even when the victim was browsing websites or
streaming YouTube videos, it correctly isolated the TLS
connection fetching the resource. We also tested the at-
tack when the victim was constantly generating traffic by
sending ping requests of random sizes. Since the size of
these packets rarely matches that of a TCP ACK/SYN or
TLS handshake packet, all ping requests were blocked,
and the correct connection was still successfully isolated.

The next step is to subtract the overhead added by
Wi-Fi and TLS. Since none of the cipher suites in Wi-Fi
use padding, it is straightforward to remove padding
added by the Wi-Fi layer. However, we cannot count the

6



number of TLS records sent as their headers are now en-
crypted. Nevertheless, for both nginx and Apache with
HTTP/1.1, we found that a new TLS record is used for
every 214 bytes of plaintext. This allows us to predict
the number of TLS records that were used, and thereby
the overhead created by these records. We discovered
only one exception to this rule. If an Apache server uses
chunked content encoding, each chunk is sent in a sep-
arate TLS record. This means that the number of TLS
records become application-specific, and the attacker has
to fine-tune his prediction for every targeted resource.
We remark that this behavior of Apache is not recom-
mended, because it facilitates chunked-body-truncation
attacks against browsers [5].

When HTTP/2 is used, the situation becomes more te-
dious. Here we have to predict both the number of TLS
records, as well as the number, and types, of HTTP/2
frames. We found that these numbers are predictable for
the first HTTP/2 response in a TLS connection. Since
all browsers limit the number of open TCP connections,
we first close existing connections by requesting several
pages hosted on different domains. After doing this, a
new connection will be used to fetch the targeted re-
source, meaning we can predict the amount of overhead.
Apache always uses HTTP/2 data frames with a payload
of 16348 bytes, even when chunked content encoding is
used. Furthermore, the TLS records always have a pay-
load length of 1324, except for every 100th TLS record,
which has a length of 296. Finally, Apache always sends
the same three HTTP/2 control frames, spread over two
TLS records, before sending the resource itself.

For new TLS connections, nginx sends three ini-
tial HTTP/2 control frames in either one or two
TLS records, where most of the time only one
TLS record is used. Then it enters an initializa-
tion phase where the first 10 TLS records have a
predictable size, with each size taken from the set
{8279,8217,4121,4129}. After this initial phase, it
repeats the sequence [16408,16408,16408,16408,96],
with the exception that at relatively infrequent and ran-
dom times a TLS record of size 60 is used instead of 96.
However, as this is only a small difference, it generally
affects the number of TLS records by at most one. All
combined, if we assume the least number of TLS records
are used, we underestimate the actual number of TLS
records by at most two. In fact, most of the time no extra
records are used. Hence an attacker can make multiple
measurements, and pick the most common length as be-
ing the one without the extra (one or two) records.

3.4 Browser-based Techniques

Over the last few years, one of the most important evolu-
tions on the web is the increase of support for mobile

Algorithm 1 Uncover the size of resources by abusing
the per-site quota limit

response← fetch(url)
fillStorage()
size← 0
loop

freeByteFromCache()
size← size+1
storageResult← cache.put(response)
if storageResult == True then

return size
end if

end loop

devices. This advancement requires that all the char-
acteristics that are specific to mobile devices are prop-
erly accommodated. For instance, mobile devices travel
along with their users, which means that every now and
then the devices become disconnected, preventing the
user from accessing any web-based content. Recent ad-
vancements in browser design aim to tackle this problem
with a promising API named ServiceWorker [66]. The
core idea behind the SeviceWorker API is to allow web-
sites to gracefully handle offline situations for their users.
For example, a news website might download and tem-
porarily store news articles when users are connected,
allowing them to still access these while being discon-
nected. Note that although we mainly focus on the Ser-
viceWorker API, all attacks can also be applied by using
ApplicationCache [63], the caching mechanism that Ser-
vicerWorker aims to replace.

3.4.1 Per-site quota

For caching operations, the ServiceWorker API provides
a specific set of interfaces, named Cache API, which can
be used to store, retrieve and delete resources. A note-
worthy aspect of the Cache API is that it allows one
to cache any resource, including cross-origin responses.
Furthermore, to limit misuse cases where a malicious
player takes up all available space, the per-site2 storage
is restricted. This restriction is shared among a few other
browser features that allow persistent data storage, for in-
stance localStorage and IndexedDB. The way per-site
quota is applied, is decided by the browser vendor; for
the most popular browsers this is either a fixed value in
the range of 200MB to 2GB, or a percentage - typically
20% - of the global storage quota [22, 42, 32].

For the purpose of exposing the size of resources, hav-
ing full control over the cache, and the fact that this cache

2According to the current specification of the Storage API,
a site is defined as eTLD+1, meaning foo.example.org and
bar.example.org belong to the same site, whereas foo.host.com
belongs to a different site [70].

7



is limited by a fixed quota, are two very interesting as-
pects. An adversary can directly leverage these two fea-
tures to expose the size of any resource by means of the
pseudo-code listed in Algorithm 1. In the attack, the re-
source is first downloaded using the Fetch API, which
will result in an "opaque" Response. Next, the adver-
sary makes sure that the site’s available storage is filled
up to the quota. In practice, we found that by storing
large data blobs using the IndexedDB API, the storage
speed approaches the maximum writing speed of the hard
disk, allowing the attacker to reach the quota in a few sec-
onds. In a final step, the adversary will free up one byte
from the cache and attempt to store the response. This
storage attempt will only succeed if sufficient quota is
available, otherwise more bytes should be freed. Even-
tually, the attacker learns the exact size of the resource
by the number of bytes that were freed until the resource
could be stored. Note that the resource only needs to be
downloaded once, resulting in a significant speed-up of
the attack. In our experimental setup, the initial attack
could be executed in less than 20 seconds, and subse-
quent size-exposing attempts were performed in less than
a second as the quota had already been reached.

