
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

A Security Analysis of the
WPA-TKIP and TLS Security
Protocols

Mathy Vanhoef

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering
Science: Computer Science

July 2016

Supervisor:
Prof. dr. ir. F. Piessens

A Security Analysis of the WPA-TKIP and TLS
Security Protocols

Mathy VANHOEF

Examination committee:
Prof. dr. ir. P. Van Houtte, chair
Prof. dr. ir. F. Piessens, supervisor
Prof. dr. ir. C. Huygens
Prof. dr. D. Hughes
Prof. dr. ir. B. Preneel
Prof. dr. K. Paterson
(Royal Holloway, University of London)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor in Engineering
Science: Computer Science

July 2016

© 2016 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Mathy Vanhoef, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

When I started my PhD four years ago, I thought people were exaggerating
when they said that doing a PhD was a unique and special experience. Turns
out I was wrong: it is indeed quite the journey! It was a roller coaster of
exciting and sometimes no so exciting research results, late-night deadline races,
moments of doubt, enriching and rewarding travels, grueling dilemmas, facing
your own limitations,. . . you get the idea. This journey would not have been
possible without the help of several people, and with the risk of forgetting some,
I would like to thank them here.

First and for all, I want to thank my supervisor Frank Piessens. You gave me
the freedom to work on my own ideas, for which I am forever grateful. Your
quick understanding of new ideas, insightful comments, and overall guidance
has truly been inspiring.

I would also like to thank the members of my jury, Frank Piessens, Christophe
Huygens, Danny Hughes, Bart Preneel, and Kenny Paterson, for taking the time
to read my dissertation, and providing me with helpful comments in preparation
of this final version. And Paul Van Houtte, thank you for chairing the jury.

Special thanks also goes to my office mates. Frédéric Vogels, you always made
sure people felt welcome and enjoyed their day. Since I was new to Leuven, and
the department, this was greatly appreciated. Thanks for all the moelleux, and
for all the pedantic but entertaining discussions. Raoul Strackx, you have been
a great colleague and friend. Thanks for always being willing to help out with
things when needed. And of course, thanks for enduring all the witty remarks
over the last few years, you have survived them well. Jesper Cockx, thanks for
making the office a fun place, and for introducing us to D&D. May there be
many more evil spiders and monsters to kill.

A big thank you also goes to our lunch group: Pieter Agten, Sven Akkermans,
Jesper Cockx, Milica Milutinović, Andreas Nuyts, Marco Patrignani, Rula
Sayaf, Raoul Strackx, Jan Tobias Mühlberg, Jo Van Bulck, Gitte Vanwinckelen,

i

ii PREFACE

Frédéric Vogels, and Neline van Ginkel. Thanks to all of you, lunch was always
something to look forward to. I also enjoyed all our after work get-togethers,
we should keep organizing them!

I would also like to thank all the people I have met, or worked with, during
my PhD. First, Kenny Paterson, thanks for your enthusiastic reaction to my
initial but vague ideas about attacking RC4. Your positive reaction made me
research RC4 in more detail! Tom Van Goethem, our recent collaborations,
including late-night deadline work, clearly paid off. I hope we can continue this
great work in the future. I also appreciated working with, and learning from,
my fellow teaching assistants and lecturers: Yolande Berbers, Jasper Bogaerts,
Philip Dutré, Wouter Franken, Roald Frederickx, Job Noorman, Steven Op de
beeck, Willem Penninckx, Jan Smans, Eric Steegmans, and Thomas Winant.
And of course I also enjoyed meeting all my other colleagues, who helped made
every day at the department a pleasant one: Wilfried Danëls, Willem De Groef,
Philippe De Ryck, Maarten Decat, Lieven Desmet, Dominique Devriese, Bart
Jacobs, Wouter Joosen, Bert Lagaisse, Jef Maerien, Jonathan Merlevede, Nick
Nikiforakis, Davy Preuveneers, Jose Proenca, Bob Reynders, Zubair Rafique,
Jan Spooren, Klaas Thoelen, Gijs Vanspauwen, Thomas Vissers, and Rinde van
Lon. Also a thank you to Bram Bonne, Mariano Di Martino, Pieter Robyns,
and Dieter Vandenbroeck, for the discussions we had over the years.

And of course there is Hacknamstyle, our capture the flag team. Steven Van
Acker, thanks for blowing new life into this group, for all the discussions we had,
and for showing me how to run experiments on all computers of the department.
Tom Van Goethem and Neline van Ginkel, keep up the good work you are
doing for Hacknamstyle! Without you the group just would not be the same.
It has also been great to meet all the people who regularly participated in the
workshops or CTFs: Pieter Agten, Jeroen Beckers, Mathias Bynens, Dieter
Castel, Xavier Castermans, Anthony Clays, Thomas De Backer, Kevin Holvoet,
Sophie Marien, Michiel Meersmans, Arne Swinnen, Bert Van de Poel, Jo Van
Bulck, Tim Van den Eynde, Kobe Vrancken, Koen Yskout, and Bart van der
Plancken. Thank you all for joining our activities and creating a fun atmosphere.

And to all the people of the secretariat, administration, and business office,
thank you for all the help and for keeping our paper work to a minimum:
Katrien Janssens, Fred Jonker, Anne-Sophie Putseys, Esther Renson, Ghita
Saevels, Marleen Somers, Karen Spruyt, and Annick Vandijck.

This work also would not have been possible without the people that manage
the computer infrastructure at our department. Even when I was running
experiments on nearly every computer, and was heating up cold classrooms
during the winter, at least according to students, they allowed me to keep
running my computations. Thank you!

PREFACE iii

I would also like to thank the Research Foundation - Flanders (FWO) for
granting me a PhD fellowship, and the Research Fund KU Leuven for their
financial support.

Als laatste, maar daarom zeker niet minder belangrijk, wil ik mijn ouders en
familie bedanken voor alle steun doorheen de jaren. Zonder jullie was dit werk
niet mogelijk! Aan mijn twee broers Peter en Erik, bedankt om mij van jongs
af aan al een kritische ingesteldheid bij te brengen, en mij te laten prullen met
jullie computers. Het heeft duidelijk zijn effect gehad!

Thank you all!

— Mathy Vanhoef
Leuven, July 2016

Abstract

This dissertation analyzes the security of popular network protocols. First
we investigate the Wi-Fi Protected Access Temporal Key Integrity Proto-
col (WPA-TKIP), and then we study the security of the RC4 stream cipher in
both WPA-TKIP and the Transport Layer Security (TLS) protocol. We focus on
these protocols because of their popularity. In particular, around November 2012,
WPA-TKIP was used by two-thirds of encrypted Wi-Fi networks, and it is
currently still used by more than half of all encrypted networks. Similarly,
around 2013, RC4 was used in half of all TLS connections. Finally, with as
goal to implement reliable proof-of-concepts for some of our attacks against
WPA-TKIP, we also study physical layer security aspects of Wi-Fi.

In the first part of this dissertation we focus on WPA-TKIP when used to
protect unicast Wi-Fi traffic. Here we demonstrate how fragmentation of Wi-Fi
frames can be used to inject an arbitrary number of packets, and we show how
this attack can be applied in practice by performing a portscan on any client
connected to the network. Then we propose a technique to decrypt arbitrary
packets sent towards a client. Our technique first resets the internal state of
the Michael algorithm, and abuses this to make victims forward packets to a
server under control of the adversary, effectively decrypting the packets. We
also present a novel Denial of Service (DoS) attack that requires the injection
of only two frames every minute. Additionally, we discover that several network
cards use flawed and insecure implementations of WPA-TKIP.

In the second part of the dissertation, our goal is to attack WPA-TKIP when
used to protect broadcast and multicast traffic, i.e., group traffic. This is
important since, even in 2016, more than half of all encrypted Wi-Fi networks
still protect group traffic using WPA-TKIP. To carry out our attack in a general
setting, we must be able to reliably block certain packets from arriving at their
destination, preferably using cheap commodity Wi-Fi devices. Hence we first
study low-layer aspects of the Wi-Fi protocol. Surprisingly, we found that
commodity devices allow us to violate several assumptions made by the Wi-Fi

v

vi ABSTRACT

protocol. We show this enables us to implement a constant and selective jammer
using commodity Wi-Fi devices. Although the selective jammer can block a
large percentage of packets from arriving at their destination, we found that an
even more effective method is to block packets by obtaining a channel-based
man-in-the-middle (MitM) position. In such a position, packets are blocked by
not forwarding them. Finally, we demonstrate that our MitM position allows
us to attack WPA-TKIP, when used as a group cipher, within only 7 minutes.

In the last part of the dissertation we attack RC4 in both WPA-TKIP and TLS.
First we search for new biases in the RC4 keystream, in hope they might be
useful to improve our attacks. We empirically search for them using statistical
hypothesis tests. This reveals many new biases in the initial keystream bytes, as
well as several new long-term biases. Then we design algorithms that are capable
of using multiple types of biases, in order to recover a repeatedly encrypted
secret. These algorithms return a list of plaintext candidates in decreasing
likelihood, and are applied to attack WPA-TKIP and TLS. For the WPA-TKIP
scenario we first introduce a method to generate a large number of identical
packets. We decrypt this packet by generating its plaintext candidate list, and
use redundant packet structure to prune bad candidates. From the decrypted
packet we derive the WPA-TKIP MIC key, which can be used to inject and
decrypt packets. In practice the attack can be executed within an hour. In
the attack against TLS, we show how to decrypt a secure HTTP cookie with a
high success rate, by capturing roughly one billion ciphertexts. This is done by
injecting known data around the cookie, abusing this using Mantin’s ABSAB
bias, and brute-forcing the cookie by traversing the plaintext candidates. Using
our traffic generation technique, we are able to execute the attack, and decrypt
the cookie, within merely 75 hours.

Beknopte samenvatting

In deze doctoraatstekst analyseren we de veiligheid van populaire netwerkpro-
tocollen. Eerst onderzoeken we het Protected Access Temporal Key Integrity
Protocol (WPA-TKIP), en daarna bestuderen we de veiligheid van het RC4
stroomcijfer in zowel WPA-TKIP als het Transport Layer Security (TLS)
protocol. We focussen op deze protocollen vanwege hun populariteit. Meer
bepaald, in november 2013 werd WPA-TKIP gebruikt door twee derde van alle
geëncrypteerde Wi-Fi netwerken, en momenteel wordt het nog steeds door meer
dan de helft van alle geëncrypteerde netwerken gebruikt. En rond 2013 werd RC4
door ongeveer de helft van alle TLS connecties gebruikt. Tenslotte onderzoeken
we ook de veilig van de fysieke laag van het Wi-Fi protocol, zodat we algemene
en betrouwbare aanvallen tegen WPA-TKIP kunnen implementeren.

In het eerste deel van de doctoraatstekst bestuderen we WPA-TKIP wanneer
het gebruikt wordt om unicast netwerkverkeer te beschermen. We demonstreren
hoe fragmentatie van Wi-Fi pakketten gebruikt kan worden om een willekeurig
aantal pakketten te versturen, en we tonen aan hoe dit in de praktijk kan
worden gebruikt om een portscan uit te voeren op eender welke computer op
het netwerk. Vervolgens stellen we een techniek voor om willekeurige pakketten,
die verzonden zijn door een access point, te decrypteren. Deze techniek reset
eerste de interne staat van het Michael algoritme, en bouwt hierop verder
om ervoor de zorgen dat slachtoffers pakketten doorsturen naar een computer
onder controle van de aanvaller. Hierdoor leert de aanvaller de inhoud van
de pakketten. We tonen ook aan dat er een denial-of-service aanval bestaat
tegen WPA-TKIP waarbij de aanvaller slechts twee pakketten elke minuut
moet versturen. Bovendien laten we zien dat verscheidene netwerkkaarten
onbetrouwbare en onveilige implementaties van WPA-TKIP gebruiken.

In het tweede deel van deze tekst onderzoeken we de veiligheid van WPA-TKIP
wanneer het gebruikt wordt om broadcast en multicast verkeer te beschermen.
Dit is belangrijk aangezien meer dan de helft van alle geëncrypteerde Wi-Fi
netwerken nog altijd WPA-TKIP gebruikt om dit verkeer te beschermen, zelfs in

vii

viii BEKNOPTE SAMENVATTING

2016. On de aanval uit te voeren moet een aanvaller specifieke Wi-Fi pakketten
kunnen blokkeren, en dit liefst met goedkope toestellen. Om dit te bereiken
bestuderen we eerste de fysieke laag van het Wi-Fi protocol. Verrassend genoeg
ontdekten we dat veelgebruikte Wi-Fi toestellen kunnen gebruikt worden als
een constante of selectieve stoorzender. Hoewel de selectieve stoorzender de
meeste Wi-Fi pakketten kan blokkeren, en deze pakketten dus niet door de
andere apparaten correct ontvangen zal worden, is een nog betere manier om
een kanaal-gebaseerde man-in-the-middle (MitM) aanval te gebruiken. In deze
MitM aanval kunnen pakketten geblokkeerd worden door ze niet door te sturen
naar hun uiteindelijke bestemming. Door hiervan gebruikt te maken, tonen we
aan dat als WPA-TKIP wordt gebruikt om multicast en broadcast pakketten
te beschermen, het kan worden aangevallen binnen 7 minuten.

Tenslotte vallen we het RC4 stroomcijfer aan in zowel WPA-TKIP als TLS.
Eerst zoeken we naar niet-uniforme bytes in de sleutelstroom van RC4. We
gebruiken hiervoor een empirische techniek die gebruik maakt van statistische
toetsen. Met behulp van deze techniek vonden we verscheidene, nog niet gekende,
niet-uniforme bytes in de sleutelstroom van RC4. Vervolgens ontwerpen we
algoritmes die verschillende niet-uniforme sleutelstroombytes combineren om een
herhaaldelijk geëncrypteerd geheim te achterhalen. Deze algoritmes berekenen
een lijst van klaartekst kandidaten in aflopende volgorde van waarschijnlijkheid,
en worden toegepast om WPA-TKIP en TLS aan te vallen. Voor de aanval tegen
WPA-TKIP genereren we eerst een groot aantal identieke pakketten. Dit pakket
wordt gedecrypteerd door de klaartekst kandidaten te berekenen, en ongeldige
kandidaten te filteren op basis van de structuur van WPA-TKIP pakketten.
Eens we de klaartekst van het pakket weten, kunnen we de WPA-TKIP MIC
sleutel berekenen, waarmee we pakketten kunnen decrypteren en versturen. De
aanval kan binnen een uur uitgevoerd worden. In de aanval tegen TLS tonen we
aan dat een aanvaller ongeveer één miljard sleutelteksten moet onderscheppen
om een veilige HTTP cookie te kunnen decrypteren. Eerst zorgen we dat er
gekende klaartekst rondom het HTTP cookie staat, zodat we het niet-uniforme
ABSAB patroon in de sleuteltekstbytes van RC4 kunnen gebruiken om een lijst
van klaartekst kandidaten te genereren. Elk van deze kandidaten wordt actief
getest totdat de juiste klaartekst is gevonden. Met behulp van een techniek om
de sleutelteksten snel te genereren, kunnen we deze aanval uitvoeren in slechts
75 uren.

Contents

Abstract v

Contents ix

List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

1.1 Background . 3

1.1.1 Stream ciphers . 3

1.1.2 Block ciphers . 4

1.2 The Evolution of Network Protocols 5

1.2.1 Wi-Fi . 5

1.2.2 Transport Layer Security (TLS) 6

1.3 Overview of Selected Attacks on TLS and WPA 7

1.3.1 The power and necessity of convincing attacks 7

1.3.2 Other prominent attacks 9

1.4 A Brief History of RC4 . 10

ix

x CONTENTS

1.4.1 A secret computer code 10

1.4.2 Known flaws and early warnings 11

1.5 Other Contributions . 12

1.6 Outline of the Dissertation . 15

2 Practical Verification of WPA-TKIP Vulnerabilities 17

2.1 Introduction . 19

2.2 Temporal Key Integrity Protocol (TKIP) 20

2.2.1 Connecting . 21

2.2.2 Sender . 21

2.2.3 Receiver . 23

2.2.4 Quality of Service extension 23

2.2.5 Beck and Tews attack 24

2.3 Denial of Service . 25

2.4 Injection of More and Bigger Packets 26

2.4.1 Exploiting fragmentation 27

2.4.2 Implementation: performing a portscan 27

2.5 Decrypting Arbitrary Packets 28

2.5.1 The Michael algorithm 28

2.5.2 Michael state reset . 29

2.5.3 Decryption attack . 31

2.6 Experiments . 33

2.6.1 Networks supporting TKIP 33

2.6.2 Adherence to the 802.11 specification 34

2.6.3 Verifying our attacks . 37

2.7 Related Work . 38

2.8 Chapter Conclusion . 39

CONTENTS xi

3 Advanced Wi-Fi Attacks Using Commodity Hardware 41

3.1 Introduction . 43

3.2 The 802.11 Standard . 45

3.2.1 Medium Access Control (MAC) 45

3.2.2 Physical Layer (PHY) 46

3.2.3 Temporal Key Integrity Protocol 47

3.2.4 Atheros firmware implementation 49

3.3 Unfair Channel Usage . 49

3.3.1 Experimental setup . 49

3.3.2 One selfish station . 50

3.3.3 Multiple selfish stations 52

3.3.4 Defeating countermeasures 53

3.4 Jamming . 54

3.4.1 Continuous jamming . 54

3.4.2 Selective jamming . 57

3.5 Channel-Based MitM . 60

3.5.1 Background . 60

3.5.2 Intercepting encrypted traffic 61

3.5.3 Implementation . 61

3.5.4 Experiments . 62

3.5.5 Countermeasures . 63

3.6 TKIP as a Group Cipher . 63

3.6.1 Attack details . 63

3.6.2 Implementation and experiments 65

3.6.3 Countermeasures . 65

3.7 Related Work . 66

3.8 Chapter Conclusion . 67

xii CONTENTS

4 Breaking RC4 in WPA-TKIP and TLS 69

4.1 Introduction . 71

4.2 Background . 72

4.2.1 The RC4 algorithm . 73

4.2.2 TKIP cryptographic encapsulation 75

4.2.3 The TLS record protocol 76

4.3 Empirically Finding New Biases 77

4.3.1 Soundly detecting biases 77

4.3.2 Generating datasets . 78

4.3.3 New short-term biases 79

4.3.4 New long-term biases 83

4.4 Plaintext Recovery . 85

4.4.1 Calculating likelihood estimates 85

4.4.2 Likelihoods from Mantin’s bias 87

4.4.3 Combining likelihood estimates 88

4.4.4 List of plaintext candidates 89

4.5 Attacking WPA-TKIP . 92

4.5.1 Calculating plaintext likelihoods 92

4.5.2 Injecting identical packets 93

4.5.3 Decrypting a complete packet 94

4.5.4 Empirical evaluation . 96

4.6 Decrypting HTTPS Cookies . 97

4.6.1 Injecting known plaintext 97

4.6.2 Brute-forcing the cookie 98

4.6.3 Empirical evaluation . 99

4.7 Related Work . 101

4.8 Chapter Conclusion . 102

CONTENTS xiii

5 Conclusion 103

5.1 Summary of Contributions . 103

5.2 Future Work . 104

5.2.1 Wireless Network Security 104

5.2.2 Cryptanalysis of RC4 105

5.3 Concluding Remarks . 106

Bibliography 107

List of Publications 123

List of Figures

1.1 Cipher Block Chaining (CBC) mode. 4

1.2 Visualization of the outline of this dissertation. 15

2.1 States a client can be in when connecting to a wireless network. 20

2.2 Input data given to the Michael algorithm. 22

2.3 Simplified format of an unfragmented TKIP frame. 22

2.4 Resetting the internal state of the Michael algorithm. 30

3.1 Visualisation of 802.11 EDCA timing relations. 45

3.2 Simplified format of 802.11b TKIP frames. 46

3.3 Throughput in case of one selfish station using various strategies. 51

3.4 Impact of bitrate on contending selfish stations. 52

3.5 Timing requirements of selective jamming. 57

3.6 Visualization of how to use commodity devices to detect and
process frames while they are still in the air. 58

4.1 Implementation of RC4 in Python-like pseudo-code. 73

4.2 Simplified TKIP frame with a TCP payload. 76

4.3 TLS Record structure when using RC4. 77

4.4 Strength of the Fluhrer-McGrew biases in the initial keystream
bytes . 80

xv

xvi LIST OF FIGURES

4.5 Biases induced by the first two bytes. 82

4.6 Single-byte biases beyond position 256. 83

4.7 Emperical relative bias of the long-term distant-equality bias. . 84

4.8 Average success rate of decrypting two RC4-encrypted bytes
using various techniques. 89

4.9 Success rate of obtaining the TKIP MIC key using nearly 230

candidates. 95

4.10 Median position of the decrypted WPA-TKIP packet in the
plaintext candidate list. 95

4.11 Success rate of brute-forcing an RC4-encrypted 16-character
cookie using roughly 223 candidates 99

List of Tables

2.1 Number of Wi-Fi networks supporting a given encryption scheme
(2016). 18

2.2 Number of Wi-Fi networks supporting a given encryption scheme
(2013). 34

2.3 Overview of deviations from the 802.11 standard and vulnerabili-
ties found in various wireless network cards. 35

2.4 Impact of our WPA-TKIP DoS attack on several Access Points. 37

3.1 Important memory-mapped registers and 802.11 radio function-
ality they control. 55

3.2 Overview of wireless chips used in various network cards. . . . 56

4.1 Generalized Fluhrer-McGrew (FM) biases. 74

4.2 Biases between consecutive and non-consecutive bytes. 81

xvii

List of Abbreviations

AC Access Class.