3.4.2 Global quota

In addition to the storage restrictions of sites, browsers
also enforce a global storage quota to ensure normal sys-
tem operations are not affected. When this global quota
is exceeded, the storage operation will not be canceled,
but instead the storage of the least-recently used site will
be removed. As a result, the two features required to
expose the size of a resource, i.e., full control over the
cache and an indication when the quota is exceeded, are
present. In comparison to the size-exposing attack that
leverages the per-site quota, this vulnerability is consid-
erably harder to successfully exploit: the attacker needs
to reach the global quota limit, which needs to be spread
over multiple sites, and has to take into account that the
global quota can fluctuate as a result of unrelated system
operations. Nevertheless, for the purpose of creating an
improved design, it is important to consider all flaws of
the current system. Furthermore, on systems with a lim-
ited storage capacity, e.g., mobile devices, some of these
restrictions may not apply, increasing the feasibility of
an attack.

A simplified, unoptimized method that can be used to
expose the size of an arbitrary resource is provided in
Algorithm 2. Similar to the per-site quota attack, the
adversary first downloads the resource and temporarily
stores it in a variable. Next, a site is filled with a cer-
tain amount of bytes (storageAmount) which should be
larger than the size of the resource. In a following step,
the adversary will need to fill the complete quota. Since

Algorithm 2 Uncover the size of resources by abusing
the global quota limit

response← fetch(url)
storageAmount← 5MB
site0.addBytes(storageAmount)
i← 1
while !isEvicted(site0) do

storageResult← sitei.addBytes(1)
if storageResult ! = True then

i← i+1
end if

end while
site0.cache.put(response)
remainingBytes← 0
while !isEvicted(site1) do

site0.addBytes(1)
remainingBytes← remainingBytes+1

end while
size← storageAmount− remainingBytes

for most major browsers, the global quota is set to 50%
of the total available space on the device, and the per-site
quota is set to either a percentage of the global quota or
a fixed size, the adversary will need to divide this over
multiple domains. As soon as the eviction of the first site
is triggered, the adversary knows the exact amount of
freed space, namely storageAmount. Finally, the adver-
sary adds the resource to an empty site and fills it until the
global quota is reached again, which can be observed by
checking for the eviction of the next least-recently used
site, i.e., site1. The size of the resource can then be cal-
culated as the original size of the first site subtracted by
the number bytes required to reach the global quota again
(remainingBytes).

3.4.3 Quota Management API & Storage API

The last attack involving browser storage abuses the
Quota Management API [65], and the similar Storage
API [70]. These APIs aim to give web developers
more insight into their website’s storage properties, more
specifically the number of bytes that have been stored
and the space that is still available. At the time of writing,
the Storage API is still being designed, and will consoli-
date the storage behavior of all browsers into one agreed-
upon standard.

The functionality provided by the Quota Management
API is the direct source of a size-exposing vulnerabil-
ity that is worryingly trivial to exploit. An adversary
can simply request the current storage usage, add a re-
source to the cache, and retrieve the storage usage again.
Since the Quota Management API will return the us-
age in bytes, the exact resource size can be obtained by
subtracting the two usage values. Although the Quota

8



Management API has only been adopted by the Google
Chrome browser, this browser alone accounts for approx-
imately 48% of the market share [56], leaving hundreds
of millions of internet users vulnerable to this highly triv-
ial size-exposing attack vector. Despite our efforts of re-
porting these findings to the Chrome team, all up-to-date
versions of the Google Chrome browser remain allowing
this API to be used by any website, without the user’s
knowledge.

Because the per-site quota is related to the global
quota3, the Quota Management API can also be used to
infer the caching operations of a different website. For
instance, a malicious iframe that is embedded on a web-
site could observe changes in the available quota, and
infer the length of cached resources. This information
could in turn be used to either analyze the interactions of
the user on the website, or disclose private information
based on the length of the cached resources. A similar
attack scenario is discussed in more detail in Section 4.4.
Another interesting case occurs when making the obser-
vation that the per-site quota is also related to the total
free disk space. The byproduct of this behavior is that an
adversary can also observe the disk operations of other,
possibly security-sensitive, processes. As this issue is
unrelated to size-exposing techniques, we do not explore
this vulnerability in more detail.

The functionalities provided by the Quota Manage-
ment API are directly responsible for the vulnerabilities
discussed in this section. It is unclear why this API was
developed without taking into account potential security
and privacy implications. In essence, these findings serve
as a strong indicator that new browser features should
be thoroughly reviewed for security and privacy flaws.
Since the Storage API provides the same functionality as
the Quota Management API, the same issues arise there
as well. At the time of writing, the Storage Standard de-
viates from the Quota Management API in the sense that
it states that a “rough estimate” should be returned. Be-
cause the term “rough estimate” is not formally defined,
implementations of this specification are likely to still be
vulnerable to statistical attacks, as the quota limit can
easily be requested thousands of times. In Section 5.1
we propose a new API design that protects against all
browser-based size-exposing techniques we discussed in
this paper.

4 Real-world Consequences

In contrast to prior work on size-exposing techniques,
which is mainly focused on passive network observa-
tion, the attacks presented in this paper leverage the abil-

3The per-site quota is 20% of the global quota in Google Chrome;
for Firefox this is the case as well when the disk space is less than
20GB.

ity to request arbitrarily chosen resources in the victim’s
browser. To provide more insight into the consequences
and potential attack scenarios, we explore a selection of
real-world cases where one of the size-exposing tech-
niques can be used to extract private and sensitive in-
formation from the victim. The list of attacks that are
discussed, is by no means the exclusive list of possible
targets. Instead, we made a selection of attack scenarios
to provide a variety in methodology, type of disclosed
information, and category of web service.

Ethical Considerations To evaluate the severity and
impact of size-exposing techniques on internet users, it
cannot be avoided to evaluate these attacks on real-world
services. To prevent any nefarious consequences of this
evaluation, all attacks were manually tested, and were
performed exclusively against our own accounts. As a
result, from the perspective of the tested services our
analysis only generated a restricted amount of legitimate
traffic. Moreover, users of the analyzed websites were
not directly involved in our attacks. For the quantitative
case-studies, we only obtained publicly available infor-
mation, and present it in anonymized form. Given the
above-mentioned precautions, we believe our evaluation
of real-world services did not have any adverse effects
on the tested subjects.

4.1 User Identification
Virtually every online social network provides its users
with their own profile page. Depending on the user’s
privacy settings, these profile pages typically are com-
pletely or partially available to anyone. In the attack sce-
nario where the adversary is interested in learning the
identity of the victim, the adversary first collects the pub-
licly available data from (a subset of) the users of the
social network. Later, during the actual size-exposing at-
tack, he tries to associate the data obtained from the vic-
tim to a single entry from the public data, allowing him
to expose the victim’s identity. To evaluate the feasibil-
ity in a real-world environment, we exemplify the attack
scenario on Twitter, one of the largest social networks.

By default, the profile of each Twitter user is public,
and contains information on the latest tweets that were
created by the user, the list of followers and followees,
the tweets that were “liked” by the user, and the lists
he/she follows and is a member of. Except for the user’s
tweets, each type of information can be accessed by a
link that is shared by all Twitter users, e.g., the page
located at https://twitter.com/followers lists the
last 18 accounts that follow the user. For each follower,
the name, account name and short biography is shown.

The main assumption in this attack scenario is that
the combined length of all parts that constitute to the

9

https://twitter.com/followers


resource, i.e., the names, account names and bios of
the last 18 followers, is relatively unique. To validate
this assumption, we performed an experiment that re-
flects an adversary’s actions in an actual attack sce-
nario. For this experiment, we obtained publicly avail-
able information of 500,000 users, which were selected
at random from the directory of public profiles provided
by Twitter4. More specifically, we downloaded the re-
sources located at /following, /followers, /likes,
/lists and /memberships, and recorded the associated
resource size, both with and without gzip compression.

Next, we grouped together Twitter accounts that share
the same resource length, e.g., if the /following re-
source is 281026 bytes for only two users, these users
form a group of size 2. In Figure 4 we show the per-
centage of Twitter accounts for all group sizes, for the
compressed and uncompressed resource size. Note that
a logarithmic scale is used for the percentage of Twit-
ter accounts on the y-axis. This graph clearly shows that
when the size of multiple resources is combined, the ma-
jority of Twitter accounts can be uniquely identified. By
exposing the size of the uncompressed /following and
/followers resources, 89.66% of the 500,000 Twit-
ter accounts can be uniquely identified. When the size
of all five resources is known, the identity of 97.62%
of the Twitter accounts can immediately be uncovered.
The graph also clearly shows that when gzip compres-
sion is applied, the group sizes of individual resources
becomes larger, which is most likely due to the reduc-
tion in entropy of resource sizes. Nevertheless, when
the size of multiple compressed resources are combined,
a uniqueness comparable to the size of uncompressed
resources is achieved: 81.69% Twitter accounts can be
uniquely identified when the size of the /following
and /followers resources is combined; for all five re-
sources, this is 99.96%. The most likely explanation for
this is that in case a resource is virtually empty, i.e., the
account name is the only dynamic part of the resource,
not only the length but also the content of the account
name is reflected in the compressed resource size.

Although the viability of this attack was only evalu-
ated on a subset of all Twitter accounts5, this experi-
ment does suggest that adversaries can immensely nar-
row down the number of possible candidates for the
user’s identity by knowing the size of just five resources.
Furthermore, various techniques exist that can uniquely
identify a user among a limited set of accounts [33, 26],
making user-identification by exposing the size of re-
sources well within the reach of a moderately motivated
attacker.

4https://twitter.com/i/directory
5Twitter has approximately 320 million active accounts.

4.2 Revealing Private Information

Next to revealing the identity of a web user, adversaries
may also be interested in learning private information.
A particular type of information that, in general, is con-
sidered highly sensitive, is information concerning med-
ical conditions. To evaluate whether our novel size-
exposing techniques can be used to also disclose this type
of data, we explored the performance of such techniques
on WebMD, one of the leading health information ser-
vices websites. One of the features provided by WebMD
is “Health Record”, a web service that allows users to
organize their personal health records6. More precisely,
users can add, and keep track of, their medical condi-
tions, medications, allergies, etc. For each entry, the user
can choose among an exhaustive list of terms. For in-
stance, there are 4,105 different medical conditions that
can be selected.

At any point in time, users can download their own
medical report, either as automatically generated PDF or
in plain text format. It should be noted that the types
of medical records that are shown in this report is spec-
ified by the user (or attacker), and that the PDF is sent
without compression, whereas the textual report is served
with gzip compression. Although there is some variety
in the length of the possible terms, it is insufficient for
an adversary to determine which medical conditions the
user suffers from: on average, a certain length is shared
among 124.59 possible medical conditions. However,
if the adversary can obtain the resource size both with
and without compression, this can significantly improve
his attack: in this case, the group size can be limited to
35.50 on average. This can be achieved by various meth-
ods, e.g., by obtaining the length from two resources that
share the same content, where one is served with com-
pression and the other without, or by tricking the server
in sending the resource without compression7, or even by
combining the browser-based attacks with the network-
based attacks. In case the sensitive content is present on
multiple compressed resources (in this case, this can be
triggered by varying the types of medical records that are
reported), the group size can be reduced even further. In
the attack scenario against WebMD, a single iteration of
this technique, i.e., including the medical condition on a
compressed resource with other known content, reduces
the average group size to 18.73. By applying multiple
iterations, each with slighly different content, it becomes
possible to uniquely identify the user’s medical condition
in most cases.

6https://healthmanager.webmd.com/
7When a resource is included as a <video> element, the

Accept-Encoding header will be either absent or set to identity,
causing most web servers to send it without compression.

10

https://twitter.com/i/directory
https://healthmanager.webmd.com/


●

●

●

●

●

●

●
●

●

0.1

1.0

10.0

100.0

0 50 100
Group size

P
er

ce
nt

ag
e 

of
 a

cc
ou

nt
s

● all resources
follow{ing+ers}
followers
following
likes

No compression
●

●
●

0.1

1.0

10.0

100.0

0 100 200 300 400
Group size

P
er

ce
nt

ag
e 

of
 a

cc
ou

nt
s

● all resources
follow{ing+ers}
followers
following
likes

Gzip compression

Figure 4: Percentage of Twitter accounts that share the same resource length with a group of varying size.