AES Advanced Encryption Standard.

AIFS Arbitration Interframe Space.

AIFSN Arbitration Interframe Space Number.

AP Access Point.

API Application Programming Interface.

ARP Address Resolution Protocol.

CBC Cipher Block Chaining.

CCA Clear Channel Assessment.

CCM CTR with CBC-MAC.

CCMP CTR with CBC-MAC Protocol.

CRC Cyclic Redundancy Code.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

CTS Clear To Send.

CW Contention Window.

DCF Distributed Coordination Function.

DMA Direct Memory Access.

DNS Domain Name System.

xix

xx List of Abbreviations

DoS Denial of Service.

EAPOL Extensible Authentication Protocol Over LANs.

EDCA Enhanced Distributed Channel Access.

FCS Frame Check Sequence.

FIPS Federal Information Processing Standards.

FM Fluhrer-McGrew.

FMS Fluhrer-Mantin-Shamir.

GTK Group Temporal Key.

HMAC Keyed-Hash Message Authentication Code.

HMM Hidden Markov Model.

HTTP Hypertext Transfer Protocol.

HTTPS HyperText Transfer Protocol Secure.

ICMP Internet Control Message Protocol.

ICV Integrity Check Value.

IEEE Institute of Electrical and Electronics Engineers.

IFS Interframe Space.

IMAP Internet Message Access Protocol.

IP Internet Protocol.

IV Initialization Vector.

KSA Key Scheduling Algorithm.

LAN Local Area Network.

LEAP Lightweight Extensible Authentication Protocol.

LLC Logical Link Control.

MAC Medium Access Control.

MIC Message Integrity Code.

MitM Man-in-the-Middle.

MPDU MAC Protocol Data Unit.

List of Abbreviations xxi

MSDU MAC Service Data Unit.

PCI Peripheral Component Interconnect.

PCIe PCI Express.

PLCP Physical Layer Convergence Procedure.

PRGA Pseudo Random Generation Algorithm.

PTK Pairwise Transient Key.

QoS Quality of Service.

RAM Random-Access Memory.

RFC Request For Comment.

RTS Request To Send.

SIFS Short Interframe Space.

SMTP Simple Mail Transfer Protocol.

SNAP Sub-Network Access Protocol.

SSID Service Set Identifier.

SSL Secure Socket Layer.

TCP Transport Control Protocol.

TID Traffic Identifier.

TK Temporal Key.

TKIP Temporal Key Integrity Protocol.

TLS Transport Layer Security.

TSC TKIP Sequence Counter.

TTL Time To Live.

UDP Unreliable Datagram Protocol.

USB Universal Serial Bus.

USRP Universal Software Radio Peripheral.

WEP Wired Equivalent Privacy.

WPA Wi-Fi Protected Access.

Chapter 1

Introduction

“I’ve hacked into the Covenant battlenet. They’re actually
broadcasting tactical data on unencrypted channels. We
should show them who they’re dealing with.”

— Cortana, Halo 1

The internet has dramatically revolutionized society and our everyday lives.
Preceded by the invention of the telegraph, telephone, radio, and satellite,
it proved to be an unprecedented medium for sharing and disseminating
information [90]. An essential ingredient for this success was that it enabled
fast and inexpensive real-time interactions between people, computers, or both,
independent of their geographical location. In turn, such interactions were made
possible by real-time connections between computers, and these connections can
be seen as the foundation of the internet. In the early days of the internet, when
it was still called the advanced research projects agency network (ARPANET),
all computers in this network were trusted. Consequently, all connections were
implicitly trusted as well, meaning there was no need to protect transmitted
messages, nor to verify received ones. However, as the internet evolved, and
businesses were eager to use it for commercial ends, there was a sudden need
for secure communications. In response, Netscape Communications proposed
the Secure Sockets Layer (SSL) protocol in 1994 [167]. Gradually, it evolved to
become the Transport Layer Security (TLS) protocol, which is currently a de
facto standard for securing internet traffic.

However, the evolution of Netscape’s SSL protocol was not a smooth journey.
Along the way, several serious attacks against it were discovered, prompting

1

2 INTRODUCTION

the need for newer and more secure versions. In fact, the initial version of
SSL was never publicly released due to major flaws in its design. The second
version, denoted by SSLv2, did not fare much better. It used the same key for
encryption and message integrity and did not securely terminate sessions [169].
Additionally, it did not defend against downgrade attacks: a man-in-the-middle
could modify handshake messages, tricking the client into picking a weaker
cipher suite than it would normally choose [169]. These attacks led to the
development of SSLv3, which forms the basis of the current TLS protocols.

This ad hoc approach to security, where new versions of a protocol are primarily
introduced or adopted to defend against known attacks, is a reoccurring
phenomenon. In certain cases, it even takes everyday attacks to finally push
people into developing and adopting more secure protocols. For example, Ylönen
only started the development of Secure Shell (SSH) after his university network
was the victim of password sniffing attacks [14]. Before the release of SSH,
people were using Remote Shell (RSH) without any form of encryption or
protection, even though they realized this was far from ideal [159]. Another
relevant example is the DNS protocol. Maintaining its security has been
a constant challenge, where high-profile attacks were followed with ad hoc
countermeasures in an attempt to safeguard its security [4]. Yet another
example is the contactless Mifare Classic smartcard. After its release several
serious attacks against it were discovered, resulting in the development of
backwards-compatible countermeasures. However, these solutions still relied on
the flawed cryptographic algorithm of the Mifare classic card, and recently it
was shown that attacks remain possible, even if all the ad hoc countermeasures
are implemented [106].

Summarized, we observe that the evolution of secure network protocols has
been predominantly influenced by the discovery and threat of (both realistic
and theoretic) attacks against their design or implementation. This dissertation
explores and analyzes new weaknesses introduced during this reactive and ad
hoc approach to security, proposes novel techniques to exploit known flaws,
and demonstrates the impact of resulting attacks in real-world scenarios. In
particular we will first study link-layer protocols, where we focus on Wi-Fi
networks and the WPA-TKIP protocol. We then extend our focus to include
network and transport layer protocols, and analyze the usage and security of
RC4 in both TLS and WPA-TKIP. These protocols also serve as good examples
that, commonly, sufficiently realistic and convincing attacks are necessary to
force the adoption of newer and more secure versions of a protocol.

BACKGROUND 3

1.1 Background

We start by introducing basic cryptographic building blocks that are used in
the protocols we will investigate. Additionally, we define common terms used
in this dissertation.

Cryptographic ciphers can be classified as being either symmetric of asymmetric.
Symmetric ciphers use the same key for both encryption and decryption. In
contrast, asymmetric ciphers use two different keys. One key is kept secret and
used for decryption, and is called the private key. The other key is called the
public key, and is used for encryption. Generally asymmetric ciphers are used
in an initial phase to negotiate or generate session keys. These session keys are
then used by symmetric ciphers to encrypt and protect data. This is done to
reduce the heavier computational cost of asymmetric ciphers.

In this dissertation we focus on symmetric encryption schemes, and hence we
will further discuss these. In particular, symmetric ciphers can be divided into
stream and block ciphers, and we will briefly introduce both.

1.1.1 Stream ciphers

Stream ciphers produce a large chunk of secret, random looking output called
the keystream. Encryption is performed by combining the plaintext with the
generated keystream using an exclusive OR (XOR) operation. The output of
a strong stream cipher should be indistinguishable from a random stream of
bytes. This leads to a common attack model for stream ciphers: an adversary
should not be able to (efficiently) tell the difference between completely random
data, or output from the stream cipher. An algorithm which tries to detect
this difference is called a distinguisher. The distinguisher is given either truly
random data, or output of the stream cipher, and it attempts to determine
which of the two inputs it was given. It can try to do this by searching for
biases in the given data stream. There are two types of distinguishers [64]:

Weak distinguisher A weak distinguisher is given a single output stream,
which is either output of the stream cipher, or truly random data.

Strong distinguisher A strong distinguisher is given a black box which either
generates truly random data, or contains an implementation of the stream
cipher which generates keystream. The black box can be restarted with
new random keys polynomially many times.

4 INTRODUCTION

P1

E

C1

K

P2

E

C2

K

P3

E

C3

K

IV

. . .

. . .

. . .

. . .

Figure 1.1: Cipher Block Chaining (CBC) mode.

While it was shown that theoretically these distinguishers can detect the same
types of biases [64, §3.2.3], in practice there can be a major difference in the
type of biases they can (easily) detect [100]. This is beautifully demonstrated
by the strong bias towards zero at position two of the RC4 keystream. After
the description of RC4 was leaked, it took 8 years until this bias was discovered
by Mantin and Shamir. They claim the reason this bias was not discovered
earlier was because previous works analyzed RC4 using weak distinguishers,
instead of strong ones [100].

1.1.2 Block ciphers

Block ciphers encrypt data blocks of a fixed size. The size of a block is determined
by the specific cipher being used. One of the most widely-used block ciphers is
the Advanced Encryption Standard (AES), also known as Rijndael [38]. Because
the length of the data being encrypted often does not equal the length of the
block cipher, a mode of operation needs to be defined in order to handle data of
arbitrary length. Here we will present two such methods, namely Cipher Block
Chaining (CBC) and counter (CTR) mode.

One of the first proposed modes of operation for block ciphers was CBC [47].
In CBC mode, the plaintext is first padded to a multiple of the block size. The
padded plaintext is then divided into blocks P1, P2, . . . , Pn, and along with an
Initialization Vector (IV) and a key K, it is handed over to CBC for encryption.
The output is a list of ciphertext blocks C1, C2, . . . , Cn, whose generation is
illustrated in Fig. 1.1.

Another widely used method is Counter mode with CBC-MAC (CCM) [190],
which turns a block cipher into a stream cipher. This is done by using the block
cipher to encrypt the concatenation of a nonce and a counter, and treating the

THE EVOLUTION OF NETWORK PROTOCOLS 5

output as keystream. The counter is increased for every block of generated
keystream. Here the nonce is similar to an IV, which must be unique for every
message being encrypted. In addition to encryption, CCM also provides message
authentication using CBC-MAC, which is a variant of CBC mode that calculates
a message authentication code.

1.2 The Evolution of Network Protocols

Protocols generally undergo several iterations before reaching a sufficient level
of security [7, 12, 134, 169]. Each iteration improves the security it provides,
and this is commonly accompanied with the implementation of countermeasures
to mitigate attacks against older versions. In the next section we argue that
the adoption of these newer versions generally has been a slow process, in the
sense that people only adopt new versions when under the threat of convincing
attacks. Therefore, when researching the security of real-world systems, it is
essential to first determine which (version of) protocols are being used. After
this, one can analyze the security of protocols actually in use, instead of merely
focussing on the latest version of a particular protocol. With this in mind, we
start by briefly outlining the evolution of both Wi-Fi and TLS.

1.2.1 Wi-Fi

The 802.11 protocol, commonly known as Wi-Fi, initially provided Wired
Equivalent Privacy (WEP) in order to protect traffic [192, §11.2.2]. For
encryption WEP uses RC4, and data authentication is implemented using
an encrypted Cyclic Redundancy Check (CRC). Researchers quickly highlighted
major flaws in the design of WEP [109]. The most devastating attack was
found by Fluhrer, Mantin, and Shamir in 2001 (the FMS attack [57]). They
showed that capturing sufficiently many packets allowed an adversary to recover
the private key. Initially the industry disregarded this attack as “minor and
sophisticated” [109]. One common countermeasure was to use key management
protocols to frequently renew the private WEP key [27]. In 2006 more than
75% of encrypted networks still used WEP. This prompted Bittau et al. [27]
to improve existing attacks, and they came up with an attack requiring less
than a minute to allow an adversary to inject and decrypt packets. As a result,
the frequent re-keying countermeasure was shown to be inadequate, further
illustrating that WEP should be abandoned.

To provide an alternative to the broken WEP protocol, the IEEE started with
designing both a short-term and long-term solution, in what would become

6 INTRODUCTION

the 802.11i amendment to the 802.11 standard [7]. Their long-term solution is
based on the AES cipher [38] operating in CCM mode (counter mode with CBC-
MAC [190]). Commonly this protocol is called (AES-)CCMP. Unfortunately,
because many wireless chips implement their cryptographic algorithms in
hardware, old devices would not be able to support AES-CCMP. For these older
devices a short-term solution called the Temporal Key Integrity Protocol (TKIP)
was designed. It was designed so that old WEP-capable hardware could support
TKIP through firmware upgrades. It took until 2004 before both protocols were
ratified by the IEEE in the 802.11i amendment.

In 2003 the Wi-Fi Alliance, frustrated with the slow standardization process
of the IEEE, already started certifying devices based on a draft version of the
802.11i amendment. They called this certification program Wi-Fi Protected
Access (WPA). The program required that WPA certified devices supported
TKIP, and allowed, but did not mandate, support of AES-CCMP. This lead
to the common misuse of the term WPA: it is not synonymous with TKIP.
In 2006 the WPA2 certification program was created, and it required support for
AES-CCMP while optionally allowing TKIP. Unfortunately this led to another
common misunderstanding: in practice a WPA2 network will still support TKIP,
unless explicitly configured to only allow AES-CCMP. In this dissertation we
will use WPA-TKIP to explicitly refer to TKIP, and use the term WPA to refer
to Wi-Fi encryption in general.

1.2.2 Transport Layer Security (TLS)

Version 1.0 of TLS was published in 1999 and was heavily based on SSLv3 [41].
One important difference with SSLv3 is that TLSv1.0 defined the content
of padding bytes when using a CBC-mode cipher suite. This made it
immune against the POODLE attack [115], though some implementations
of TLSv1.0 were still vulnerable because they forgot to verify the content of
these received padding bytes [88]. Additionally, TLSv1.0 explicitly addressed
the Bleichenbacher [28] padding oracle attack against RSA, by unifying certain
error messages, and closing timing based side channels. In contrast, SSL did
not anticipate the Bleichenbacher attack, and implementations had to undergo
ad hoc patches in order to mitigate the attack.

Sadly, TLSv1.0 still suffered from several design flaws [158]. One example
is the BEAST attack [46], which exploited known weaknesses of how SSL
and TLSv1.0 implement CBC-mode using chained initialization vectors [11].
Another weakness is that TLSv1.0 was vulnerable to side channel attacks
that abused unauthenticated padding in CBC-mode encryption [33, 188].
Implementations were patched by closing these side channels [114].

OVERVIEW OF SELECTED ATTACKS ON TLS AND WPA 7

The above issues were addressed in the release of version 1.1 of TLS [42]. While
the previous padding side channels attacks against CBC-mode encryption were
now addressed in the standard, there was still a small but exploitable timing
side channel left [3, 6]. Vulnerable implementations had to be patched to remove
this timing side channel. Version 1.2 was published in 2008 and mainly added
support for more modern cipher suites, such as the usage of SHA-256, and
support for authenticated encryption ciphers (e.g. AES-GCM) [43]. These latest
versions of TLS were found to be vulnerable against client impersonation attacks,
which rely on a clever combination of the various types of handshakes that TLS
supports [24]. The draft specification of TLSv1.3 addresses this attack, along
with several other improvements [44].

1.3 Overview of Selected Attacks on TLS and WPA

This section provides an overview of recent attacks on SSL/TLS and WPA. We
first cover attacks that abused (known) weaknesses in older protocols, and that
had a significant influence on the adoption of new protocols. These attacks
highlight that at times sufficiently practical and detrimental attacks were needed
in order to motivate people in disabling old and weak protocols. Finally, we
go over other noteworthy attacks, to provide a broader context for the results
presented in this dissertation.

1.3.1 The power and necessity of convincing attacks

Five years ago Facebook did not offer HTTPS by default to all its users [105].
Similarly, Google and Twitter also did not offer HTTPS by default [149, 170].
Instead, they only used HTTPS to protect the transmission of passwords when
logging in. Once logged in, they fell back to using insecure connections, allowing
an adversary to trivially intercept session cookies and impersonate the user.
Moreover, this practice facilitated SSL/TLS stripping attacks [103], generally
still allowing an active attacker to intercept a user’s password. One reason
why SSL/TLS was not yet widely adopted was due to the performance cost of
encryption, and in particular key agreement. However, around 2010 companies
such as Google showed that the overhead of SSL/TLS is no longer a concern [87].
For example, they were able to enable HTTPS by default on Gmail without
requiring additional machines or hardware. Combined with the increased public
awareness that accounts can get hijacked on websites that do not always use
HTTPS [92], we believe this motivated companies to finally adopt HTTPS. The
increased public awareness was caused by FireSheep [48, 92]: an easy to use

8 INTRODUCTION

Firefox extension that monitors nearby Wi-Fi networks, allowing one to trivially
intercept session cookies to hijack accounts on widely used networks [30].