4.3 Search-Oriented Information Leakage
Many web applications allow their users to search the
data they (in)directly entered. For instance, web-based e-
mail clients provide the functionality to search for certain
messages. In a recent study, Gelernter et al. show that
this functionality can be abused by attackers to disclose
sensitive information, such as the user’s identity and
credit-card numbers [20]. In their attacks, the researchers
leverage the fact that in certain cases query parameters
are reflected in the results. Consequently, when a search
query has several matches, the resulting resource size
will be considerably larger than with an empty result-
set, allowing an adversary to resort to timing attacks to
determine whether a certain search query yielded results.
Several service providers that were shown to be vulnera-
ble to these attacks implemented a mitigation by prevent-
ing query parameters to be reflected in the search results.
Although these measures effectively thwart the above-
mentioned attacks, the web services remain vulnerable to
the size-exposing attacks proposed in this paper, as these
disclose the size of a resource with 1-byte precision.

4.4 Cross-Origin Cache Operations
Telegram is a popular cloud-based instant messaging ser-
vice, particularly known for its security and encryption
features. Not surprisingly, these features have attracted
terrorist organizations to use the service as a secure com-
munication channel [53]. This, in turn, makes Telegram
a valuable target for intelligence agencies to find mem-
bers of terrorist groups. Since all exchanged messages
are encrypted using MTProto, which was shown to only
suffer from minor theoretical attacks, plaintext-recovery
is considered to be unlikely [30].

Next to the mobile and desktop versions of the Tele-
gram application, a web-based version is provided as
well8. An interesting feature of this web-based version
is that when a photo is shared in a group, the web appli-

8https://web.telegram.org

cation will use the File API [46] to cache two thumbnails
of the photo. Because the storage used by the File API
counts towards the global cache quota, it is possible to in-
fer whether a resource is being cached as per the attacks
discussed in Section 3.4.2 and Section 3.4.3.

In an attack scenario where the adversary tries to
determine group membership of the victim, the at-
tacker first lures the victim to his malicious web page.
On this web page, the adversary includes the page
of the target group in an iframe. Telegram does not
use the X-Frame-Options header, but instead makes
the content invisible by default through CSS, and uses
JavaScript to make it visible in case no framing is de-
tected (a popular Clickjacking defense proposed by Ryd-
stedt et al. [51]). As a result, the page’s content will be
loaded, but remains invisible, and impossible to interact
with9. If the user is member of the targeted group, the
Telegram website will download and cache thumbnails
of the latest media items that have been shared in the
group, resulting in a change of the available quota. Oth-
erwise, a message is shown stating that the user is not a
member of the group. As an additional verification step,
the adversary could post another photo in the group, and
witness a change in the available quota. By leveraging
our novel size-exposing techniques, we found it was triv-
ial to detect group membership. Because the MTProto
scheme only provides very limited padding, group mem-
bership can also easily be detected by analyzing the size
of HTTP responses.

5 Defense Mechanisms

In this section we discuss various mechanisms that can be
used to thwart size-exposing attacks. Due to space limi-
tations, we only focus on a limited set of defense mecha-
nisms, which were selected on the basis of completeness,
novelty, amount of overhead and ease of adoption.

9The <iframe> element should have a sandbox attribute set to
"allow-scripts allow-same-origin" to prevent top level navi-
gation, while ensuring the page is loaded properly.

11

https://web.telegram.org


5.1 Hardening Browser Storage

As was shown in Section 3.4, several features related to
the storage operations in browsers can be abused to ex-
pose the size of cross-origin resources. At the time of
writing, there exists no universal specification that stan-
dardizes these operations. However, the Storage API
specification is being developed with the purpose of de-
signing a unified definition that will be adopted by all
browsers. In its current state, the Storage API consoli-
dates the current browsers behavior regarding the quota
limit per website. Furthermore, it incorporates the func-
tionalities offered by the Quota Management API.

We propose a countermeasure that extends the Storage
API. To make adoption by browsers feasible, we aim to
provide a usable solution, i.e., normal application behav-
ior should not be jeopardized. As a result of the feed-
back provided by the communication with specification
editors and browser vendors, we opted for an approach
where “virtual padding” is applied to resources. To pre-
vent an adversary from learning the size of a resource,
either by abusing the storage limit or by requesting the
available quota, this size should be masked with a ran-
dom value. However, it is a well-known fact that by
adding a random value, the mechanism becomes subject
to statistical attacks. Because resources can be added to
the cache extremely fast, an adversary is able to obtain
a large number of observations in a limited amount of
time, putting him in a very strong position.

Inspired by a mitigation for web-based timing side-
channels proposed by Schinzel [52], and by making the
observation that in contrast to caching operations, down-
loading a resource takes a considerable amount of time,
we propose the following defense. When a resource is
downloaded as the result of a fetch() operation, we as-
sociate a unique identifier, uid, with the Response ob-
ject. Next, we compute q = dsize+hash(secret+uid)e∆,
where size is the size of the resource, hash() a uniformly
distributed hash function yielding integers in the range
[0, pmax], and secret a cryptographic random number that
is associated to a single browsing session10. The total
size q is then rounded up towards the nearest multiple
of ∆ to prevent an attacker from learning the bounds of
the added padding. When the Response is added to the
cache, the per-site and global quota will be increased
by q. This value should also be stored as part of the
Response object to ensure that for each cache opera-
tion the same value is either added or subtracted from the
quota. As a result, the only way for an adversary to ob-
tain a new observation is to download the same resource
again. It should be noted that the padding that is added
for each cache operation is virtual, in the sense that these

10To prevent an adversary from linking two browser sessions, secret
is changed whenever the browser session changes.

bytes are not actually written to the disk, but are just kept
as a type of bookkeeping.