In 2006 Bard introduced an attack against SSL and TLSv1.0 that abused
the predictability of Initialization Vectors (IVs) used in Cipher Block
Chaining (CBC) modes [11]. Essentially, SSL and TLSv1.0 do not generate a
new IV for every message, but reuse the previous ciphertext block as an IV,
making it possible to mount an attack that can recover low entropy information.
Bard hoped his attack would speed-up the adoption of TLSv1.1 or higher.
Unfortunately, it did not significantly increase adoption rates. However, in
2001, Duong and Rizzo implemented a more practical variant of Bard’s attack
which they called BEAST [46]. Perhaps the most influential and novel aspect
of BEAST is the attack scenario: they assume an adversary can run malicious
code inside the victim’s browser, and monitor encrypted network traffic. While
this attack received a large amount of media attention, and hence made people
more aware of the issues with TLSv1.0, the adoption of TLSv1.1 or higher still
remained relatively low. As a result, to mitigate the BEAST attack against
SSLv3 or TLSv1.0, the recommendation was to use RC4 [142].

After TLSv1.0 was found to be vulnerable to side channels attacks that relied on
the presence of unauthenticated padding in CBC-mode cipher suites [33, 188],
later versions of TLS explicitly closed these side-channels [42, 43]. In particular,
versions 1.1 and 1.2 contain the following countermeasures (emphasis mine):

[..] compute the MAC even if the padding is incorrect, and only
then reject the packet. For instance, if the pad appears to be
incorrect, the implementation might assume a zero-length pad and
then compute the MAC. This leaves a small timing channel, since
MAC performance depends to some extent on the size of the data
fragment, but it is not believed to be large enough to be exploitable,
due to the large block size of existing MACs and the small size of
the timing signal.

Strangely, they did not address all timing-based side channel attacks, believing
these would not be exploitable in practice. It took a successful attack before
people realized and accepted that this timing difference is exploitable [6].
Tedious patches were required to properly address this timing side channel [3].

Many SSL and TLS implementation include several old and weak cipher suites,
including export ciphers suites that are deliberately weakened to comply with old
export regulations on cryptography. In attacks such as FREAK [23], Logjam [1],
and SLOTH [25], it was shown that supporting these weak ciphers may introduce
critical vulnerabilities. As a result, it is now recommended to disable support
of these weak ciphers suites [2, 78].

OVERVIEW OF SELECTED ATTACKS ON TLS AND WPA 9

In 2016 Aviram et al. found that 17% of all HTTPS servers still support the
outdated SSLv2 protocol [10], in spite of it being prohibited in 2011 [169]. They
showed that these SSLv2 servers can be used as an oracle to decrypt a (modern)
RSA-based TLS handshake, under the condition that the older SSLv2 server
uses the same private key as the modern TLS server. Their attack is based on a
variant of the Bleichenbacher RSA padding oracle attack [28]. Due to this new
attack, people are more serious about disabling support of SSLv2 [45, 76, 140].

In 2003 it was demonstrated that LEAP, an old authentication mechanism
that can be used in enterprise WPA networks, was vulnerable to dictionary
attacks [194]. Moreover, around this time the general advice was to run these
old authentication mechanism inside a TLS tunnel [9]. However, this practice
was never adopted for LEAP. While Cisco warned to stop using LEAP [40],
Apple by default continued to support this outdated authentication mechanism.
Only in 2014, after it was shown that LEAP was also vulnerable against man-
in-the-middle and impersonation attacks, did Apple disable it [145].

1.3.2 Other prominent attacks

Two other attacks that received significant attention from the security community
were CRIME and BREACH [63, 144]. The CRIME attack abuses compression
at the TLS level to recover cookies. In contrast, the BREACH attack abuses
compression at the HTTP level to recover secret information contained in
web pages (e.g., cross site request forgery tokens). They can be prevented by
disabling compression at the TLS or HTTP layer, respectively.

One of the more noteworthy attacks against enterprise WPA networks is the one
by Cassola et al. [34]. These networks typically require a username and password
for authentication. Cassola et al. show how to bypass server identity checks in
order to obtain a man-in-the-middle position, to then intercept users’ credentials.
In enterprise WPA networks, clients normally protect against man-in-the-middle
attack by pinning (or preconfiguring) the public key of the authentication server.
This check can be bypassed by advertising a network with a visually similar
SSID. For example, if the target network is called “Enterprise”, they create
a rogue AP with the SSID “Enterprise␣”. In the interface of most operating
systems, both SSIDs are visually identical. When the victim connects to the
rogue network, no warning is shown since there is no expected public key
configured for this malicious SSID. Nearly all victims proceed by (re-)entering
their credentials [34], effectively handing them over to the adversary. In order
to carry out the attack, it is necessary to hide the presence of the original AP.
Cassola et al. accomplished this using a state-of-the art setup costing more than

10 INTRODUCTION

$3600, which enabled them to selectively jam all beacons and probe responses,
making the real AP invisible to nearby devices [34].

1.4 A Brief History of RC4

The RC4 algorithm is one of the most widely used stream ciphers. For example,
in 2013 it was used in more than half of all TLS connections in an attempt to
mitigate several attacks against CBC-mode encryption schemes [5, 6, 33, 46].
Additionally, RC4 is used in WEP and WPA-TKIP to encrypt packets [192].
Because of its popularity, it plays an important role in this dissertation.
Therefore we will briefly go over the history of RC4, and highlight early (but
ineffective) warnings that indicated this reliance on RC4 was far from ideal.

1.4.1 A secret computer code

Rivest designed RC4, short for Rivest Cipher 4 or Ron’s Code 4, in 1987
when working for the company RSA Data Security. It was added to RSA’s
cryptographic library, and its first commercial usage was in Lotus Notes [143].
While initially a trade secret, it was anonymously posted to the Cypherpunks
mailing list on 9 September 1994 [8]. Five days layer, the leaked source code
was also posted on the sci.crypt Usenet newsgroup by David Sterndark [162].
Though it’s now common practice to share the description of RC4 —most works
that analyze RC4 contains its complete description— this was considered a
bold move at the time. Indeed, its anonymous posting through the jpunix
remailer caused a brief panic for John Perry, whom at the time was responsible
of running the remailer. Someone informed his employer that John’s remailer
was being used to “send copy-written software as well as encrypted software
out of the country” [130]. In response, John shutdown the remailer for a few
days. Additionally, in the post to Usenet, David wrote:

I am shocked, shocked, I tell you, shocked, to discover
that the cypherpunks have illegaly and criminally revealed
a crucial RSA trade secret and harmed the security of
America by reverse engineering the RC4 algorithm and
publishing it to the world.

That people living in the US were genuinely concerned with posting the source
code of RC4 can also be seen in the reluctance to post it, under their real name,
to the sci.crypt group. For instance, Bruce Schneier was not willing to repost
the code at the time [152], and another member was only comfortable with

A BRIEF HISTORY OF RC4 11

posting the headers of the original leak so people could find the leaked code
themselves [108].

The leaking of RC4 even got picked up by The New York Times [102] and The
Wall Street Journal [81], where they referred to it as an act of business espionage.
The response of the RSA Data Security executives to the leak was [102]:

RSA considers this misappropriation to be most serious. Not only
is this act a violation of the law, but its publication is a gross abuse
of the Internet.

In reality the leaking of RC4 is a good example of Kerckhoffs’s principle: in
a properly designed cryptographic system, security should not depend on the
secrecy of an algorithm, but only on the secrecy of the key.

The name RC4 was trademarked by RSA Data Security in 1993 [148]. To avoid
trademark issues, modern standards often use ARCFOUR or ARC4 (standing
for alleged RC4) to refer to RC4 [79].

1.4.2 Known flaws and early warnings

In January 2006, RFC 4345 was published, which added a new cipher mode
to SSH where RC4 is used but the first 1536 bytes of keystream must be
discarded [70]. These discarded bytes must be kept secret. Furthermore, they
recommend that RC4 should not be used when the same secret is repeatedly
encrypted [70, §5]:

Weak distinguishers can operate on any part of the keystream,
and the best ones, described in (Fluhrer and McGrew, [56])
and (Mantin, [56]), can use data from multiple, different keystreams.
A consequence of this is that encrypting the same data (for instance,
a password) sufficiently many times in separate Arcfour keystreams
can be sufficient to leak information about it to an adversary. It is
thus recommended that Arcfour [..] not be used for high-volume
password-authenticated connections.

Interestingly, this warning appears to have correctly anticipated the recent type
of attacks on RC4 [5, 60, 182], though the RFC focusses on attacks against SSH
instead of HTTPS. It is also worth noting that RC4 was explicitly mentioned
as not being FIPS-approved for use in TLS implementations [35].

More intriguingly, in a StackExchange question on August 2012, a user by the
pseudonym of lxgr also accurately predicted the recent attacks on RC4. He

12 INTRODUCTION

was inspired by the RFC mentioned above, and asked whether it is possible
to decrypt a password that is repeatedly transmitted over an IMAP or SMTP
connection [93]. More generally, he was thinking about “protocols that always
send the password at a well known offset”. Roughly a week later Scott Fluhrer
answered this question under his poncho pseudonym1, and estimated that
8 billion encryptions of a password are sufficient to recover it. Unfortunately,
he did not specify how he derived this estimate, only that he “was able to
successfully recover the exact password by analyzing the statistics for the
streams”. One year later AlFardan et al. [5] showed that roughly 233 encryptions
are sufficient to recover a 16-byte secret. This appears to be in line with the
prediction of Fluhrer. And in 2015, the attack scenario against IMAP passwords
was worked out by Garman et al., showing around 226 encryptions of a password
are sufficient to recover it with high probability [60].

The above examples demonstrate that, at the time, a careful evaluation of
research results on RC4 showed the cipher should be avoided in practice.
However, most chose to ignore these warnings, disregarding the weaknesses as
purely theoretic and academic. In practice, they claimed, an attack would be
infeasible (some selected examples of such claims are [132, 133, 141]).

1.5 Other Contributions

The results presented in this dissertation are a subset of the research that has
been performed over the last four years. In particular, this dissertation contains
my works that are related to the security of WPA-TKIP and TLS. Other works
and ongoing projects are listed below, along with a brief description of the
obtained results.

Stateful Declassification Policies for Event-Driven Programs

This work proposes a novel mechanism for enforcing information flow policies
with support for declassification on event-driven programs. The declassification
policy specifies for each confidential event what information in the event can
be declassified directly. Additionally, it can specify that aggregate information
computed over all confidential events seen so far can be declassified. It is shown
that such declassification policies are useful in the context of JavaScript web
applications. An enforcement mechanism is presented and implemented in a
browser, and its soundness and precision is proven. This work was conducted

1Scott Fluhrer also used the poncho pseudonym in the Usenet sci.crypt newsgroup.

OTHER CONTRIBUTIONS 13

in collaboration with Willem De Groef, Dominique Devriese, and Tamara Rezk
from INRIA, France, under the supervision of Frank Piessens.

Publication data:

M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk. “Stateful
declassification policies for event-driven programs”. In: Proceedings of the
27th IEEE Computer Security Foundations Symposium (CSF ’14). IEEE,
July 2014, pp. 293–307

Why MAC Address Randomization is not Enough: An Analysis
of Wi-Fi Network Discovery Mechanisms

This work presents several novel techniques to track (unassociated) mobile
devices by abusing features of the Wi-Fi standard. In other words, it shows that
using random MAC addresses, on its own, does not guarantee privacy. This work
was conducted under the supervision of Frank Piessens, and in collaboration
with the following researchers from INRIA, France: Célestin Matte, Mathieu
Cunche, and Leonardo Cardoso.

The weaknesses that we discovered in Windows 10’s implementation of MAC
address randomization have been reported to Microsoft, and they are in the
process of addressing these issues. Results of this work have also been presented
by Mathieu Cunche at the IEEE working group responsible for developing
recommended practices and privacy considerations for 802 technologies [178].
Our findings are currently being passed on to the 802.11 working group, meaning
the issues we discovered will likely be addressed in an upcoming 802.11 standard.

Publication data:

M. Vanhoef, C. Matte, M. Cunche, L. Cardoso, and F. Piessens. “Why
MAC Address Randomization is not Enough: An Analysis of Wi-Fi
Network Discovery Mechanisms”. In: Proceedings of the 11th ACM SIGSAC
Symposium on Information, Computer and Communications Security (ASIA
CCS ’16). ACM, May 2016, pp. 413–424

Defeating MAC Address Randomization Through Timing At-
tacks

This work presents an attack to defeat Wi-Fi-based MAC address randomization
purely based on the timing of network scans. In particular, it relies on the
inter-frame arrival time of probe requests, which forms a rough signature of

14 INTRODUCTION

a device. The main research effort of this work was done by Célestin Matte,
who collaborated with me, Franck Rousseau (from Grenoble INP, France) and
Mathieu Cunche.

Publication data:

C. Matte, M. Cunche, R. Franck, and M. Vanhoef. “Defeating MAC
Address Randomization Through Timing Attacks”. In: Proceedings of
the 9th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec ’16). July 2016

Predicting, Decrypting, and Abusing WPA2/802.11 Group
Keys

This work analyzes the generation and management of 802.11 group keys. These
keys are used to protect broadcast and multicast frames. It is argued that the
random number generator proposed in the 802.11 standard may not provide
a sufficient amount of entropy, and this argument is confirmed by predicting
the generated groups keys on several platforms. Additionally, we found that
an adversary can force usage of RC4 to encrypt the group key when it is being
transferred to clients in the 4-way handshake. Finally, we demonstrate that
knowledge of the group key is sufficient to decrypt and inject both broadcast
and unicast traffic. This research was conducted under the supervision of Frank
Piessens.

Publication data:

M. Vanhoef and F. Piessens. “Predicting, Decrypting, and Abusing
WPA2/802.11 Group Keys”. In: Proceedings of the 25th USENIX Security
Symposium (USENIX Security ’16). USENIX Association, Aug. 2016

Request and Conquer: Exposing Cross-Origin Resource Size

This work explores various techniques that can be employed to reveal the size
of resources hosted on the web. Several design flaws in the storage mechanisms
of browsers are presented, which allow an adversary to determine the exact size
of any cross-origin resource. Furthermore, a novel (link-layer) size-exposing
technique against Wi-Fi networks is presented. The severity of these attacks are
evaluated in multiple real-world attack scenarios. For instance, our attacks can
be used to deanomize users, infer medical information on the victim, etc. The
main research effort of this work was done by Tom Van Goethem, with whom I
collaborated under the supervision of Frank Piessens and Wouter Joosen.

OUTLINE OF THE DISSERTATION 15

Client

Wireless router

Server

Data link: WPA-TKIP (chapter 2, 3, 4)

Physical layer: Wi-Fi (chapter 3)

RC4 in TLS and WPA-TKIP (chapter 4)

Figure 1.2: Visualization of the outline of this dissertation.

Publication data:

T. Van Goethem, M. Vanhoef, F. Piessens, and W. Joosen. “Request
and Conquer: Exposing Cross-Origin Resource Size”. In: Proceedings of
the 25th USENIX Security Symposium (USENIX Security ’16). USENIX
Association, Aug. 2016

1.6 Outline of the Dissertation

The remainder of this dissertation is structured as follows (see Fig. 1.2).

Chapter 2: Practical Verification of WPA-TKIP Vulnerabilities

In this chapter we study WPA-TKIP and present three attacks against it. The
first attack is a Denial of Service attack that requires the injection of only two
frames every minute. The other two attacks allow an attacker to decrypt and
inject a select number of packets. We demonstrate the practicality of these
attacks by performing a portscan on any client, and by decrypting arbitrary
packets sent towards a client. In the next two chapters, we rely on these injection
and decryption attacks to highlight the severity of weaknesses in WPA-TKIP.

16 INTRODUCTION

Chapter 3: Advanced Wi-Fi Attacks Using Commodity Hardware

In this chapter our goal is to attack WPA-TKIP when used as a group cipher, i.e.,
when used to encrypt broadcast or multicast packets. In order to accomplish this,
we require a man-in-the-middle position that allows us to reliably manipulate
encrypted Wi-Fi traffic. To obtain such a position, we first study the security
guarantees of the Wi-Fi protocol at the physical layer, and show that we can
break certain assumptions by modifying the firmware of commodity Wi-Fi cards.
This enables use to implement a reliable channel-based man-in-the-middle attack
using only commodity Wi-Fi cards. We then demonstrate how this position can
be used to break WPA-TKIP when it is used to protect broadcast or multicast
traffic.

Chapter 4: Breaking RC4 in WPA-TKIP and TLS

In this chapter we search for new biases in the keystream of RC4 using statistical
hypothesis tests. Then we develop novel techniques that exploit these biases
to recover a repeatedly encrypted secret. We show how these techniques can
be applied to attack WPA-TKIP and TLS. In the attack against WPA-TKIP
we first generate a large number of identical packets. This packet is then
decrypted, allowing us to recover the MIC key, which can be used to carry
out the injection and decryption attacks presented in Chapter 2. We also
attack RC4 when used in TLS, and show how to decrypt a secure cookie by
generating, and subsequently capturing, roughly one billion encrypted HTTP
requests containing the cookie. Finally, the performance of both attacks are
evaluated in realistic scenarios.

Chapter 5: Conclusion

We end by summarizing the contributions of this dissertation, reflect on the
obtained results, and mention open problems and interesting directions for
future work.

Chapter 2

Practical Verification of
WPA-TKIP Vulnerabilities

“The right thing. . . what is it? I wonder, if you do the
right thing. . . does it really make everyone happy?”

— Moon Children, The Legend of Zelda: Majora’s Mask

Abstract

We describe three attacks on the Wi-Fi Protected Access Temporal Key Integrity
Protocol (WPA-TKIP). The first attack is a Denial of Service attack that can
be executed by injecting only two frames every minute. The second attack
demonstrates how fragmentation of 802.11 frames can be used to inject an
arbitrary number of packets, and we show that this can be used to perform
a portscan on any client. The third attack enables an attacker to reset the
internal state of the Michael algorithm. We show that this can be used to
efficiently decrypt arbitrary packets sent towards a client. We also report on
implementation vulnerabilities discovered in some wireless devices. Finally, we
demonstrate that our attacks can be executed in realistic environments.

17

18 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

Table 2.1: Number of Wi-Fi networks supporting a given encryption
scheme, for several regions, in November 2013, December 2014, and
April 2016. Note that one network can support multiple schemes.

Region Open WEP TKIP CCMP #Networks
2013: Leuven 381 618 3 307 3 143 5023

Heverlee 121 288 1 212 1 149 1 886
2014: Leuven 237 289 3 850 5 096 5 993

New Orleans 340 85 848 1 443 1 948
2016: Leuven 231 176 4 364 6 963 7 586

Preface

This chapter was previously published as:

M. Vanhoef and F. Piessens. “Practical verification of WPA-TKIP
vulnerabilities”. In: Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security (ASIA CCS ’13).
ACM, May 2013, pp. 427–436

The main research effort of this work was lead by Mathy Vanhoef with the
guidance of Frank Piessens.