It is clear that the overhead on the quota and the se-
curity guarantees provided by this defense method are
directly related to the values of pmax and ∆. In fact, this
provides a trade-off between security/privacy and usabil-
ity, for instance, the larger the value of pmax, the harder it
will be for an adversary to uncover the size of resources
(within certain boundaries), but on the other hand, a large
pmax will entail a smaller storage capacity due to the
amount of padding. We argue that with an analysis on
the typical use-cases of caching operations, these val-
ues could be defined to accommodate legitimate behavior
while preventing attacks. Furthermore, it could be taken
into account that this mechanism generates a virtual loss
in storage capacity, and therefore the quota could be in-
creased to account for this. In addition, it is possible
to apply a rate-limiting approach to limit the amount of
observations that can be made by an adversary. For in-
stance, if the reported quota is only updated once every
minute, statistical attacks can be largely mitigated, which
in turn allows for smaller values of pmax, and restricts the
(already virtual) overhead.

Given the generality of the defense, its strong security
guarantees, and the low overhead, we feel confident that
this approach, or a similar derivative thereof, will be in-
corporated into the HTML specification, and encourage
browser vendors to mitigate the attacks presented in Sec-
tion 3.4 in this manner.

5.2 Detecting Illicit Requests

In essence, the size-exposing techniques presented in this
paper require the ability to initiate authenticated cross-
origin requests, and rely on the targeted web service to
handle the request in the same way it would for legiti-
mate requests. This means that when either part is re-
moved, i.e., either authenticated cross-origin requests are
disabled, or the web server answers with a static error
message, the complete class of size-exposing techniques
will be mitigated. To accomplish this, it is possible to
resort to existing, and well-established techniques in re-
lated research fields. For instance, by blocking third-
party cookies, which is typically used to prevent track-
ing on the web [50], the cross-origin requests initiated
by the adversary will be sent without the cookie. As a
result, the website will handle the request as if the user
was not logged in, preventing the adversary from learn-
ing anything about the user’s state at the website. Mozilla
and the Tor Browser project are working on minimizing
the limitations imposed by blocking third-party cookies,
by implementing a feature name double-keyed cookies,
which binds cookies to the origin pair (first-party, third-
party), and aims to prevent the risks of breaking sites

12



caused by blocking cookies [9, 59]. Similarly, certain
browsers provide the ability to attach third-party cookies
only if these were set during top-level navigation, and
block these otherwise. While this technique can be used
to prevent tracking by unknown parties, it does not ade-
quately prevent the attacks presented in this paper as the
targeted third-party services are the ones that are actually
used by the victim.

On the side of the server, solutions similar to those
that prevent Cross-Site Request Forgery (CSRF) attacks
could be applied. A well-known method, as proposed by
Barth et al., to accomplish this, is to analyze the Origin
and/or Referer headers and only allow requests from
trusted origins [2].

5.3 Network-based Countermeasures

Padding can be used to hide the length of resources dur-
ing their transmission. Since general-purpose padding
schemes are already well-studied, we do not discuss
them further. Instead, we focus on countermeasures that
fit our use-case, where only the size of sensitive dynami-
cally generated resources must be protected. This allows
us to provide a countermeasure with low overhead and
high security guarantees, at the cost of requiring some
effort on the web administrator’s part.

Our idea is to add an amount of padding based on the
hash of the session cookie, the URL, and any parame-
ters that affect the generation of the resource. More for-
mally, padding = hash(cookie + url + params). If the
user is not logged in, no padding is added. For each re-
source, the parameters that influence the generation of
the resource must be manually specified. Other parame-
ters should not be included, otherwise an adversary can
add bogus parameters to obtain a new padding value for
the same resource. This construction assures that sensi-
tive resources, for any specific user, receive an amount
of padding that is unpredictable by an attacker. How-
ever, this padding remains identical over several requests,
meaning it even guarantees protection against statisti-
cal attacks. Information can only be leaked if the re-
source changes over time. This can happen when the
attacker was able to affect the generation of the resource
on the server, or simply because the information con-
tained in the resource has changed over time. In this sit-
uation an observer can learn the difference in resource
size. If the resource does not contain variable content,
such as dynamic advertisements, this attack can be miti-
gated by including the content of the resource in the hash
function. Similar to hardening the browser (see Sec-
tion 5.1), the security guarantees depend on the value
of pmax. Provided the hash function is uniformly dis-
tributed, this countermeasure introduces on average pmax

2
bytes of overhead.

For wireless networks, where we assume Wi-Fi en-
cryption is used on top of TLS, we can rely on the previ-
ously mentioned techniques to protect the TLS connec-
tion. Additionally, an identifier-free wireless protocol
can be used, making it more difficult for an attacker to
attribute Wi-Fi packets to specific clients [23, 18, 3, 8].

6 Related Work

Size-exposing techniques have surfaced in several re-
search areas, ranging from timing attacks, to network
traffic analysis, to browser-based and cross-VM side-
channel leaks. As part of an in-depth analysis, which
lead to the discovery of multiple novel attack methods,
we already touched upon a variety of related work, as
discussed in Section 3. In this section, we give a brief
overview of the most relevant work, and discuss it in the
context of our findings.

Prior research that analyses methods that can expose
the size of an attacker-specified resource, is mainly fo-
cused on leveraging timing as a side-channel informa-
tion leak [19, 7, 14, 20, 60]. Because timing attacks
measure the time required to download or process a re-
source, which is often influenced by various factors such
as network irregularities or background noise, these at-
tacks have certain limitations with regards to the accu-
racy of the uncovered resource size. In our research,
we presented novel techniques that leverage the browser-
imposed quota to reveal the exact size of any resource.

An interesting class of vulnerabilities where the size
of resources is exploited, are compression side-channel
attacks [31]. These attacks generally leverage the com-
pression rate that is achieved when compressing an un-
known value in a larger corpus of known values, allowing
an adversary to uncover information about the unknown
value from the resource size after compression. More re-
cently, researchers have shown how similar attacks can
be applied to various compression mechanisms used on
the web [49, 21].