Three years after the publication of this chapter, the Wi-Fi Alliance changed its
stance on deprecating, and eventually disallowing, WPA-TKIP. That is, effective
16 March 2016, they prohibit a certified device from offering a TKIP-only option
in the device’s primary interface [52]. However, the device can still be configured,
through a secondary interface, to allow only TKIP. In practice this means only
command-line tools can configure a router to only enable TKIP [37]. More
worrisome, the Wi-Fi Alliance still allows (but discourages) the presence of a
mixed network option in the main interface. In a mixed network, both TKIP
and AES-CCMP can be used. Hence old devices can continue to use TKIP, while
newer devices can use the more secure AES-CCMP. These changes in policy
are surprising, since it effectively means TKIP is still allowed and supported.

Over the last three years we have also kept track of how many networks support
WPA-TKIP. In particular, we surveyed wireless networks in both late 2014 and
early 2016. The results of these surveys are shown in Table 2.1. In December
2014 we gathered data in two municipalities: first in Leuven (Belgium), and
then in New Orleans (United States). All combined we detected 7941 networks,
of which 7352 were using some form of encryption. Compared to our initial
statistics from 2013, the number of encrypted networks that only allow TKIP

INTRODUCTION 19

fell from 19% to 6%. However, the number of encrypted networks that support
both TKIP and AES-CCMP merely decreased from 71% to 64%. In a second
capture around April 2016 in Leuven, we detected 7 586 networks, and 7 355
of them were using encryption. We found that 59% of encrypted networks
still support TKIP, though the number of encrypted networks that only allow
TKIP decreased to 3%. Based on these observations we can conclude that, even
though the Wi-Fi Alliance is trying to discourage the use of TKIP, more than
half of all encrypted networks still support it.

2.1 Introduction

Modern wireless networks are based on the IEEE 802.11 set of standards. These
networks have gained popularity over the years and are nowadays widely used
in different scenarios, ranging from personal use to high-profile commercial
use. Because of the nature of wireless transmission, special care must be taken
to preserve the privacy and security of data sent over wireless networks. The
original IEEE 802.11 standard supported a basic security algorithm called Wired
Equivalent Privacy (WEP). Unfortunately WEP suffers from major design flaws
and is considered completely broken [27, 57, 163].

An improvement of WEP is the Temporal Key Integrity Protocol (TKIP).
Created as an intermediary protocol to the more secure CCMP, it was designed
to run on existing WEP hardware [192, §11.4.1]. This affected many of the
design decisions [51, 192]. Most notably it still uses WEP encapsulation and
relies on a weak Message Integrity Check (MIC) algorithm called Michael [51].
Because the Michael algorithm provides inadequate security [72, 164, 193]
countermeasures were added. TKIP and its countermeasures are explained in
detail in Sect. 2.2.

Surprisingly, TKIP is still supported by a large number of networks. In
Section 2.6.1 we report on an experiment, carried out in late November 2012,
where we collected information about wireless network usage in two Belgian
municipalities. We found that 71% of encrypted networks support TKIP.
Furthermore, 19% of networks using encryption only allowed TKIP.

In this chapter we present a novel Denial of Service (DoS) attack on TKIP.
Moreover, we take two ideas suggested in a paper by Beck [18] and significantly
improve on them. In contrast with the paper of Beck, our improvements are
also implemented and tested in practice. The first idea applies the known
fragmentation attack on WEP [27] to TKIP. This allows an attacker to send an
arbitrary number of packets to a client. As a proof of concept we implemented
a port scanner. The second idea is to construct a prefix that resets the internal

20 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

Unauthenticated
Unassociated

Authenticated
Unassociated

Authenticated
Associated

Authentication Deauthentication

(Re)association Disassociation

D
eauthentication

Figure 2.1: States a client can be in when connecting to a wireless
network.

state of the Michael algorithm. We will show that this enables us to efficiently
decrypt arbitrary packets sent towards a client. We also report on several
vulnerabilities found in the implementation of some wireless adapters and drivers.
All attacks are designed against Wi-Fi networks operating in infrastructure
mode, and are tested when authentication is done using a passphrase and when
using a personal username and password.

The remainder of this chapter is organised as follows. Section 2.2 describes
the details of the TKIP protocol. In Section 2.3 we explain the Denial of
Service (DoS) attack. Section 2.4 discusses our fragmentation and portscan
attack. In Section 2.5 the Michael state reset and decryption attack is explained.
Section 2.6 investigates whether TKIP is still supported in practice and discusses
experimental evaluation of our attacks. Finally, we summarise related work in
Sect. 2.7 and conclude in Sect. 2.8.

2.2 Temporal Key Integrity Protocol (TKIP)

This section describes the relevant parts of the IEEE 802.11 standard with a
focus on the TKIP specification [192, §11.4.2]. We will also explain one of the
first attacks on TKIP, called the Beck and Tews attack.

TEMPORAL KEY INTEGRITY PROTOCOL (TKIP) 21

2.2.1 Connecting

A client connects to a wireless network by first authenticating and then
associating with the Access Point (AP). A state diagram of this process is
shown in Fig. 2.1. There are two authentication methods. The first one is
called Shared Key authentication and was based on WEP. Unfortunately this
method is inherently insecure. Nowadays only the second method is used,
called Open System authentication. As the name implies it imposes no real
authentication. It is just a formality, and if TKIP or CCMP is used the actual
authentication will happen at a later stage. Once authenticated, the client sends
an association request to the AP. This request includes the secure authentication
and encryption protocol it wants to use. If the AP supports the requested
protocols, the association is successful, and the AP informs the client that the
association has completed.

Once authenticated and associated, a 4-way handshake is performed when
using TKIP. The handshake negotiates the keys used by TKIP and is defined
using IEEE 802.1X EAPOL-Key frames. This results in a pairwise transient
key (PTK) that is shared between the AP and client. From the PTK a 256-bit
temporal encryption key (TK) is derived, which is split into a 128-bit encryption
key, and two 64-bit Message Integrity Check (MIC) keys: one for AP to client
communication and one for client to AP communication. These keys are renewed
after a user-defined interval, commonly called the rekeying timeout. Most APs
by default use a timeout of 1 hour. After a key has been negotiated, the client
and AP can send encrypted data frames to each other.

The client or AP can end the connection at any time by sending a disassociation
or deauthentication message. The older versions of the 802.11 standard left
these messages unprotected. This means an attacker can forge them and forcibly
close the connection between an AP and client. Continuously injecting such
forged deauthentication packets causes a DoS attack [123]. This attack is
well known and is called the deauthentication attack. It can be prevented
by enabling protected management frames, a feature introduced in the IEEE
802.11w amendment [192, §4.5.4.9].

2.2.2 Sender

When sending a TKIP frame first the MIC value of the MAC Service Data Unit
(MSDU) is calculated. The purpose of the MIC is to protect both the integrity
and authenticity of the message. Recall that the MSDU is the complete data
packet that needs to be transmitted, which is fragmented into smaller MAC
Protocol Data Units (MPDU) fragments if it is too big to be sent at once.

22 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

6 6 1 3 var
Destination Source Priority Reserved Payload

Figure 2.2: Input data given to the Michael algorithm. Destination
and source represent MAC addresses. If the QoS extension is not
used, priority is set to zero. Numbers denote the size of the field in
bytes, where var defines a variable-length field.

8 var 8 4

802.11 header TSC Data MIC ICV

←− unencrypted −→ ←− encrypted −→

Figure 2.3: Simplified format of an unfragmented TKIP frame.

The MIC is calculated over the MSDU by the Michael algorithm. Michael is a
message authentication algorithm taking two inputs: the input data to calculate
the MIC of, and a secret key. The input data given to the Michael algorithm is
shown in Fig. 2.2. For calculating the MIC a different secret key is used for AP
to client communication than is used for client to AP communication. Both
MIC keys are derived from the PTK. The calculated MIC value is 8 bytes long.
However, the Michael algorithm is not sufficiently secure. In particular it is
possible to efficiently retrieve the MIC key given the data and calculated MIC
value [164]. The designers realized this and included countermeasures in an
attempt to mitigate potential attacks. These countermeasures are essential to
our attacks and are discussed in detail in Sect. 2.2.3.

The MSDU concatenated with the MIC is fragmented into MAC Protocol Data
Units (MPDUs) if necessary. At most 16 fragments (MPDUs) are supported.
Each MPDU then undergoes WEP encapsulation. This is done so TKIP can be
implemented on old WEP hardware. WEP encapsulation appends an Integrity
Check Value (ICV) to the MPDU, which is simply a 32-bit CRC computed over
the given data. Then it encrypts the packet using the RC4 stream cipher. The
key used for encryption is called the WEP seed and is calculated by a mixing
function that combines the temporal key (TK), transmitter MAC address, and
the TKIP Sequence Counter (TSC). Figure 2.3 illustrates the final layout of an
unfragmented TKIP frame.

Finally the resulting link-layer frame is constructed by adding the appropriate
802.11 headers. This includes the TSC, which is a replay counter that increases
every time a MPDU frame is sent successfully. In Fig. 2.3 the TSC is given
a size of 8 bytes, but in reality the TSC is only 6 bytes long. The remaining

TEMPORAL KEY INTEGRITY PROTOCOL (TKIP) 23

bits of the field are used for other purposes or are reserved. To prevent replay
attacks the receiver drops frames that are not received in order. That is, the
counter must always be increasing though gaps are allowed.

2.2.3 Receiver

When receiving a TKIP frame the client or AP first checks if the TSC is in
order. If not, the frame is silently dropped. It then proceeds by checking
if the ICV is correct. If not, the frame is also silently dropped. Once all
MPDUs are received they are reassembled into the original MSDU and its
MIC value is verified. If it is correct the frame is accepted and the receiver
updates its TSC replay counter, otherwise the TKIP countermeasures kick
in. These countermeasures were added to detect active attacks against the
weak Michael algorithm [192, §11.4.2.4.1]. One class of such active attacks
involves injecting multiple forged packets in the hope at least one of them has a
valid MIC. If such a packet is found the attacker learns the MIC key for the
particular communication direction, as the MIC key can be derived when given
the plaintext data and calculated MIC value.

The countermeasures are as follows [192, §11.4.2.4]:

• When a client receives a MSDU with an invalid MIC value it will send a
MIC failure report to the AP.

• An AP receiving an invalid MIC value does not broadcast a MIC failure
report but only logs the failure.

• If the AP detects two MIC failures within one minute all TKIP clients
connected to the AP will be deauthenticated and the AP will not receive
or transmit any TKIP-encrypted data frames for one minute. Once this
minute is passed clients can reassociate with the AP and negotiate a new
PTK.

2.2.4 Quality of Service extension

Quality of Service (QoS) enhancements for wireless traffic were first defined in
the IEEE 802.11e amendment. Most modern APs support this amendment [116].
It defines 8 different channels, each having their own QoS needs. A channel
is defined by its Traffic Identifier (TID) and is internally represented by 4
bits, making some devices actually support 16 different channels. For the
implementation of our attacks we assume only 2 QoS channels exist, though

24 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

devices supporting more channels are also susceptible to our attacks. Tests
showed that our assumption holds in practice. Additionally we note that by
default most traffic is sent over the first QoS channel.

Essential for us is that each QoS channel has a separate TSC [192, §11.4.2.6].
This means that we can capture a packet transmitted on one QoS channel and
replay it on another QoS channel having a lower TSC value. This enables an
attacker to pass the TSC check, though he still has to pass the ICV and MIC
checks in order to forge a message.

2.2.5 Beck and Tews attack

One of the first known attacks on TKIP was discovered by Beck and Tews [164].
It was a variation of the chopchop attack on WEP [66] and works by decrypting
a packet one byte at the time. Because this attack is used as the basis for the
fragmentation and Michael reset attack it will be explained in detail.

First we will explain the chopchop attack when applied to a TKIP packet. It
begins by taking an encrypted packet and removing the last byte. Let C denote
the obtained shortened encrypted packet. With high probability the ICV of C
is invalid. However, it can be corrected if one knows the plaintext value of the
removed byte. Correcting the ICV of the unencrypted shortened message can be
represented by M ′ = M ⊕D, where M is the unencrypted shortened message,
D is the correction being applied, ⊕ denotes the XOR operator, and M ′ is the
unencrypted shortened message with a valid CRC. It has been proven that D
only depends on the plaintext value of the removed byte [66]. Interestingly we
can apply this modification directly to C. Letting K denote the keystream used
to encrypt the packet we get that C = M ⊕K. We can now make the following
derivation:

C ′ = M ′ ⊕K = (M ⊕D)⊕K (2.1)

= (M ⊕K)⊕D (2.2)

= C ⊕D . (2.3)

The second equation follows from the associativity of the XOR operator. We
see that C ′ is the encrypted shortened packet with a valid ICV, and that it can
be obtained by directly applying the modification to the encrypted shortened
packet C.

This technique can be used to decrypt TKIP packets sent towards the client as
follows. An attacker tries all 28 possible values of the removed byte. For each
guess the modification D is applied and the resulting packet is injected with

DENIAL OF SERVICE 25

a different priority y. Assuming that QoS channel y has a lower TSC it will
pass the TSC check, and the client will decrypt the packet. Then the ICV is
verified. If the guess of the attacker was wrong the ICV is invalid and packet
will silently be dropped (without generating a MIC failure). On the other hand,
if the guess was correct, the ICV will be valid. However, with high probability
the MIC value of the shortened packet will be wrong. As a result the client
sends a MIC failure report. Thus a correct guess can be detected by listening
for the corresponding MIC failure. Note that an AP isn’t vulnerable to the
attack because it never sends MIC failure reports. To avoid triggering the TKIP
countermeasures at most one byte can be decrypted each minute.

Because we must wait one minute after decrypting a byte, it is infeasible to
decrypt all bytes using this method. Instead the Beck and Tews attack targets
an ARP reply packet and decrypts only the ICV and the MIC value. This
takes on average 12 to 15 minutes. The remaining content of the packet is
guessed. A particular guess can be verified by checking if the calculated ICV
of the predicted packet equals the decrypted ICV. If they match, the guess
is very likely correct. Once the ARP reply has been decrypted we can use
the inverse Michael algorithm to calculate the MIC key used for AP to client
communication [164]. Combined with the keystream of the decrypted ARP
reply, an attacker can now forge 3 to 7 packets having a length smaller than
or equal to the ARP reply. The precise number of packets that can be forged
depends on the number of supported QoS channels.

2.3 Denial of Service

This section describes a novel attack we discovered. When closely inspecting
the QoS extension to TKIP we notice that the keystream is independent of
the priority (i.e., QoS channel) used to transmit the frame. On the other hand
the calculated MIC value does depend on the priority of the MSDU. Say that
we capture a packet sent with priority x and replay it with a different priority
y. Assuming QoS channel y has a lower TSC it will pass the TSC check, and
the receiver will use the correct keystream to decrypt the packet. As a result
it will also pass the ICV check. However, the changed priority will cause the
receiver to expect a different MIC value. Hence a MIC failure occurs. Replaying
this packet a second time will trigger a second MIC failure. After these two
MIC failures the AP will shut down all TKIP traffic for 1 minute. Repeating
this process every minute will prevent any TKIP protected communication,
effectively causing a DoS. If the network does not use QoS we can forge the
QoS header when replaying the packet. As discovered by Morii and Todo,
most clients will not check whether the network is actually using QoS and

26 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

simply accept the packet [116]. Therefore the only requirement is that one or
more clients support the QoS extension, which is true for most modern wireless
adapters [116].

To implement the attack we had to patch the compat-wireless drivers of Linux.
The original driver modified the QoS header when in monitor mode, which
interfered with our attack. Monitor mode is a feature supported by some
wireless adapters and drivers allowing one to capture all wireless traffic. It also
enables injection of arbitrary 802.11 frames. Our tool monitors the traffic of a
network and shows whether it supports TKIP or QoS. Additionally it shows a
list of connected clients and basic statistics such as the cipher suite it is using,
number of MIC failures, number of association failures, etc. When a vulnerable
TKIP packet is captured its priority is changed and the packet is replayed. If
the network isn’t using QoS our tool will forge the QoS header. We show in
Sect. 2.6 that our implementation was found to be very reliable.

Our attack appears to be one of the more effective DoS attacks that can be
launched against a network using TKIP. The simplicity of the attack not only
makes it easy to implement and debug, it also assures it is applicable in many
real world environments. In Section 2.7 a thorough comparison is given to
currently known DoS attacks. Disabling the TKIP countermeasures prevents
the attack. However, most APs do not provide this option, and with good
reason. As mentioned in Sect. 2.2.3 the countermeasures were included to detect
active attacks against the weak Michael algorithm [51].

Another option to prevent the attack is to make the keystream dependent
on the priority. This entails a change in the protocol, meaning all devices
implementing TKIP would have to be updated. Though preventing the attack,
such a modification does not appear feasible in practice.

2.4 Injection of More and Bigger Packets

The Beck and Tews attack allows forging 3 to 7 packets of at most 28 bytes [164].
Our goal is twofold: we want to inject both more and bigger packets. In this
section we assume the Beck and Tews attack has already been executed, meaning
we have obtained the MIC key for AP to client communication. Our technique
is similar to the fragmentation attack on WEP [27] and an improvement of a
suggested attack by Beck [18]. To the best of our knowledge, this is the first
time such an attack on TKIP has been implemented and proved to be possible.

INJECTION OF MORE AND BIGGER PACKETS 27

2.4.1 Exploiting fragmentation

Since we know the MIC key, sending additional packets only requires obtaining
new keystreams. Recall that each TSC corresponds to a different keystream.
Because RC4 is used, XORing an encrypted packet with its corresponding
unencrypted packet unveils the keystream used during encryption. Hence,
finding new keystreams reduces to predicting the content of encrypted packets.

All 802.11 packets start with a LLC and SNAP header of 8 bytes. If we know
whether it is an ARP, IP, or EAPOL packet, this header can be predicted.
Fortunately we can identify ARP and EAPOL packets based on their length,
and can consider everything else to be IP. The first byte of an IP packet consists
of the version and the header length, which is almost always equal to 0x45. The
second byte contains the Differentiated Services Field, and can be predicted
based on the priority of the 802.11 frame [123]. Finally the next 2 bytes,
representing the length of the IP packet, can be derived from the length of
the 802.11 frame. As a result we can predict the first 4 bytes of an IP packet.
Predicting the first 14 bytes of ARP packets is also possible. These bytes consist
of the hardware type and size, protocol type and size, request type, and finally
the MAC address of the sender. All these fields can be predicted in an IPv4
network. Because EAPOL packets are rarely transmitted we simply ignore them.
Our predictions can then be XORed with the encrypted packets, revealing the
first 12 bytes or more of the keystream.