In the context of privacy-violating cross-origin attacks,
Lee et al. have shown that the ApplicationCache mech-
anism can be used to uncover the status code that is
returned for cross-origin resources [34]. Their attack
exploits certain intricacies of ApplicationCache, which
exhibits a different behavior based on the returned sta-
tus code of referenced endpoints. The researchers did
not explore vulnerabilities originating from the imposed
quota and storage limits. Another type of attack that vio-
lates the principle of Same-Origin Policy is Cross-Site
Script Inclusion (XSSI), first introduced by Grossman
in 2006 [24], and recently analyzed on a wide scale by
Lekies et al. [35]. In XSSI attacks, a dynamically gen-
erated JavaScript (or CSV [58]) file from a vulnerable
website is included as a <script> element on the web

13



page of the attacker. The often sensitive content that is
present in these files can then be obtained out by the ad-
versary as a result of the modifications the script makes
to the attacker-controlled DOM.

Compared to prior work on the analysis of web traf-
fic [57, 6, 12, 36, 11, 10, 17], our work is, to the best
of our knowledge, the first to combine traffic analysis
with the ability to execute code in the victim’s browser.
Similarly, traffic analysis works on Wi-Fi also assume a
passive, instead of an active, adversary [8, 23, 3, 75, 74].
That is, we believe our work is the first to actively block
specific Wi-Fi packets in order to measure the size of
HTTP messages.

7 Conclusion

The size of resources can be used to infer sensitive in-
formation from users at a large number of web services.
In our research, we performed an extensive analysis on
the various operations that are performed on resources.
As a result of this evaluation, we identified several new
techniques that can be used to uncover the size of any
resource. In particular, an attack that abuses the storage
quota imposed by browsers, as well as a novel technique
against Wi-Fi networks that can be used to disclose the
size of the response associated with an attacker-initiated
request. To provide more insight into how these attack
methods can be applied in real-world attack scenarios,
we elaborated on several use cases involving widely used
web services. Motivated by the severe consequences of
these size-exposing attacks, we proposed an enhanced
design for the browser storage, which is likely to be
adopted by browser vendors, and discussed a variety of
other options that could be employed to prevent adver-
saries from stealing sensitive information.

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. This research is partially funded by the
Research Fund KU Leuven. Mathy Vanhoef holds a
Ph. D. fellowship of the Research Foundation - Flanders
(FWO).

References
[1] AL FARDAN, N. J., AND PATERSON, K. G. Lucky thirteen:

Breaking the TLS and DTLS record protocols. In IEEE Sympo-
sium on Security and Privacy (2013).

[2] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust
defenses for cross-site request forgery. In Proceedings of the
15th ACM conference on Computer and communications secu-
rity (2008), ACM, pp. 75–88.

[3] BAUER, K., MCCOY, D., GREENSTEIN, B., GRUNWALD, D.,
AND SICKER, D. Physical layer attacks on unlinkability in wire-
less lans. In Privacy Enhancing Technologies (2009).

[4] BELSHE, M., PEON, R., AND THOMSON, M. Hypertext transfer
protocol version 2 (HTTP/2). RFC 7540, 2015.

[5] BHARGAVAN, K., LAVAUD, A. D., FOURNET, C., PIRONTI,
A., AND STRUB, P. Y. Triple handshakes and cookie cutters:
Breaking and fixing authentication over TLS. In IEEE Security
and Privacy (SP) (2014).

[6] BISSIAS, G. D., LIBERATORE, M., JENSEN, D., AND LEVINE,
B. N. Privacy vulnerabilities in encrypted HTTP streams. Lec-
ture notes in computer science 3856 (2006), 1.

[7] BORTZ, A., AND BONEH, D. Exposing private information by
timing web applications. In Proceedings of the 16th international
conference on World Wide Web (2007), ACM, pp. 621–628.

[8] BRIK, V., BANERJEE, S., GRUTESER, M., AND OH, S. Wire-
less device identification with radiometric signatures. In Mobile
computing and networking (2008).

[9] BUGZILLA. Bug 565965 - (doublekey) key cookies on setting
domain * toplevel load domain. https://bugzilla.mozilla.
org/show_bug.cgi?id=565965, May 2010.

[10] CAI, X., ZHANG, X. C., JOSHI, B., AND JOHNSON, R. Touch-
ing from a distance: Website fingerprinting attacks and defenses.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 605–616.

[11] CHAPMAN, P., AND EVANS, D. Automated black-box detection
of side-channel vulnerabilities in web applications. In Proceed-
ings of the 18th ACM conference on Computer and communica-
tions security (2011), ACM, pp. 263–274.

[12] CHEN, S., WANG, R., WANG, X., AND ZHANG, K. Side-
channel leaks in web applications: A reality today, a challenge
tomorrow. In Security and Privacy (SP), 2010 IEEE Symposium
on (2010), IEEE, pp. 191–206.

[13] CHENG, H., AND AVNUR, R. Traffic analysis of SSL encrypted
web browsing. URL citeseer. ist. psu. edu/656522. html (1998).

[14] CROSBY, S. A., WALLACH, D. S., AND RIEDI, R. H. Opportu-
nities and limits of remote timing attacks. ACM Transactions on
Information and System Security (TISSEC) 12, 3 (2009), 17.

[15] DIERKS, T., AND RESCORLA, E. The transport layer security
(TLS) protocol version 1.2. RFC 5246, 2008.

[16] DUONG, T., AND RIZZO, J. Here come the xor ninjas. In
Ekoparty Security Conference (2011).

[17] DYER, K. P., COULL, S. E., RISTENPART, T., AND SHRIMP-
TON, T. Peek-a-boo, I still see you: Why efficient traffic analysis
countermeasures fail. In IEEE Security and Privacy (SP) (2012).

[18] FAN, Y., LIN, B., JIANG, Y., AND SHEN, X. An efficient
privacy-preserving scheme for wireless link layer security. In
Global Telecommunications Conference, 2008. IEEE GLOBE-
COM 2008. IEEE (2008).

[19] FELTEN, E. W., AND SCHNEIDER, M. A. Timing attacks on
web privacy. In Proceedings of the 7th ACM conference on Com-
puter and communications security (2000), ACM, pp. 25–32.

[20] GELERNTER, N., AND HERZBERG, A. Cross-site search attacks.
In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (2015), ACM, pp. 1394–
1405.

[21] GLUCK, Y., HARRIS, N., AND PRADO, A. BREACH: reviving
the CRIME attack. In Black Hat Briefings (2013).

[22] GOOGLE CHROME. Managing HTML5 offline storage. https:
//developer.chrome.com/apps/offline_storage,
February 2016.

14

https://bugzilla.mozilla.org/show_bug.cgi?id=565965
https://bugzilla.mozilla.org/show_bug.cgi?id=565965
https://developer.chrome.com/apps/offline_storage
https://developer.chrome.com/apps/offline_storage


[23] GREENSTEIN, B., MCCOY, D., PANG, J., KOHNO, T., SE-
SHAN, S., AND WETHERALL, D. Improving wireless privacy
with an identifier-free link layer protocol. In Mobile systems, ap-
plications, and services (2008).

[24] GROSSMAN, J. Advanced web attack techniques using GMail.
http://jeremiahgrossman.blogspot.com/2006/01/
advanced-web-attack-techniques-using.html, 2006.

[25] HINTZ, A. Fingerprinting websites using traffic analysis. In
Privacy Enhancing Technologies (2003), Springer, pp. 171–178.

[26] HOMAKOV, E. Using Content-Security-Policy for evil.
http://homakov.blogspot.com/2014/01/using-
content-security-policy-for-evil.html, January
2014.

[27] ICSI. The ICSI certificate notary. Retrieved 23 Jan. 2016, from
http://notary.icsi.berkeley.edu.

[28] IEEE STD 802.11-2012. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, 2012.

[29] JAGATIC, T. N., JOHNSON, N. A., JAKOBSSON, M., AND
MENCZER, F. Social phishing. Communications of the ACM
50, 10 (2007), 94–100.

[30] JAKOBSEN, J. B., AND ORLANDI, C. A practical cryptanalysis
of the Telegram messaging protocol. PhD thesis, Master Thesis,
Aarhus University (Available on request), 2015.

[31] KELSEY, J. Compression and information leakage of plaintext.
In Fast Software Encryption (2002), Springer, pp. 263–276.

[32] KITAMURA, E. Working with quota on mobile browsers.
http://www.html5rocks.com/en/tutorials/offline/
quota-research/, January 2014.

[33] LANDAU, P. Deanonymizing Facebook users by CSP brute-
forcing. http://www.myseosolution.de/deanonymizing-
facebook-users-by-csp-bruteforcing/, August 2014.

[34] LEE, S., KIM, H., AND KIM, J. Identifying cross-origin re-
source status using application cache. In NDSS (2015).

[35] LEKIES, S., STOCK, B., WENTZEL, M., AND JOHNS, M. The
unexpected dangers of dynamic JavaScript. In 24th USENIX Se-
curity Symposium (USENIX Security 15) (2015), pp. 723–735.

[36] LUO, X., ZHOU, P., CHAN, E. W., LEE, W., CHANG, R. K.,
AND PERDISCI, R. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In NDSS (2011).

[37] MARLINSPIKE, M. New tricks for defeating SSL in practice.
BlackHat DC, February (2009).

[38] MATHER, L., AND OSWALD, E. Pinpointing side-channel in-
formation leaks in web applications. Journal of Cryptographic
Engineering 2, 3 (2012), 161–177.

[39] MICROSOFT. Platform status. https://dev.windows.com/
en-us/microsoft-edge/platform/status/fetchapi,
February 2016.

[40] MILLER, B., HUANG, L., JOSEPH, A. D., AND TYGAR, J. D.
I know why you went to the clinic: Risks and realization of
HTTPS traffic analysis. In Privacy Enhancing Technologies
(2014), Springer, pp. 143–163.

[41] MOORE, T., AND EDELMAN, B. Measuring the perpetrators and
funders of typosquatting. In Financial Cryptography and Data
Security. Springer, 2010, pp. 175–191.

[42] MOZILLA DEVELOPER NETWORK. Browser storage limits and
eviction criteria. https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API/Browser_storage_
limits_and_eviction_criteria, October 2015.

[43] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,
VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F.,
AND VIGNA, G. You are what you include: Large-scale eval-
uation of remote JavaScript inclusions. In Proceedings of the
2012 ACM conference on Computer and communications secu-
rity (2012), ACM, pp. 736–747.

[44] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The spy in the sandbox: Practical cache
attacks in JavaScript. arXiv preprint arXiv:1502.07373 (2015).

[45] PEON, R., AND RUELLAN, H. HPACK: Header compression for
HTTP/2. RFC 7541, 2015.

[46] RANGANATHAN, A., AND SICKING, J. File API. W3C Working
Draft (2012).

[47] RESCORLAN, E. HTTP over TLS. RFC 2818, 2000.

[48] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security (2009),
ACM, pp. 199–212.

[49] RIZZO, J., AND DUONG, T. The CRIME attack. In EKOparty
Security Conference (2012), vol. 2012.

[50] ROESNER, F., KOHNO, T., AND WETHERALL, D. Detect-
ing and defending against third-party tracking on the web. In
Proceedings of the 9th USENIX conference on Networked Sys-
tems Design and Implementation (2012), USENIX Association,
pp. 12–12.

[51] RYDSTEDT, G., BURSZTEIN, E., BONEH, D., AND JACKSON,
C. Busting frame busting: a study of clickjacking vulnerabilities
at popular sites. IEEE Oakland Web 2 (2010), 6.

[52] SCHINZEL, S. An efficient mitigation method for timing side
channels on the web. In 2nd International Workshop on Con-
structive Side-Channel Analysis and Secure Design (COSADE)
(2011).

[53] SEGALL, L. An app called Telegram is the ’hot new thing
among jihadists’. http://money.cnn.com/2015/11/17/
technology/isis-telegram/, November 2015.

[54] SOOD, A. K., AND ENBODY, R. J. Malvertising: Exploiting web
advertising. Computer Fraud & Security 2011, 4 (2011), 11–16.

[55] SSL PULSE. Survey of the SSL implementation of the most pop-
ular web sites. https://www.trustworthyinternet.org/
ssl-pulse/, February 2016.