These short keystreams are combined using fragmentation at the 802.11 layer.
As mentioned in Sect. 2.2.2 the 802.11 protocol allows a frame to be fragmented
into at most 16 MPDUs. Each MPDU must have a unique TSC value and is
encrypted with the keystream corresponding to that TSC. All fragments must
include an ICV, though the MIC value is calculated over the complete MSDU
and can be spread over multiple MPDUs. Using fragmentation to combine the
keystreams we can inject packets with 112 bytes of payload. Assuming there is
enough traffic on the network, we can inject an arbitrary number of packets.
Compared to the Beck and Tews attack this is a significant improvement.

2.4.2 Implementation: performing a portscan

Implementing the fragmentation attack required patching the compat-wireless
drivers of Linux. The original driver failed to correctly inject MPDUs, which
caused the attack to fail. Using our patched driver we successfully tested the
fragmentation attack against several devices, and found that our heuristics to
predict the first bytes of packets were very accurate (see Sect. 2.6). To reduce
packet loss we also detect whether the client acknowledged receiving the MPDU,

28 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

otherwise the MPDU is retransmitted. As a proof of concept we implemented
a port scanner. This requires injecting a large number of packets and is thus
ideal to test our fragmentation attack.

The port scanner is given a file containing the ports to scan and works by
injecting TCP SYN request to each port. The SYN packets do not contain
any options, hence there is enough keystream to inject them. The encrypted
TCP SYN-ACK reply is detected by its length. In practice most packets are
larger than a SYN-ACK packet, meaning it has a distinctive short length. After
scanning a port a TCP RST packet is always sent, even if no SYN-ACK was
detected. This is done to prevent the client from retransmitting a potentially
undetected SYN-ACK packet. Note that if the replies of the client can be sent
to an IP under our control, we have a bidirectional communication channel,
meaning we can connect to open ports.

The performance of the port scanner depends on several factors. First, recall
that it requires knowledge of the MIC key. Hence an attacker must first execute
the Beck and Tews attack, which on average takes between 12 to 15 minutes.
Second, the attacker must have access to a sufficient amount of keystream in
order to inject all TCP packets. This means there must be enough traffic on
the network. Third, the performance depends on the quality of the wireless
connection between the attacker and the victim. In particular, the attacker will
have to frequently retransmit packets if this connection is bad, reducing the
execution speed of the attack. Assuming the Beck and Tews attack has already
been executed, that there is enough keystream, and that we have a reliable
connection, scanning ports is fairly fast. That is, under these conditions we
were able to scan 500 ports within roughly three minutes.

The attack can be mitigated by preventing the Beck and Tews attack. This
means disabling the client from sending MIC failure reports, or using a short
rekeying time of 2 minutes or less [164].

2.5 Decrypting Arbitrary Packets

In this section we describe a state reset attack on the Michael algorithm and we
show how it can be used to decrypt arbitrary packets sent towards the client.

2.5.1 The Michael algorithm

The state of the Michael algorithm is defined by two 32-bit words (L,R) called
left and right. To calculate the MIC value of an 802.11 packet the state is first

DECRYPTING ARBITRARY PACKETS 29

initialised to the MIC key. Then the data shown in Fig. 2.2 is processed, which
is padded so that its length is a multiple of 4 bytes. Finally the calculation
is finalised and the resulting MIC value is outputted. All data is processed in
32-bit words by a block function.

The block function B(L,R) is an unkeyed 4-round Feistel-type construction,
taking as input a Michael state and returning a new state [192, §11.4.2.3.3].
When processing an input word M the next state is given by B(L ⊕M,R).
We will let L′ stand for L ⊕M . The block function can be inverted [193],
and its inverse is denoted by B−1. Note that we can predictably influence
L at the start of the block function using M . For convenience the notation
B((L,R),M) is used to represent B(L⊕M,R), denoting the new internal state
after processing M .

2.5.2 Michael state reset

If the Michael state ever returns to the initial state, all data processed so far
has no influence on the MIC value. This idea can be used to construct a prefix
packet which resets the state, allowing us to append a packet whose MIC value
is calculated only over the appended data. As suggested by Beck [18] this could
be done by appending two magic words to the prefix. These so-called magic
words are ordinary 32-bits data words, but chosen in such a way so they reset
the internal state of the Michael algorithm. Using them an attacker can append
any encrypted packet to the prefix without invalidating the MIC value of the
complete packet. Unfortunately Beck didn’t provide a thorough theoretical
analysis. We generalise the problem to finding a list of magic words that will
transform a start state (Ls, Rs) to an end state (Le, Re).

We could try to use just one magic word M1 to reset the state. In that case
B(Ls ⊕M1, Rs) must return (Le, Re). Assuming that processing a random
word M using the block function results in a random state, a guess for M1 can
be modelled as a Bernoulli trial with a success probability of 2−64. Since we
can try at most 232 values for M , finding a solution reduces to having the first
success after 232 trials. This follows a geometric distribution. We get

Pr[X ≤ 232] = 1−
(
1− 2−64)232

≈ 2.328 · 10−10 , (2.4)

where X follows a geometric distribution with a success probability of 2−64.
Such a low chance of finding a solution is unusable.

A better option is to use two magic words, denoted by M1 and M2. This gives
us one intermediate state (Li, Ri) to work with (see Fig. 2.4). We begin by
calculating B−1(Le, Re) = (L′i, Ri). Note that we cannot calculate Li because

30 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

Ls Rs

M1

B
Li

M2

B
L′i

Ri

Le Re

Figure 2.4: Visualization of all the variables used when resetting the
state of the Michael algorithm using the two words M1 and M2.

M2 is still unknown. Nevertheless, this teaches us the required value for Ri.
Then we brute force the first magic word M1. For each possible value we apply
the block function. If we obtain the required value for Ri we have found a valid
intermediate state (Li, Ri), since using the guessed value for M1 and setting
M2 to Li ⊕ L′i results in a solution:

B(B((Ls, Rs),M1),M2) = B(Li ⊕M2, Ri) (2.5)

= B(L′i, Ri) (2.6)

= (Le, Re) . (2.7)

The first equation is trivial. The second equation follows from our choice of M2.
Finally, the third equation follows from the calculation B−1(Le, Re) = (L′i, Ri).

A solution is found if the guess for M1 results in the required value for Ri,
which has a probability of 2−32. Similar to the previous case, the probability of
finding a solution can be modelled by a geometric distribution:

Pr[Y ≤ 232] = 1−
(
1− 2−32)232

= 0.6321 . . . , (2.8)

where Y follows a geometric distribution with a success probability of 2−32.
This implies that roughly 27% of the time 232 calculations are performed yet no
solution is found. As an experiment we ran 50 000 runs where random Michael
states had to be connecting using two magic words. In 31 518 runs a solution
was found, resulting in a success probability of 63.036%. This closely matches

DECRYPTING ARBITRARY PACKETS 31

our analyses. On an 3.10 GHz Intel Core i5-2400 it took on average 11.14
seconds to find a solution, with a standard deviation of 6.33 seconds.

Another strategy is to perform a meet-in-the-middle attack using three magic
words M1, M2, and M3. This gives us two intermediate states (Li1, Ri1) and
(Li2, Ri2) to work with. Again we start by calculating B−1(Le, Re) = (L′i2, Ri2).
Next we take 216 random values for the first magic word and compute the list of
resulting intermediate states (Li1, Ri1). We then try to brute-force the second
magic word by applying the reverse Michael algorithm to the state (L′i2, Ri2).
If the resulting value for Ri1 is in the list of earlier calculated states we have
found a solution. Let Li1 be the value accompanying Ri1, then the magic words
M1, M2 = Li1 ⊕ L′i1, and M3 = Li2 ⊕ L′i2 provide a solution:

B(B(B((Ls, Rs),M1),M2),M3)

= B(B(Li1 ⊕M2, Ri1),M3)
(2.9)

= B(Li2 ⊕M3, Ri2) (2.10)

= (Le, Re) . (2.11)

The first equation is trivial. The second and third follow from our choice of M2
and M3, and the usage of the reverse block function to calculate L′i1 and L′i2.

The probability that the result of a guess for M2 is in the list is 2−16.
The probability of finding a solution can again be modelled as a geometric
distribution. We get

Pr[Z ≤ 232] = 1−
(
1− 2−16)232

≈ 1− 7.2 · 10−28463 , (2.12)

where Z follows a geometric distribution with a success probability of p = 2−16.
Practically this shows that a solution will always be found. The average number
of required guesses for the second word is E[Z] = 1/p = 216. As an experiment
we ran 50 000 runs where random states had to be connecting using three magic
words. In all runs a solution was found. It took on average 65 814 = 216.017...

guesses for M2 until a solution was found, with a standard deviation of 66 407
guesses. On our 3.10 GHz Intel Core i5-2400 this corresponded to an average
running time of 2.96 milliseconds. Though requiring more magic words, these
results are significantly better than the previous two cases.

2.5.3 Decryption attack

Our goal is to decrypt arbitrary packets sent towards the client. We will
accomplish this by appending the targeted packet to a specially crafted prefix.

32 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

The prefix will simulate the behaviour of a ping request, making the client echo
back the appended data. We construct the prefix such that the reply is sent
to an IP under our control, meaning we will receive the plaintext content of
the targeted packet, effectively decrypting it. To assure that the MIC value of
the constructed packet is correct we will apply the Michael state reset attack
to the ping-like prefix. This allows us to append the targeted packet without
invalidating the MIC value. The resulting frame is sent to the client using the
fragmentation attack.

Contrary to the suggestion by Beck [18] we cannot use an ICMP ping request
as the prefix. This is because it includes a checksum calculated over the header
and the data section. But since we do not know the plaintext data of the full
packet, we cannot calculate a correct checksum. Instead we will construct a
UDP prefix, where specifying a checksum is optional. Sending a UDP packet to
a closed port results in an ICMP destination unreachable reply containing the
first 8 bytes of the UDP packet. However, on Windows, Linux, and Android the
ICMP unreachable reply contains a full copy of the original UDP packet. So
when targeting these operating systems the client will reply with the complete
content of our constructed packet. In particular this includes the plaintext
content of the targeted packet. Even large packets can be quickly decrypted
using this method.

Again we created a proof of concept tool in Linux. It listens for packets sent
towards the client. Once a vulnerable packet has been captured, the UDP
prefix is constructed and the Michael state reset attack is applied. The resulting
UDP prefix is transmitted using the fragmentation attack, followed by the
targeted packet (which is marked as the final fragment of the MSDU). In
practice this means the final fragment will usually be bigger than all previous
fragments. Though this is not allowed by the 802.11 specification, nearly all
devices will accept the packet (see Sect. 2.6). The client will send an ICMP
unreachable reply to the source IP address of the injected UDP prefix. This
reply includes the prefix, magic bytes, and the unencrypted data of the targeted
packet. Among other things, this allows an attacker to decrypt a TCP packet,
learn the sequence numbers currently used in this TCP connection, and hijack
the TCP stream to inject arbitrary data [71]. As a consequence, malicious data
could be injected when the client opens a website. Again the attack can be
mitigated by preventing the Beck and Tews attack.

EXPERIMENTS 33

2.6 Experiments

In this section we begin by investigating whether TKIP is still supported in
practice. Then we evaluate to which extent devices adhere to the relevant
aspects of the 802.11 standard, we report on implementation vulnerabilities
discovered in some wireless devices, and we discuss how our findings impact the
attacks. Finally our attacks are tested in realistic settings.

2.6.1 Networks supporting TKIP

Some new routers (for instance the Belkin N300 router) do not support TKIP
any more, in accordance with the security roadmap of the Wi-Fi Alliance. The
Wi-Fi Alliance tests products and hands out certifications if they conform to
certain standards. Their roadmap specified that, as of 2011, new APs are
no longer allowed to support a TKIP only option [55]. Even mixed mode,
which simultaneously allows TKIP and CCMP in the same network, is no
longer a requirement. Finally, in 2014 TKIP was supposed to be disallowed
completely. Based on this one would think that TKIP is no longer widely
supported. Surprisingly, we found the opposite to be true.

To investigate whether TKIP is still supported in practice we surveyed wireless
networks in two Belgian municipalities (Leuven and Heverlee). Detecting
networks was done using passive scanning, consisting of monitoring wireless
traffic for beacon frames. These frames contain all information necessary to
connect to a wireless network. In particular it includes the name of the network,
the MAC address of the AP, and the encryption schemes supported by the
network. During an initial test we found that active scanning detected few
additional networks (less than 6%), so in an attempt to prolong battery life
only passive scanning was used.

Several trips, of around an hour long, were made on foot while scanning for
networks. The raw capture was written to file and later analyzed for beacon
frames using a custom tool. This approach allowed us to make improvements to
our tool after collecting the raw captures. We uniquely identified networks by
their name. This is necessary because one network can be advertised by multiple
APs. However we also encountered several APs advertising a network named
after a vendor or product. These are default network names used by a particular
device and do not represent the same network. Therefore we treated each of
these APs as a unique network. Similarly there were several APs advertising
a network with an empty name. These APs were also treated as an unique
network.

34 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

Table 2.2: Number of Wi-Fi networks supporting a given encryption
scheme for several regions. Note that one network can support
multiple schemes.

Region Open WEP TKIP CCMP #Networks
Leuven 381 618 3 307 3 143 5 023
Heverlee 121 288 1 212 1 149 1 886

In total we detected 6 803 unique networks. The number of networks supporting
a particular encryption scheme is shown in Table 2.2. Note that a handful of
networks were present both in Leuven and Heverlee. We found that 93% of the
networks used encryption, and that 66% supported TKIP. When considering
only encrypted networks, 71% of them supported TKIP. Additionally, 19% of
networks using encryption only allow TKIP. We believe the reason so many
networks still support TKIP is because most routers, when configured to use
WPA2, by default use mixed mode (allowing both TKIP and CCMP). We even
observed that WEP is still used by 14% of encrypted networks.

2.6.2 Adherence to the 802.11 specification

The wireless adapters in Table 2.3 were tested for implementation details
impacting our attacks. While doing this we encountered several vulnerabilities
present in some wireless devices, and decided to test for their presence on all
devices. Wireless routers and mobile devices were tested using their default
configurations. Open source wireless router firmware was tested on the Asus
RT-N10. Laptops and USB wireless adapters were tested on Linux using the
compat-wireless 3.6.2-1-snp drivers, and on Windows using the default installed
drivers.

For the DoS attack to work a client must send a MIC failure report when an
invalid MIC has been detected, and the AP must shut down the network after
two MIC failures. We found that all wireless adapters, in all configurations,
implement this properly. As a result our DoS attack is applicable to all tested
devices (see Table 2.3 column DoS). Additionally we tested the DoS on a network
not using QoS, making our tool forge the QoS header. Again all adapters were
vulnerable to the attack, confirming results by Todo et al. [168].

Fragmentation support has been tested for several properties. We found that the
Belkin F5D7053 adapter on Windows incorrectly implemented fragmentation.
Sending a fragment to this adapter always resulted in a MIC failure, though it
worked fine under Linux. All other devices supported fragmentation.

EX
PERIM

EN
T
S

35

Table 2.3: Results of various tests on 14 wireless adapters. For laptop and USB adapters, L and W
denote it only works on Linux or Windows, respectively. Yes means it works on both, no means it
works on neither. Open Source router firmware was tested on the Asus RT-N10.

DoS Fragmentation Replay Pt.diff. size eff. frag. skip TSC any MIC

Laptop/USB: Intel 4965AG yes yes no L no no no
Belkin F7D1102AZ yes yes yes yes W yes L
Belkin F5D8053 yes L L L L yes yes
Alfa AWUS036h yes yes yes yes W W W
Ralink WA-U150BB yes yes yes yes L yes W

Mobile Devices: iPod MC086LL yes yes no yes no no no
iPad MC980NF yes yes no yes no no no

Access Points: Linksys WAG320N yes yes yes yes no no no
WRT54G 4.21.5 yes yes yes yes no no no
Scarlet VDSL Box yes yes no no yes no yes
Cisco Aironet 1130AG yes yes yes yes no no no
Asus RT-N10 1.0.2.4 yes yes yes yes no no no
Tomato 1.28 yes yes yes yes no yes no
DD-WRT v24-sp2 yes yes yes yes no no no

36 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

An important property of fragmentation is whether the last fragment is allowed
to be bigger than the previous fragments. Strictly speaking this is not allowed
in the 802.11 standard [192, §9.5] yet we rely on this during the decryption
attack. We found that all devices supporting fragmentation permitted this
behaviour (see Table 2.3 column diff. size).

As mentioned in Sect. 2.2.3 the receiver should update its replay counter after
reassembling the MSDU. This leaves open the possibility to send each fragment
of an MSDU using the same TSC, keystream, and priority. If allowed, an
attacker is then able to inject 16 fragments using only one keystream. In
Table 2.3 column eff. frag. we see that this technique is indeed possible on
several devices.

Finally we tested if fragments can be sent without using a sequential replay
counter, i.e., whether we can skip TSC values. The 802.11 standard permits
this behaviour for TKIP [192, §11.4.2.6], though some devices only accepted
sequential TSC (see Table 2.3 column skip TSC).

Surprisingly we also discovered critical implementation flaws in some devices,
particularly in wireless USB adapters. Several do not drop packets with an
already used TSC, allowing an attacker to replay packets (see Table 2.3 column
Replay). Another flaw is that certain devices do not verify the MIC value of a
fragmented TKIP packet (see Table 2.3 column any MIC). This removes the
requirement of first having to execute the Beck and Tews attack to obtain the
MIC key. After all, if the MIC value is not verified we do not have to calculate
it, meaning there is no reason to know the MIC key. On Windows the Ralink
WA-U150BB drops fragmented packets with an incorrect MIC, but does not
transmit a MIC failure. As mentioned in Sect. 2.3, dropping the packet but not
sending a MIC failure can open the door for novel attacks on the MIC key.

More worrisome, we also encountered several wireless adapters that accepted
unencrypted (plaintext) packets while connected to an encrypted network (see
Table 2.3 column Pt.). In particular the vulnerability is present in the Windows
drivers for the AWUS036h, a device popular for its wide reception and high
transmission power. Another device susceptible to the attack was the Scarlet
VDSL Box. This is a router that is handed out by the Belgium ISP Scarlet
when a customer buys a VDSL internet connection. The reason this case
is interesting is because the vulnerability has a higher impact when present
on APs. An attacker could abuse the flaw to easily inject arbitrary traffic into
the network, but also to send packets to the internet using the public IP of the
victim. It might be an interesting future research direction to test for additional
implementation flaws on a wider array of devices.

EXPERIMENTS 37

Table 2.4: Impact of our DoS attack on several Access Points. The
term Both denotes that TKIP and CCMP traffic was disabled. Open
source router firmware was tested on the Asus RT-N10.