[56] STATCOUNTER. GlobalStats. http://gs.statcounter.
com/#all-browser-ww-monthly-201501-201601, January
2016.

[57] SUN, Q., SIMON, D. R., WANG, Y.-M., RUSSELL, W., PAD-
MANABHAN, V. N., AND QIU, L. Statistical identification of
encrypted web browsing traffic. In Security and Privacy (2002).

[58] TERADA, T. Identifier based XSSI attacks. https://www.
mbsd.jp/Whitepaper/xssi.pdf, March 2015.

[59] TOR. Isolate HTTP cookies according to first and third party do-
main contexts. https://trac.torproject.org/projects/
tor/ticket/3246, May 2011.

[60] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS, N. The
clock is still ticking: Timing attacks in the modern web. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1382–1393.

[61] VANHOEF, M., AND PIESSENS, F. Advanced Wi-Fi attacks
using commodity hardware. In Proceedings of the 30th An-
nual Computer Security Applications Conference (2014), ACM,
pp. 256–265.

15

http://jeremiahgrossman.blogspot.com/2006/01/advanced-web-attack-techniques-using.html
http://jeremiahgrossman.blogspot.com/2006/01/advanced-web-attack-techniques-using.html
http://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
http://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
http://notary.icsi.berkeley.edu
http://www.html5rocks.com/en/tutorials/offline/quota-research/
http://www.html5rocks.com/en/tutorials/offline/quota-research/
http://www.myseosolution.de/deanonymizing-facebook-users-by-csp-bruteforcing/
http://www.myseosolution.de/deanonymizing-facebook-users-by-csp-bruteforcing/
https://dev.windows.com/en-us/microsoft-edge/platform/status/fetchapi
https://dev.windows.com/en-us/microsoft-edge/platform/status/fetchapi
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Browser_storage_limits_and_eviction_criteria
http://money.cnn.com/2015/11/17/technology/isis-telegram/
http://money.cnn.com/2015/11/17/technology/isis-telegram/
https://www.trustworthyinternet.org/ssl-pulse/
https://www.trustworthyinternet.org/ssl-pulse/
http://gs.statcounter.com/#all-browser-ww-monthly-201501-201601
http://gs.statcounter.com/#all-browser-ww-monthly-201501-201601
https://www.mbsd.jp/Whitepaper/xssi.pdf
https://www.mbsd.jp/Whitepaper/xssi.pdf
https://trac.torproject.org/projects/tor/ticket/3246
https://trac.torproject.org/projects/tor/ticket/3246


[62] VANHOEF, M., AND PIESSENS, F. All your biases belong to
us: Breaking RC4 in WPA-TKIP and TLS. In USENIX Security
Symposium (2015).

[63] W3C. Offline web applications. https://www.w3.org/TR/
offline-webapps/, May 2008.

[64] W3C. Same-origin policy. https://www.w3.org/Security/
wiki/Same_Origin_Policy, January 2010.

[65] W3C. Quota management API. https://www.w3.org/TR/
quota-api/, December 2015.

[66] W3C. Service Workers. https://www.w3.org/TR/service-
workers/, June 2015.

[67] WAGNER, D., SCHNEIER, B., ET AL. Analysis of the SSL 3.0
protocol. In The Second USENIX Workshop on Electronic Com-
merce Proceedings (1996), pp. 29–40.

[68] WANG, T., AND GOLDBERG, I. Comparing web-
site fingerprinting attacks and defenses. Tech.
rep., Technical Report 2013-30, CACR, 2013.
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-30.pdf,
2014.

[69] WEBKIT. Implement fetch API. https://bugs.webkit.org/
show_bug.cgi?id=151937, December 2015.

[70] WHATWG. Storage. https://storage.spec.whatwg.
org/, August 2015.

[71] WIGLE. WiFi encryption over time. Retrieved 6 Feb. 2016 from
https://wigle.net/enc-large.html.

[72] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack: A high reso-
lution, low noise, L3 cache side-channel attack. In 23rd USENIX
Security Symposium (USENIX Security 14) (2014), pp. 719–732.

[73] ZALEWSKI, M. The tangled Web: A guide to securing modern
web applications. No Starch Press, 2012.

[74] ZHANG, F., HE, W., CHEN, Y., LI, Z., WANG, X., CHEN, S.,
AND LIU, X. Thwarting Wi-Fi side-channel analysis through
traffic demultiplexing. Wireless Communications, IEEE Transac-
tions on 13, 1 (2014), 86–98.

[75] ZHANG, F., HE, W., AND LIU, X. Defending against traffic
analysis in wireless networks through traffic reshaping. In Dis-
tributed Computing Systems (ICDCS) (2011).

[76] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in PaaS clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (2014), ACM, pp. 990–1003.

[77] ZHOU, X., DEMETRIOU, S., HE, D., NAVEED, M., PAN, X.,
WANG, X., GUNTER, C. A., AND NAHRSTEDT, K. Identity,
location, disease and more: Inferring your secrets from Android
public resources. In Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security (2013), ACM,
pp. 1017–1028

.

16

https://www.w3.org/TR/offline-webapps/
https://www.w3.org/TR/offline-webapps/
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/TR/quota-api/
https://www.w3.org/TR/quota-api/
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/service-workers/
https://bugs.webkit.org/show_bug.cgi?id=151937
https://bugs.webkit.org/show_bug.cgi?id=151937
https://storage.spec.whatwg.org/
https://storage.spec.whatwg.org/
https://wigle.net/enc-large.html

	Introduction
	Background
	Size-exposing Techniques
	Operations Involving Resources
	OS-based Techniques
	Network-based Techniques
	Transport Layer Security (SSL / TLS)
	Encrypted Wi-Fi Networks

	Browser-based Techniques
	Per-site quota
	Global quota
	Quota Management API & Storage API


	Real-world Consequences
	User Identification
	Revealing Private Information
	Search-Oriented Information Leakage
	Cross-Origin Cache Operations

	Defense Mechanisms
	Hardening Browser Storage
	Detecting Illicit Requests
	Network-based Countermeasures

	Related Work
	Conclusion