Access Point Protocols Disabled
WPA1 WPA2

Linksys WAG320N Both Both
WRT54G 4.21.5 TKIP Both
Scarlet VDSL Box Both TKIP
Cisco Aironet 1130 AG Both Both
Asus RT-N10 1.0.2.4 Both TKIP
Tomato 1.28 Both Both
DD-WRT v24-sp2 Both Both

2.6.3 Verifying our attacks

According to the 802.11 specification, the TKIP countermeasures must disable
only TKIP traffic for one minute [192, §11.4.2.4]. However, most of the APs we
tested disabled all wireless traffic, including CCMP protected traffic in mixed
mode. When targeting these devices one single TKIP client allows an attacker
to take down the complete wireless network. More precisely, the behaviour of
an AP depends on whether WPA1 or WPA2 is being used (see Table 2.4). In
practice, the difference between WPA1 and WPA2 is mainly between supported
encryption schemes: WPA1 mandates TKIP support and optionally allows
CCMP, while the reverse is true for WPA2. For example, the WRT54G only
supports TKIP when using WPA1, while the Belkin N300 only supports WPA2
with CCMP.

For the fragmentation, portscan, and decryption attack to work we need to be
able to accurately predict the first 12 bytes of encrypted packets. To test our
prediction algorithm we monitored TKIP traffic generated by visiting several
websites for 20 minutes. In total 36 643 data packets were captured, of whom
36 642 were predicted correctly. The single miss was an EAPOL packet, which
we purposely ignored. Further, we weren’t able to capture all packets as an
attacker, meaning the keystreams corresponding to certain TSCs remained
unknown. In total 5 680 packets were not captured, consisting of 13% of all
traffic.

The fragmentation and portscan attack has been tested against Windows, Linux,
iOS, and Android. When connected to a networking using TKIP, all were found
to be vulnerable. Additionally we tested the attacks under two authentication
mechanisms: the first being a shared passphrase and the second being a personal

38 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

login and password verified using PEAP-MSCHAP v2. In both situations the
attacks were successful. These tests clearly demonstrate the reliability of the
attacks.

For the decryption attack we found that, when connected to a network using
TKIP, Windows, Linux, and Android were vulnerable. Mac OS X and iOS only
include the first 8 bytes of the UDP packet in the ICMP unreachable reply,
meaning the targeted packet is never included. Nevertheless, we did receive
ICMP unreachable replies from all operating systems, meaning the Michael
reset attack worked in all cases. Installing a firewall which blocks the ICMP
unreachable replies prevents the decryption attack, though the Michael reset
attack itself will remain possible.

2.7 Related Work

Several DoS attacks exist on wireless networks. Arguably the most well-known
attack consists of forging deauthentication frames to either the client or AP [19].
This is possible because the deauthentication message is not protected using
any keying material. Continuously sending them will result in a DoS attack. An
advantage of our attack is that it requires replaying only two frames each minute
to disconnect every client that is using TKIP. Hence our attack is stealthier and
requires less power to execute. Furthermore, nowadays the deauthentication
attack can be prevented by enabling protected management frames [192, §4.5.4.9].
Compared to the DoS attack of Glass and Muthukkumarasamy [62] our attack
is easier to execute, since their attack requires a man-in-the-middle position.
Another advantage is that our attack can be used to easily verify whether the
client sends MIC failure reports, and thus to see if it is possible to perform the
Beck and Tews attack [116]. The Beck and Tews attack could also be changed to
a DoS attack. Once the first MIC failure has been detected, the corresponding
packet could be injected a second time. However, on average 128 packets have
to be injected before a MIC failure is triggered. This makes the attack easier to
detect. It also isn’t as easy to implement compared to our DoS attack, making
it more difficult to execute in practice.

Könings et al. found DoS vulnerabilities at the physical and MAC layer of
802.11, some halting traffic for one minute with minimal packet injection [84].
Contrary to our DoS, their attacks do not simultaneously disconnect all clients
connected to a network. Bicakci and Tavli give a survey on DoS attacks at
the physical and MAC layer. The attacks they discuss require injecting a large
number of frames [26].

CHAPTER CONCLUSION 39

One of the first attacks on TKIP was found by Beck and Tews and decrypts an
ARP reply packet. As a result the MIC key for AP to client communication
can be obtained [164] and a few small packets can be injected. It only works if
the QoS extension is enabled and takes 12–15 minutes to execute. Halvorson et
al. improved the attack, allowing larger packets to be injected [69]. However
their technique does not allow injection of more packets, and takes longer
to execute compared to our fragmentation attack. Morii and Todo came up
with a modification removing the requirement that the AP must have enabled
QoS [116]. They found that even if QoS was not used, clients will still accept
and process a QoS frame. This allows an attacker to forge the QoS header if
not present. In another paper Todo et al. managed to reduce the execution
time of the Beck and Tews attack to 8–9 minutes [168].

The Michael algorithm was designed by Ferguson [51]. It was quickly revealed
to be invertible by Wool [193]. Based on this Wool suggested a related message
attack on TKIP. Huang et al. showed that Michael is not collision free and
suggested a packet forgery attack [72].

Beck suggested the use of two magic words to reset the internal state of the
Michael algorithm [18]. Unfortunately, no thorough theoretical analysis was
provided, and no implementation in a practical setting was given. Based on
the fragmentation attack on WEP by Bittau et al. [27], Beck also suggested
using the fragmentation attack on TKIP, though no implementation was made
to verify his ideas.

Wireless drivers have been tested before for vulnerabilities [31]. Most of the
techniques focus on fuzzing with the aim of finding code injection attacks.
However, only a limited amount of research has been done to find logical
implementation flaws. In particular we found no previous work testing for replay
attacks, seeing if it is possible to inject plaintext packets into an encrypted
network, or testing whether the MIC of fragmented TKIP packets is verified.

Moen et al. have analyzed the key scheduling algorithm in TKIP [113]. They
found that, given less than 10 RC4 packet keys, it is possible to recover the
temporal key (TK) with a time complexity of O(2105) compared to a brute
force attack with complexity O(2128). Sepehrdad et al. showed how to recover
the TK using 238 packets with a time complexity of O(296) [156].

2.8 Chapter Conclusion

TKIP was designed as an intermediary solution to mitigate the existing flaws of
WEP. We found that TKIP is still supported by a large number of networks.

40 PRACTICAL VERIFICATION OF WPA-TKIP VULNERABILITIES

Further, we showed that TKIP fails to provide sufficient security, by describing
and implementing several new attacks. In addition, during our experiments,
we identified several critical implementation vulnerabilities in several wireless
devices. We conjecture that a more substantial test of these implementations
will reveal more vulnerabilities.

Specifying a short rekeying interval prevents the fragmentation and decryption
attack, unfortunately this does not prevent our DoS attack. To secure a wireless
network it is strongly advised to only support the more secure CCMP.

Chapter 3

Advanced Wi-Fi Attacks
Using Commodity Hardware

“Don’t touch the poster at the Game Corner!
There’s no secret switch behind it!”

— Team Rocket, Pokémon Yellow

Abstract

We show that low-layer attacks against Wi-Fi can be implemented using user-
modifiable firmware. Hence cheap off-the-shelf Wi-Fi dongles can be used to
carry out advanced attacks. We demonstrate this by implementing five low-layer
attacks using open source Atheros firmware. The first attack consists of unfair
channel usage, giving the user a higher throughput while reducing that of
others. The second attack defeats countermeasures designed to prevent unfair
channel usage. The third attack performs continuous jamming, making the
channel unusable for other devices. For the fourth attack we implemented a
selective jammer, allowing one to jam specific frames already in the air. The fifth
is a novel channel-based Man-in-the-Middle (MitM) attack, enabling reliable
manipulation of encrypted traffic.

These low-layer attacks facilitate novel attacks against higher-layer protocols.
To demonstrate this we show how our MitM attack facilitates attacks against

41

42 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

the Temporal Key Integrity Protocol (TKIP) when used as a group cipher.
Since a substantial number of networks still use TKIP as their group cipher, this
shows that weaknesses in TKIP have a larger impact than previously thought.

Preface

This chapter was previously published as:

M. Vanhoef and F. Piessens. “Advanced Wi-Fi attacks using commodity
hardware”. In: Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC ’14). ACM, Dec. 2014, pp. 256–265

The main research effort of this work was lead by Mathy Vanhoef with the
guidance of Frank Piessens.

The source code of the tools that were created for this publication were publicly
released [175, 176]. Over the last two years this code has also been kept up-
to-date, assuring it still works on modern Linux distributions. Currently our
release supports Linux kernels 3.0 up to and including kernel 4.4. As mentioned
in the chapter, the public release does not contain the code for the constant
jammer, as this could easily be used for malicious purposes to disrupt networks.
People wanting to experiment with the constant jammer have to request the
code privately. Overall we received more than 25 requests for the constant
jammer implementation. Most requests where by researchers, e.g., from MIT,
INRIA, Unversity of Luxembourg, Griffith University, etc., who were studying
the impact of jammers on a wireless network, and how to defend against jamming
attacks. There were also a significant number of requests from industry (some
examples being Cisco, PwC, BT, Netscout, and so on) who were interested in
using the tool for various purposes.

To disseminate our findings this work has also been presented at BruCON 2015,
where the focus was on the low-layer Wi-Fi attacks. After this presentation the
work was picked up by several online news magazines and blogs. For example,
it was mentioned by Bruce Schneier on his On Security blog [150], by The
Register [128], SC Magazine [107], etc.

As mentioned in Chapter 2, more than half of all encrypted Wi-Fi networks
still support WPA-TKIP in 2016. These networks use TKIP as their group
cipher, and hence are all susceptible to an attack we describe in this chapter.

The channel-based man-in-the-middle attack presented in this chapter has also
proven to be useful in other situations. In particular, it is now also being used
in our work “Predicting, Decrypting, and Abusing WPA2/802.11 Group Keys”

INTRODUCTION 43

to manipulate the 4-way handshake [187], and is used in “Request and Conquer:
Exposing Cross-Origin Resource Size” to block selected background traffic sent
by a client or AP [173].

3.1 Introduction

Wireless networks based on the 802.11 standard have had an enormous success,
ranging from use in common households to large scale deployments in critical
infrastructures. As new standards push the boundary of transmission speed and
functionality, the capabilities of wireless chips have increased accordingly. This
opens new possibilities where commodity devices can be used to implement
state of the art attacks, previously thought only possible on expensive hardware
such as Universal Software Radio Peripherals (USRPs). To demonstrate this
we implement several low-layer attacks using off-the-shelf Wi-Fi dongles. In
particular we modify the firmware of Atheros AR7010 and AR9271 chips. We
conjecture that other devices, which also load user-modifiable firmware after
power up, can execute similar attacks.

Our first modifications give the client an unfair share of the bandwidth. We
use this to experimentally explore the behaviour of selfish stations. Based on
this, to the best of our knowledge, we are the first to suggest that contending
selfish stations will exploit the capture effect to increase throughput. This is the
phenomenon where, in case of a collision, the frame with the strongest signal
and lowest bitrate is received correctly [83]. Surprisingly, contending selfish
stations end up lowering their bitrate to obtain a higher throughput. We also
bypass systems designed to prevent selfish behaviour.

We continue by turning our dongle into a continuous and selective jammer.
The former endlessly transmits noise, while the latter jams specific frames
already in the air. Previously, selective jamming required either a costly USRP
setup [34], or a Wi-Fi adapter which allows modifications to the microcode
handling medium access and de/encoding operations [21]. Though it shows
selective jamming is possible, the URSP setup is non-trivial and costs more
than $3600. Additionally, being able to change medium access algorithms in
commodity devices is rare in practice. We show that these jamming attacks
can be implemented using off-the-shelf USB dongles (costing only 15$) without
requiring low-level microcode access. It is surprising this is possible by using
only the default (and limited) API of the wireless chip (i.e., without modifying
its medium access algorithms).

With as goal to enable (or facilitate) attacks on higher-layer protocols, we also
present a channel-based MitM attack against any type of encrypted network.

44 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

Our goal is not to decrypt traffic, but to be able to reliably intercept and
manipulate it. Normally obtaining a MitM position in an encrypted network is
not trivial, since the station and Access Point (AP) verify each other’s MAC
address. Therefore an attacker cannot set up a rogue access point with a
different MAC address to subsequently intercept and forward all traffic. We
demonstrate that cloning the AP on another channel bypasses the MAC address
checks. Customizable firmware makes the implementation easier and more
efficient, in particular when targeting multiple stations simultaneously.

Finally we use the MitM position to attack TKIP when used as a group cipher,
and show how to decrease the execution time of the attack by targeting multiple
stations simultaneously. Since all routers that support TKIP also use this cipher
as their group cipher, more than half of all encrypted networks are vulnerable
to our attack (see Chapter 2).

Our selective jammer, channel MitM, and TKIP attacks are available for
download [175]. The unfair channel usage and continuous jammer can disrupt
network activity without usable countermeasures being available. Therefore we
do not release them. To summarize, our main contributions are:

• We study (contending) selfish stations using off-the-shelf Wi-Fi dongles,
taking into account the physical layer capture affect, and bypass systems
designed to detect selfish users.

• We show how continuous and selective jamming can be implemented using
off-the-shelf Wi-Fi dongles.

• We present a channel-based Man-in-the-Middle attack against encrypted
networks, enabling reliable interception and manipulation of all encrypted
traffic.

• We attack TKIP when used as a group cipher, and additionally devise a
technique to decrease the execution time by targeting multiple stations
simultaneously.

The remainder of this chapter is organized as follows. Section 3.2 explains the
relevant aspects of the 802.11 standard. In Section 3.3 we analyze, implement,
and measure the impact of selfish stations. Section 3.4 shows how continuous
and selective jamming can be implemented on commodity devices. A novel
channel-based Man-in-the-Middle attack is presented in Sect. 3.5, and in Sect. 3.6
we use this to attack TKIP when used as a group cipher. Finally, we summarise
related work in Sect. 3.7 and conclude in Sect. 3.8.

THE 802.11 STANDARD 45

Busy Medium Backoff Slots Next Frame

SIFS

AIFS[i]

SLOT
Defer Access Decrement backoff if medium idle

Figure 3.1: Visualisation of 802.11 EDCA timing relations.

3.2 The 802.11 Standard

In this section we present the basics of the 802.11 MAC and physical (PHY)
layer [192], explain the TKIP encryption protocol, and introduce the ath9k_htc
firmware.

3.2.1 Medium Access Control (MAC)

The MAC service exchanges MAC Protocol Data Units (MPDUs) using carrier
sense multiple access with collision avoidance (CSMA/CA). A station wishing
to transmit first monitors the medium for a given Inter Frame Space (IFS),
using a carrier sense mechanism. If the medium is busy the station defers its
transmission using a random backoff procedure. The original standard offered
the Distributed Coordination Function (DCF) to control this process. The
802.11e amendment extends DCF with Quality of Service (QoS) enhancements,
resulting in enhanced distributed channel access (EDCA). With EDCA four
different Access Classes (AC) are defined, allowing the prioritization of traffic.
For example, the access class of voice traffic has a higher priority than that of
background traffic. We use the terms QoS channel and priority as synonyms
of AC.

The time a station must wait before it can transmit depends on several
parameters and inter frame spaces (see Fig. 3.1). The shortest is the Short
Interframe Space (SIFS) and is the time between successfully receiving a frame
and sending an acknowledgement (ACK). Other frames must wait longer than
SIFS , giving ACKs the highest priority. When a station wants to transmit a
data frame of access class AC it first monitors the medium for a period equal to

AIFS [AC] = SIFS + AIFSN [AC] · SLOT , (3.1)

where SLOT is the duration of one slot interval, and with AIFSN dependent
on the access class. If the medium is idle during this time the station can
transmit immediately. If the medium was busy the contention window CW [AC]
is set to CWmin[AC] and the random backoff procedure is initiated. This

46 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

preamble header TSC Data MIC ICV FCS

encrypted

MPDU: rate defined by PLCP headerPLCP: 1 Mbps

Figure 3.2: Simplified format of 802.11b TKIP frames.

procedure initializes the backoff counter to a value uniformly distributed over
the interval [0,CW [AC]]. Once the medium has been idle for AIFS [AC], the
backoff counter is decremented for each slot where the medium is idle. When the
counter is zero the station transmits the frame. Since AC is clear from context
it will no longer be explicitly included. The values assigned to AIFSN , CWmin ,
and CWmax determine the priority of an access class, and are advertised by the
AP in the EDCA parameter set element in beacons and probe responses. Beacon
frames are periodically transmitted to advertise the presence of a network, while
probe requests and responses are used to actively seek networks. The value of
SIFS and SLOT depend on the physical layer being used (see Sect. 3.2.2).

If the Frame Check Sequence (FCS) at the receiver is correct it will wait
SIFS time and send an ACK. If the sender receives an ACK it resets CW to
CWmin and enters a post-backoff stage by setting the backoff counter to a value
uniformly distributed over the interval [0,CW]. When the FCS is wrong the
frame is discarded. When the sender receives no ACK it retransmits the frame
by updating CW to 2 · CW + 1 and repeating the backoff procedure. A frame
is retransmitted at most 7 times, and CW is limited by CWmax .

Assuming all stations cooperate, analytical models of DCF show that it provides
fairness [22]. Hence identical access classes in EDCA also provide this fairness.
However, in practice stations can act selfishly and increase their throughput
at the cost of others [129, 139]. In Sect. 3.3 we will study in detail how selfish
stations can increase their throughput.

3.2.2 Physical Layer (PHY)

Wi-Fi can operate in the 2.4 and 5 GHz bands. A channel number defines the
center frequency on which the radio operates. Senders can choose between
multiple transmission rates: low rates are used for bad connections, and high
rates for good connections. For backwards compatibility beacons and probes
are generally sent using the lowest rate of 1 Mbps.

When an MPDU is transmitted a Physical Layer Convergence Protocol (PLCP)
preamble and header is added (see Fig. 3.2). The preamble allows the receiver

THE 802.11 STANDARD 47

to synchronize to the transmission. The header defines the modulation used
for the MPDU, and contains the (remaining) length of the frame. We focus on
802.11g long preamble mode, where (slightly simplified) the overhead of the
PLCP is 23 µs, SIFS is 10 µs, and SLOT is 9 µs [192, §18.3].

An important property of 802.11 radios is their susceptibility to the capture
effect, the phenomenon where the strongest frame is received correctly in case
of a collision. This goes against the common assumption that both frames are
lost. More precisely, a collision results in one of three cases [83]:

1. both frames are lost;

2. if the stronger frame is received first it will be decoded correctly; or

3. if the stronger frame is received second, yet within the PLCP preamble of
the first one, the second frame will be decoded correctly.

The capture effect has been observed on different chipsets [59, 83], occurs more
frequently at low bitrates [89], and favours nearby stations [83]. In Section 3.3
we show that selfish stations can abuse it to contend with other stations.

3.2.3 Temporal Key Integrity Protocol

The Temporal Key Integrity Protocol (TKIP) is an improvement of the broken
WEP protocol [164]. It was designed so old WEP-compatible hardware can
support TKIP with only firmware updates. Nowadays TKIP is deprecated,
and the more secure (AES-)CCMP is recommended. However, networks which
support both TKIP and CCMP simultaneously, generally use TKIP as their
group cipher. This is done for backward compatibility, so both old TKIP clients
and newer CCMP clients can decrypt broadcast data. Since most routers by
default allow both TKIP and CCMP, and thus use TKIP as their group cipher,
TKIP is still widely used. For example, in Chapter 2 it has been shown that
66% of wireless networks in residential areas in Belgium use TKIP as their
group cipher. Note that WPA1 and WPA2 are certifications handed out by the
Wi-Fi Alliance. The difference between them is that WPA1 mandates TKIP
support and optionally allows CCMP, while the reverse is true for WPA2. We
use the term WPA to refer to both.

When a station connects to a secured network it begins by negotiating session
keys using a 4-way handshake. This results in a pairwise transient key (PTK)
and a group temporal key (GTK). These keys depend, among other things, on
the MAC address of the station and AP. The PTK protects unicast traffic, while
the GTK protects broadcast traffic. When using TKIP as the group cipher,

48 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

the GTK is used to derive a 128-bit encryption key, and a 64-bit Message
Integrity Code (MIC) key. Note that a client transmitting a broadcast frame
first sends it to the AP (as a unicast frame), after which the AP broadcasts it
to all stations using the group cipher. All keys are renewed after a user defined
interval, commonly set to 1 hour.

When a station transmits a TKIP protected frame, it first calculates the MIC
over the data field using its 64-bit MIC key (see Fig. 3.2). Then it calculates a
CRC over the data and MIC, called the Integrity Check Value (ICV). These
fields are encrypted using a per packet key derived from the TKIP Sequence
Counter (TSC) and 128-bit encryption key. The TSC is a replay counter which
is incremented after successfully transmitting a frame. The receiver drops
frames with an old TSC or bad ICV. However, if a frame has a valid TSC and
ICV, but a wrong MIC, the TKIP countermeasures are activated:

• Clients send a MIC failure report to the AP. Additionally, when a client
itself detects two failures within one minute, it will disconnect from the
network.

• An AP silently logs the MIC failure. If two failures occur within one
minute, it will halt all TKIP traffic for one minute. After this minute
clients can reconnect.

Several weaknesses have been discovered in TKIP [69, 112, 116, 121, 125, 164,
168, 185]. The first known attack, and the one we built on, is the Beck and
Tews attack [164]. It decrypts a packet byte by byte and requires that QoS is
supported, which is the case for most modern devices [116, 185]. The attack
works by guessing the last byte of an encrypted packet and then removing this
byte. The ICV of the (encrypted) shortened packet can be corrected if the
guess was correct. Because TKIP uses a unique TSC for each QoS channel,
we can inject the corrected packet on a QoS channel with a lower TSC. If the
guess was wrong, the ICV will be wrong, and the receiver drops the packet.
However, if the guess was correct, the receiver will respond with a MIC failure.
Hence the last byte of a packet can be found by trying all possible values and
detecting a correct guess using the MIC failure report. This technique is then
recursively applied to the shortened packet. To avoid the TKIP countermeasures
at most one byte can be decrypted per minute. In the Beck and Tews attack
this technique is used to decrypt an ARP packet. From the decrypted packet,
the MIC key for that communication direction can be derived. This attack, and
its variations, have previously only been designed to attack unicast traffic [69,
116, 121, 164, 168, 185].

For a more detailed background on TKIP, including practical attacks, we refer
the reader to the previous chapter.

UNFAIR CHANNEL USAGE 49

Listing 3.1: Code which sets EDCA parameters for
a specific access class in the ath9k_htc driver.

1 int ath_htc_txq_update(...):
2 qi.tqi_aifs = qinfo->tqi_aifs;
3 qi.tqi_cwmin = qinfo->tqi_cwmin / 2; /* XXX */
4 qi.tqi_cwmax = qinfo->tqi_cwmax;

3.2.4 Atheros firmware implementation

The open source ath9k_htc firmware runs on AR7010 and AR9271 chips, and
is sent to the device after power up. The AR7010 is a system-on-chip that
generally uses PCIe to connect to an external AR9280 wireless chip, while
the AR9271 is a single-chip solution with onboard wireless chip. The AR7010
supports both the 2.4 GHz and 5 GHz band, but can only use its built-in 2x2
MIMO antenna. On the other hand, the AR9271 can use an external antenna,
but only supports the 2.4 GHz band.

The wireless chip in both devices is controlled using memory mapped registers.
For example, the AR_QTXDP register contains a pointer to the transmit queue,
and writing to the AR_Q_TXE register will start the transmit process.

3.3 Unfair Channel Usage

In this section we study (contending) selfish stations using off-the-shelf Wi-Fi
dongles. This is done by implementing several strategies and measuring the
resulting throughput. Finally we bypass system designed to detect selfish users.

3.3.1 Experimental setup

In order to implement selfish strategies we modified the ath9k_htc driver to
get direct control over MAC layer parameters. While doing this we found that
the original driver wrongly divided CWmin by two, while other parameters were
properly configured (see Listing 3.1 line 3). This leads to an unfair advantage,
and motivates other stations to act selfish as well. The driver was patched to
properly set CWmin.

A Linksys WAG320N with firmware v1.00.08 is used as the AP. It is connected
to a HP 8510p running Linux 3.7.2 using a Gigabit Ethernet connection. For
the clients we created two identical VMWare Player instances, each having 2 GB

50 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

RAM and running Linux 3.7.2. One client uses a TL-WN722N placed 10 cm
from the AP, while the other uses a AWUS036nha placed 1 meter from the AP
(close distances reduce packet loss, making measurements more accurate). We
refer to them as the close and far station, respectively. Reported results are
over 10 runs of iperf 2.0.5 in UDP mode, using the maximum payload of an
Ethernet frame (1 500 bytes minus 28 bytes for the IP and the UDP header),
in the form bandwidth± standard deviation. We use 802.11g, a channel width
of 20 MHz, do not use the Request To Send (RTS) or Clear To Send (CTS)
protection mechanism, and do not use encryption. We assume the AP to be
trusted and only consider selfish clients.

3.3.2 One selfish station

We study the behaviour of a single selfish station in two phases. First when the
selfish station is the only (sole) device connect to the network, and then when
other fair stations are also connected to the network. For the first phase we
let the close station be the only (sole) selfish station connected to the network.
We implemented the following selfish strategies to determine whether they are
effective or not:

1. Disabling backoff using the AR_DMISC register.

2. Setting AIFSN to zero in the AR_DLCL_IFS register.

3. Decreasing SIFS in the AR_D_GBL_IFS_SIFS register.

The result of these (incremental) strategies, including normal throughput, are
shown in Fig. 3.3 under “Sole (selfish)”. Only results where SIFS was lowered to
6 are shown (our conclusion is the same for other values). We now verify these
results theoretically, by calculating the expected throughput, and comparing
them with our empirical results. While doing this we assume there is no packet
loss, and we assume the Maximum Transfer Unit (MTU) is 1 500 bytes. First,
it takes 218 µs to send 1 472 bytes of UDP payload at 54 Mbps (the highest
802.11g bitrate), and 23 µs to send the long PLCP preamble and header. We
have an overhead of a 34-byte MAC header, a 20-byte IP header, a 8-byte
UDP header, and a 4-byte FCS. At 54 Mbps this results in a overhead of 33 µs
for each frame encapsulating a 1 472 byte UDP payload. Since an ACK is
14 bytes and sent at 24 Mbps, it takes 38 µs to transmit when including the
LPCP and SIFS timeout. Before sending the data frame, we wait on average
SIFS +(AIFSN + CWmin

2) ·SLOT . Normally, when SIFS is 10 µs, SLOT is 9 µs,
AIFSN is 3, and CWmin is 15, this is equal to 104.5 µs. Hence it takes on
average 393 µs to send 1 472 bytes of data, resulting in a theoretical throughput

UNFAIR CHANNEL USAGE 51

normal 1 2 3
0

10

20

30

40

28
.3 34

.2 37
.3

36
.4

14
.5

26
.6

37
.1

36
.2

14
.6

3.
5

0.
1

0.
2

Strategy of selfish station

T
hr
ou

gh
pu

t
(M

bp
s) Sole

(selfish)
Far

(selfish)
Close
(fair)

Figure 3.3: Throughput in case a selfish station is either the only
station present (Sole), or in case there is another far station also
present (Far and Close). The selfish station uses the strategies listed
in Sect. 3.3.2. Standard deviation of all results were below 0.28 Mbps.

of 29.96 Mbps. For the three selfish strategies we get 36.18 Mbps, 39.45 Mbps,
and 40.53 Mbps, respectively. Although our empirical results are slightly lower,
they are still in line with these predicted throughput estimates. The empirical
throughput is lower than predicted because beacons are also transmitted every
102.4 ms, and because not all packets arrive successfully. Notice that reducing
SIFS may negatively impact frame delivery. We conjecture this is because it
causes packets to arrive too quickly at the receiver. In other words, the receiver
is not always ready to start processing the next frame, meaning some packets
are being dropped. We conclude that a sole selfish station will disable backoff
and set AIFSN to zero, but will not change SIFS .

The experiments were repeated when a fair station was also present. Since a
malicious station may be unable to move arbitrarily close to the AP, we pick
the far station as the selfish one. The results are shown in Fig. 3.3 under “Close
(fair)” and “Far (selfish)”. Again the optimal strategy of the selfish station is
to keep the default value of SIFS , disable backoff, and set AIFSN to zero. We
found this strategy works independent of the distances between stations. Hence
we can conclude that a selfish station will always disable backoff and set AIFSN
to zero, but will not lower SIFS , even when other stations are also present.

52 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

0 1 2 3 4 5 6 7 8

5.5/11

11/11

11/54

54/54

7.14

7.24

3.22

0.25

0.15

0.03

3.33

0.25

Throughput (Mbps)

Bi
tr
at
e
of

fa
r/
cl
os
e
(M

bp
s) Far station

Close station

Figure 3.4: Impact of bitrate on contending selfish stations. Y-axis
shows bitrate of far and close station, respectively. Error bars denote
standard deviation.

3.3.3 Multiple selfish stations

We experimentally investigate the behaviour of contending selfish stations, by
letting both the close and far station act selfishly. Because selfish stations
generate so much traffic they hinder the arrival of beacons, it was necessary to
modify the stations so they would not disconnect when too many beacons were
lost. We found two strategies to increase throughput, both with the goal of
exploiting the capture effect:

1. Reducing the bitrate of transmissions.

2. Increasing transmit power.

These strategies work because, in case of a collision, the receiver tends to
decode the frame having the lowest bitrate and the highest signal strength.
This also implies that selfish stations will immediately transmit frames, even if
the medium is busy. In other words, they will disable carrier sense, which can
be done using the AR_DIAG_SW register. To avoid the station from lowering its
bitrate after a failed transmission, we force both stations to use a fixed bitrate
in each experiment.

Our goal is now to determine which instantiation of the above two strategies
the selfish stations will use. More specifically, we want to determine the bitrates
that will be used, and whether an increased transmit power will be used in

UNFAIR CHANNEL USAGE 53

combination with the selected bitrates. In a game theoretic framework, this
would be similar to analyzing a non-cooperative game, where each player can
make decisions independently. However, here we will take a more informal
approach to analyze the behaviour of the selfish stations. In particular, we
will empirically search for the point (equilibrium) at which neither station can
further increase its throughput, and hence will not change its strategy.

First we performed experiments when contending selfish stations reduce their
bitrate. We found that stations keep lowering their bitrate until this no longer
provides any advantages (see Fig. 3.4). In particular, both stations start with
a 54 Mbps bitrate. Due to collisions at high bitrates most frames are lost.
Assuming the far station lowers its bitrate, while the close station still uses
54 Mbps, the bitrate resulting in the maximum throughput for the far station
was 11 Mbps. In response the close station will maximize its own throughput by
using 11 Mbps as well. This arms race continues until lowering the bitrate no
longer provides any advantages. We conjecture that the final bitrates depend
on the devices being used and on the environment. In our setting, the close
station ends up using 11 Mbps while the far station uses 5.5 Mbps. At this point
neither station can increase its throughput. In other words, a non-cooperative
equilibrium has been reached. We conclude that contending selfish stations will
lower their bitrate in order to get a higher throughput.

A higher transmit power can also increase throughput, though it is more
sensitive to distances. If the close station is 10 cm from the AP, the far station
was unable to noticeably increase its throughput by using a higher transmit
power, independent of the bitrates being used. However, when placing the close
station 70 cm from the AP the situation changes. Assuming both stations act
selfishly and use 11 Mbps, the throughputs of the close and far station are
0.50± 0.52 Mbps and 2.10± 1.05 Mbps, respectively. When the far station uses
an amplifier as external antenna, its throughput increases to 3.66± 2.08 Mbps
while the close station gets 0.44 ± 0.28 Mbps. Hence selfish stations will use
a higher transmit power, on top of lowering their bitrates, in an attempt to
increase their throughput.

At higher distances both strategies still work. However, as the distance increases,
it gets harder for a selfish station to beat other stations and increase its own
throughput.

3.3.4 Defeating countermeasures

We now investigate mechanisms which are designed to detect (and prevent)
selfish behaviour. Unfortunately we found that even advanced detection
mechanisms such as DOMINO [139] have weaknesses. Though they can reliably

54 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

detect manipulations of interframe spaces and the backoff procedure, defending
against stations which jam others appears difficult. The goal of jamming others
is to increase their contention window (backoff counter), increasing the chance
the cheater can access the channel. Frames of other stations can be jammed by
a selective jammer (see Sect. 3.4.2).

An attacker only jams frames of other clients. It detects such frames based
on the addresses in the MAC header. Hence detection mechanisms assume
the header of frames remain valid, and use this to count the number of failed
(jammed) transmissions of stations [139]. If a station has a significantly lower
failed transmission count than all others, it is assumed to be jamming the
other stations, and is punished (e.g. thrown off the network). The flaw in this
technique is that the authenticity of jammed (corrupted) frames cannot be
guaranteed. An attacker can forge jammed frames and fool the mechanism into
thinking a station is jamming others. The targeted station is then wrongly
punished.

We created a tool to forge jammed frames. In particular we used the AR_DIAG_SW
register to force the wireless chip to append a bad Frame Check Sequence (FCS)
to every transmitted frame. To target a victim we forge jammed frames which
appear to come from all other stations. As a result the victim will appear to
have a significantly lower number of failed transmissions compared to the others,
and will be wrongly punished.

We conclude that existing systems tend to underestimate the power of attackers,
and hope our work gives a better overview of both the capabilities and behaviour
of attackers.

3.4 Jamming

In this section we show how to implement continuous and selective jamming
on commodity Wi-Fi devices. To the best of our knowledge we are the first to
accomplish this.

3.4.1 Continuous jamming

A continuous jammer transmits noise for an indefinite amount of time. The
noise can consist of random energy pulses or data resembling the protocol being
jammed. Depending of the device or network under attack, one of these options
is typically preferred by the attacker. For instance, injecting random Wi-Fi

JAMMING 55

Table 3.1: Important memory-mapped registers and 802.11 radio
functionality they control.

Register Description
AR_DIAG_SW Disable carrier sense, abort ongoing reception,

append bad FCS
AR_D_GBL_IFS_SIFS SIFS
AR_D_GBL_IFS_SLOT SLOT
AR_DLCL_IFS CWmin, CWmax , and AIFSN

frames might trigger warnings from intrusion detection systems, while random
noise will be seen as non-Wi-Fi devices using the same frequency.

To turn a commodity Wi-Fi device into a continuous jammer we need to be
able to carry out the following tasks:

1. Disable carrier sense.

2. Reset all interframe spaces and disable backoff.

3. Prevent the chip from waiting for an ACK.

4. Queue a large number of frames for transmission.

Achieving the first two points is explained in Sect. 3.3. The most important
registers we used are summarized in Table 3.1.

To address the last two points we need to know how the wireless chip is instructed
to transmit frames. The ath9k_htc firmware maintains a linked list of frames
to be sent. Each frame is encapsulated by a transmit descriptor, which includes
metadata describing how it should be transmitted. Among the metadata is the
HAL_TXDESC_NOACK flag. When set, the wireless chip does not wait for an ACK
and will not retransmit the frame. To queue an infinite number of frames we
turn the linked list into one self-linked element.

We have implemented the continuous jammer by modifying the ath9k_htc
firmware and created a tool to send commands to the firmware [175]. Since the
AR7010 chip supports both the 2.4 and 5 GHz band, we can jam both bands
on any channel. It is straightforward to turn our continuous jammer into a
periodic jammer, which transmits only during certain intervals. An advantage
of a periodic jammer is a lower power consumption.

We tested our implementation using a WNDA3200 and AWUS036nha. Both
devices are able to jam any channel in the 2.4 GHz band, with the WNDA3200

56 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

Table 3.2: Devices and their wireless chips. Monitor mode is
supported by all USB and Intel PCI devices.

Type Wireless Chip Device

USB

Atheros AR9271 Alfa AWUS036nha
Atheros AR9271 TP-Link WN722N
Atheros AR9280 Netgear WNDA3200
Realtek RTL8187L Alfa AWUS036h
Ralink RT2720 Belkin F5D8053 v3
Ralink RT3070 Digiflex aw-u150bb

PCI

Atheros AR5112 Wistron NeWeb CM9
Broadcom bcm4334 Galaxy i9305
Intel jc82535rde Intel 4965AG
Intel wg82541rde Intel 5100AGN

Access
Point (PCI)

Atheros AR2413 Sagem F@st 3464
Broadcom bcm2050 WRT54g v2
Broadcom bcm4322 Linksys WAG320N
Broadcom bcm5356 Asus RT-N10

also able to jam channels in the 5 GHz band. All devices in Table 3.2 were
susceptible to the attack: once the jammer was activated they all lost their
connection to the AP. When monitoring the channel we observed that only the
first frame injected by the jammer was visible. All devices in Table 3.2 supporting
monitor mode displayed this behaviour. This highlights an important difference
between our jammer and the unfair channel usage described in Sect. 3.3. Though
the high load of a selfish node could at times cause a fair station to disconnect,
all its traffic would be visible in monitor mode.

The effectiveness of the jammer depends on how it is blocking frames. They
can be blocked by triggering the carrier sense mechanism of the transmitter
(preventing it from sending frames) or by mangling the frame at the receiver.
Generally it is easier to silence a transmitter, since less power is required to
trigger the carrier sense mechanism compared to mangling incoming frames.
To establish an upper bound on the effectiveness of our jammer we tested the
maximum distance for which the AWUS036nha could silence a TL-WN722n.
This was done with a clear line-of-sight between the victim and the jammer.
Testing whether a device was silenced was done by letting it inject a frame,
and using a second device to monitor whether it was transmitted. With an
AWUS036nha as the jammer, it was effective up to roughly 80 meters. When
using an amplifier as external antenna the range was extended to roughly 120
meters.

JAMMING 57

PLCP MAC DATA FCS

tdetect tinit tjam

Figure 3.5: Timing requirements of selective jamming. After a frame
header is detected and decoded, the jammer is initiated to jam the
remaining content.

Cheap and readily available jammers for the 2.4 and 5 GHz bands can have a
high impact since many devices operate in these bands (e.g., security webcams,
baby monitors, etc).

3.4.2 Selective jamming

Selective jammers are arguably the most sophisticated and efficient. By targeting
only selected frames an attacker can stealthy block specific frames from reaching
their destination. In its simplest form a selective jammer emits noise whenever
radio activity is detected. More sophisticated ones decode a prefix of a frame
and then decide whether to jam the remaining content. In other words, they
use higher-layer information to decide whether to jam it. The downside is that
selective jammers can be difficult to implement, since they must adhere to strict
timing requirements. This is illustrated in Fig. 3.5 where tdetect is the time it
takes to detect and decode the frame header, tinit the time needed to start the
jammer, and tjam the time when the frame is being jammed. To successfully
jam a frame tdetect + tinit must be lower than the time it takes to transmit the
frame.

To implement selective jamming on commodity devices we must be able to
accomplish the following tasks:

1. Read the decoded header of a frame still in transit.

2. Abort receiving the current frame.

3. Immediately jam the channel.

Point 3 can be done by disabling carrier sense, setting all interframe spaces to
zero, disabling the backoff procedure, and then injecting a dummy frame (see
Sect. 3.4.1). Point 2 can be accomplished using the AR_DIAG_SW register.

There is no support to read the already decoded bytes of a frame still in
transit. Nevertheless, one can still accomplish this if the wireless chip uses

58 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

Radio
Main
CPU

RAM

Incoming frame

DMA
while (recvbuff[0] == 0): pass

Figure 3.6: Visualization of how to use commodity devices to detect
and process frames while they are still in the air.

Direct Memory Access (DMA) to write already decoded bytes to memory. In
that case we can monitor the receive buffer using the main CPU (see Fig. 3.6).
We first initialize the receive buffer with values that do not occur in valid 802.11
frames. Once these bytes are being modified, we know a frame is being received,
and can read the already decoded bytes.

Implementation

We implemented the selective jammer by modifying the ath9k_htc firm-
ware [175]. Currently it is designed to jam beacons and probe responses from a
particular AP. The user can specify which SSID or MAC address to target and
for how long to attack it. It is straightforward to modify our implementation to
target different frames. In particular, the following fields can be used to target
other frames: (1) MAC addresses in the header; (2) type and priority of frame;
(3) sequence and fragment number. One can also use the first bytes of data in
the packet, though this may make it difficult to jam the frame in time. Once we
have decided to jam the frame, we inject a dummy frame transmitted at 1 Mbps
to create a collision and mangle the frame. This will cause the FCS of the
targeted frame to be invalid making the receiver drop the frame. To prevent
the injected frame from being retransmitted we use the HAL_TXDESC_NOACK flag.
When targeting unicast frames it is possible to inject an ACK immediately after
jamming the frame. This prevents the sender from retransmitting the frame.

The selective jammer can also be modified to assure an attacker is the first to
reply to certain frames. For example, an attacker can detect a probe request
while it is still being transmitted, and immediately queue the transmission of
a probe reply. To assure the reply is transmitted before any other station we
disable backoff and set AIFSN to zero. A proof of concept of this attack has
been implemented. The tool detects probe requests, jams them, and replies with
a custom probe response. In Section 3.5 we use this to send probe responses
with a modified channel number. Being able to reply faster than the legitimate

JAMMING 59

source is known to facilitate other attacks as well. For example, it can also be
used to forge DNS replies in an (unencrypted) network.

We conjecture that, with sufficient efforts, all operations can be implemented
on other commodity devices as well.

Experiments

We selectively jammed beacons with the victim at 70 cm from the AP and
the jammer at 1 m (all devices were located on a single line). The victim was
put in monitor mode to track how many beacons were malformed. In each
experiment we carried out the attack for 2 minutes. When an AWUS036nha
jams a WNDA3200, on average 52% of the beacons are malformed. However,
when an AWUS036nha is jamming a TL-WN722N, 99% of the beacons are
malformed. Hence the effectiveness depends on the device of the victim. More
precisely, the type of antenna, radio chip, internal noise filters, etc. can all
influence how vulnerable a victim is. The device of the attacker also plays an
important role. As mentioned, when an AWUS036nha uses its default antenna
to jam a WNDA3200, on average 52% of the beacons are malformed. But when
connecting an amplifier to the AWUS036nha and then jamming the WNDA3200,
92% of all beacons are jammed. The location of the victim and attacker also
plays an important role. When a WNDA3200 jams another WNDA3200 in the
2.4 GHz band, 51% of beacons were jammed. If we switch the location of the
attacker and victim, all beacons were jammed. This is expected, since the signal
strength of the AP is now lower for the victim, meaning it becomes easier for
the attacker to overpower it. More precisely, the attacker must transmit a signal
powerful enough to overcome capture effect, otherwise the victim still correctly
receives the original frame. Finally we tested our jammer in the 5 GHz band
by using two WNDA3200’s. In this case all beacons were jammed.

With beacons sent at 1 Mbps in the 2.4 GHz band, both the AWUS036nha and
WNDA3200 start mangling bytes at position 52 of the beacon. When beacons
are sent at 6 Mbps in the 5 GHz band, the WNDA3200 starts mangling bytes at
position 88. This is sufficient to jam beacons, probe requests, probe responses,
and other packets of similar size. Currently the jammer is limited by the time
it takes the wireless chip to write the first decoded bytes to RAM. In particular
we observed that the wireless chip writes to RAM only after it has decoded the
first 48 bytes. Further reverse engineering may reveal a technique to force to
chip to write to RAM earlier, resulting in faster reaction times.

An interesting observation was made when selectively jamming an AR5112 chip.
When the signal power of the jammer was ±16 dB higher than that of the AP,
the AR5112 returned a prefix of the beacon, followed by the dummy frame

60 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

injected by jammer. This was caused by the Message in Message (MiM) support
of the AR5112. Devices that support MiM can resynchronise to a stronger
frame while receiving a weaker frame, even if the stronger frame arrives after
the preamble of the weaker frame [101]. Hence our selective jammer is an ideal
tool to test whether a device supports MiM. For comparison, Lee et al. had to
resort to more tedious experiments to show the AR5112 supports MiM [89].

Discussion

One limitation of our jammer is that it does not have access to the PLCP header
of a frame still in transit. In particular this means we are unable to access the
length field in the PLCP header, and thus do not know how long the frame is.
Normally the AR_DataLen field in the receive descriptor contains the length of
the frame. However, for frames still in transit, it contains the number of bytes
written to RAM so far. We found no other data from which the length can be
derived, though more analysis may overcome this obstacle.

Our cheap selective jammer is capable of deterministically creating collisions.
Apart from being used as a jammer, it can also be used to test new collision
detection techniques, experiment with Message in Message radios, etc. In short,
a cheap and easily available selective jammer not only shows that jamming
poses a more serious threat than previously thought, it also facilitates research
experiments.

3.5 Channel-Based MitM

In this section we present a man-in-the-middle attack on WPA secured networks.
Our goal is not to decrypt traffic, but to reliable intercept and manipulate it.
In Section 3.6 we use this to attack TKIP when used as a group cipher.

3.5.1 Background

If the goal of an attacker is to reliably sniff and manipulate traffic, merely
monitoring the channel is insufficient. Inevitably packets will be missed, and it
is difficult to block and manipulate traffic. Though a selective jammer can block
certain packets, it is not reliable enough (see Sect. 3.4.2). Another problem is
that selective jammers inherently do not have access to the complete frame,
giving an attacker limited information to decide whether to block it. All these
limitations disappear when having a MitM position.

CHANNEL-BASED MITM 61

Establishing a MitM position in a WPA secured network is difficult due to the
4-way handshake. This is because the generated session keys depend on the
MAC address of the AP and client. Therefore, if we use a rogue AP with a
different MAC address, the handshake will fail. Using the same MAC address as
the real AP is not possible since the client and AP would simply communicate
with each other.

3.5.2 Intercepting encrypted traffic

To intercept all traffic we will clone the AP on a different channel and forward
all traffic to the real AP. This requires two Wi-Fi dongles: one operating on the
channel of the real AP, and one cloning the AP on a different channel. Because
both Wi-Fi dongles are physically close to each other they can receive each
others frames, even though they operate on different channels. Hence, blindly
forwarding packets between both channels may create an infinite loop. To avoid
this we keep track of recently forwarded frames using their sequence numbers,
and only forward new frames. To advertise our rogue AP we transmit a beacon
every 102.4 ms and reply to probe requests using custom probe responses.

Once our rouge AP is started, we want to force clients to connect to it.
Unfortunately, injecting probe responses containing the channel of the rogue AP
does not cause clients to switch channels. Selectively jamming all beacons and
probe responses is also not reliable, as some frames will inevitably be missed.
Additionally we found that if a client was recently connected to an AP, it will
simply assume it is still present, and immediately send an authentication frame.
This technique allows a mobile device to quickly reconnect to a network. The
authentication message is only 34 bytes long and too short to be selectively
jammed. Hence selective jamming cannot be used to force clients connect to
the rogue AP. To avoid all these issues we continuously jam the channel of
the real AP (see Sect. 3.4.1). This forces the clients to switch to our channel
and connect to our rogue AP. Once the clients have switched, we can stop the
jammer, and start forwarding frames between the clients and the real AP.

3.5.3 Implementation

We implemented the attack in a command-line tool [175]. It allows a user to
specify which AP to clone, whether to jam the channel of the real AP until
clients connect to our AP, and whether to write all intercepted traffic to file.

The firmware was modified so injected frames are retransmitted in case of
failure, and so ACKs are generated when frames are sent to us. Retransmitting

62 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

frames is done by disabling the HAL_TXDESC_NOACK flag. Generating ACKs on
the device cloning the AP is straightforward, as it only needs to listen on the
MAC address of the AP. However, the device on the channel of the real AP
must listen to the MAC addresses of all connected clients. To accomplish this
we rely on virtual interface support, a hardware technology enabling a single
device to listen on multiple MAC addresses. When a client is trying to connect
to the rogue AP, our modified firmware simulates the addition of a new virtual
interface.

We had to patch the driver and firmware to prevent modifications to forwarded
frames. In particular we made the driver treat injected data frames as
management frames. In the firmware we marked injected frames as CF-Poll
frames to prevent the sequence number from being overwritten.

After establishing a MitM position an attacker will reliably capture all
traffic. Additionally, packets can be blocked by not forwarding them. It
is straightforward to update the tool so the attack can be executed even when
the target is far away from the AP by forwarding frames over the internet.

3.5.4 Experiments

We performed several experiments to measure the reliability and impact of the
attack. For the victim we used a Latitude E6500 running Linux 3.7.2, for the
AP a Linksys WAG320N using firmware v1.00.08, and as attack machine a
VMWare player instance having 2 GB RAM and running Linux 3.7.2 with our
modified drivers and firmware. We used a TL-WN722N and WNDA3200 to
intercept and forward traffic, and an AWUS036nha as the jammer. The AP
was configured to operate in 802.11g mode.

When using continuous jamming to force clients to connect to our rogue AP, we
consistently established a MitM position. Even clients already connected to the
real AP switched to the rogue AP. We then measured the impact on latency,
bandwidth, and web page loading times. When connected to the real AP the
victim had a latency of 3.82± 10.4 ms. This increased to 7.45± 12.9 ms when
connected to our rogue AP. Hence latency is doubled, which is expected since
every packet must be forwarded by our rogue AP, and is thus transmitted twice.
To test the impact on throughput we let the victim download a 100 MB file.
Under normal conditions this takes place at 18.6 Mbps. When being attacked
the speed is lowered to 8 Mbps. Finally we tested the impact on page load
times when surfing the web. Under normal conditions a page was loaded in
0.76 ± 0.07 ms, which increased to 0.83 ± 0.08 ms when under attack. Since
this is only a 9% slowdown users are unlikely to notice this and will not realise
they are under attack.

TKIP AS A GROUP CIPHER 63

These results can be optimized by implementing a rate adaptation algorithm
when forwarding packets, and by using unfair MAC parameters as described in
Sect. 3.3.

3.5.5 Countermeasures

There are legitimate reasons for an AP to change channel, for example to switch
to a less occupied one. In the 5 GHz band, switching channels is even required
to avoid interference with radars [192, §4.5.5.3]. Hence storing the channel of
an AP you previously connected to is not feasible.

The attack can be detected by including the channel of the AP in the 4-way
handshake. Unfortunately this requires a change in the existing protocol, making
this difficult to realise in practise. Ideally the impact of the attack is reduced
by using a secure encryption protocol such as CCMP.

3.6 TKIP as a Group Cipher

In this section we attack TKIP when used as a group cipher, which is the default
security setting for most routers.

3.6.1 Attack details

Previously TKIP was only investigated when used to protect unicast traffic (see
Sect. 3.2.3). Our goal is to show that TKIP can also be attacked when used as
a group cipher, i.e., when used to protect broadcast and multicast frames.

Directly applying the Beck and Tews attacks on broadcast packets fails
when multiple clients are connected to the AP. In that case all clients will
simultaneously send a MIC failure report (instead of only the targeted client
as in the unicast scenario). Hence the AP immediately starts the TKIP
countermeasures. Recall that the countermeasures disable all TKIP traffic
for one minute, after which a new GTK is generated and clients can reconnect.
Thus we would only be able to decrypt one byte. Our selective jammer cannot
be used to block the MIC failure reports, because adversaries detect these
reports based on their unique length. More troublesome, MIC failures are
generally sent at high bitrates, meaning even more advanced selective jammers
are unable to reliably jam them. Instead we use the MitM attack from Sect. 3.5,
allowing us to block MIC failure reports by not forwarding them. Note that we

64 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

must still assure that individual clients do not send more than one MIC failure
report every minute. Otherwise the client will disconnect from the network,
even if the AP did not start the TKIP countermeasures.

Once a MitM position has been achieved we wait until a small broadcast packet
is transmitted. We prefer small packets as these take less time to decrypt. Since
ARP requests are small and sent when a client (re)connects to a network, they
are an ideal candidate. After capturing an ARP request we decrypt its ICV
and MIC using the Beck and Tews method, and guess the remaining content.
Since we do not forward MIC failures to the AP, the TKIP countermeasures
will not be actived when multiple clients send a MIC failure report. Once
the packet has been decrypted we learn the keystream corresponding to the
sequence counter (TSC) of the ARP request, and we can derive the MIC key
for broadcast traffic [164]. With this we can inject 3 to 7 small packets to any
client connected to the AP (the amount depends on the number of supported
QoS channels). Furthermore, existing attacks relying on knowing the MIC key
can be modified to work on broadcast packets. For example, by modifying
the attacks presented in Chapter 2, we can abuse fragmentation to inject an
arbitrary amount broadcast of packets, and we can efficiently decrypt arbitrary
broadcast packets.

We continue by speeding up the attack. There are several techniques to
accomplish this. First, if we do not detect a MIC failure after trying all
possible 256 values, we know the target did not receive the packet with the
correct guess. If it did, it would retransmit the MIC failure until we responded
with an ACK. Hence we can immediately retry guessing all values without fear
of generating two MIC failures within one minute. In contrast, previous attacks
on TKIP had to wait one minute because the attacker might have missed the
MIC failure report while the AP did receive it.

If we are able to send broadcast packets to only one client we can further speed
up the attack. We start the attack by sending guesses to one particular client.
Once it sends a MIC failure report, we can immediately continue the attack by
targeting another client. Each client will only see one MIC failure every minute,
and the AP will see none, hence the TKIP countermeasures are never activated.
We keep targeting different clients while assuring that an individual client will
never send more than one MIC failure report every minute. The difficulty is
in sending a broadcast packet to a specific client. Though it is possible by
cloning the AP on multiple channels and spreading the clients out over these
channels, such an approach is cumbersome and requires multiple Wi-Fi devices.
Instead we rely on the observation that most devices do not process their own
broadcast packets. That is, most devices will drop broadcast packets with as
source address their own MAC address. Assuming we are attacking two clients
simultaneously, we can target one client by using the source address of the

TKIP AS A GROUP CIPHER 65

other client. Finally we do not have to wait one minute when guessing the last
remaining bytes. Though a client may send more than one MIC failure report
within one minute, and therefore disconnect from the network, the AP will not
see these MIC failures. Hence the AP will not activate its countermeasures.

3.6.2 Implementation and experiments

We implemented the attack by extending the MitM implementation (see
Sect. 3.5). To attack two clients we rely on the fact that a client will not
process broadcast packets with as source its own MAC address. Once the clients
are connected to our rogue AP, and completed the 4-way handshake, we wait
for an ARP request. The ARP request is decrypted byte by byte, and finally
the MIC key is derived.

Our experimental setup is the same as in Sect. 3.5.4, except that we now also
use a Samsung Galaxy i9305 running Android 4.3 as a second victim. During
the experiment we first let the two victims connect to the real AP, after which
we started the attack. The execution time over 10 runs was 7.3± 0.6 minutes.
This is the time from launching the tool to decrypting the APR reply and
deriving the MIC key. Note that the execution time can be further reduced by
targeting more stations simultaneously. Program output and network traces of
the attack are available for download [175].

As a comparison we measured the execution time of the original Beck and Tews
attack. The attacker used a TL-WN722N and the victim an AWUS036h. They
were placed close to each other to reduce packet loss, an hence represents an
optimal case. We used the tkiptun-ng tool from aircrack-ng. The execution
time over 10 runs was 14.6 ± 1.1 minutes, more than twice the time of our
attack.

3.6.3 Countermeasures

To prevent the interception of MIC failure reports, APs should securely
acknowledge them. If the client does not receive the acknowledgement within
time, it may be under attack, and should activate its TKIP countermeasures.
This prevents an attacker from blocking MIC failure reports and attacking
multiple stations simultaneously.

The attack can be mitigated by using a short rekeying timeout of 2 minutes or
less. Ideally the attack is prevented by using a more secure encryption protocol
such as CCMP.

66 ADVANCED WI-FI ATTACKS USING COMMODITY HARDWARE

3.7 Related Work

Atheros drivers are popular for low-layer control over experiments, relevant
examples are [59, 89, 139]. Custom firmware has also been used for low-layer
control [19, 21, 68].

A significant amount of research on the behaviour of selfish stations rely only on
analytic models and simulations [32, 135, 138]. Raya et al. perform experimental
tests when a single node manipulates the contention window of the backoff
procedure [139]. Pelechrinis et al. also perform experiments, but only consider
stations which modify their Clear Channel Assessment (CCA) threshold [129].
However, an attacker can easily change additional parameters. We are not aware
of any works doing a detailed experimental study on the behaviour of selfish
stations, where multiple strategies are tested, and the capture effect is taken
into account. The capture has been observed for 802.11 on Prism and Atheros
chipsets [59, 83]. In [59] the authors attempt to reduce the unfairness caused by
this effect. Lee et al. perform a detailed study on when the capture effect takes
places, and found that the Atheros AR5112 not only exhibits capture effect but
also supports Message in Message mode [89].

Bayraktaroglu et al. required a USRP to continuously jam the 2.4 GHz band [17].
Kim et al. modify the MadWifi driver of the Atheros 5212 to continuously emit
meaningless frames in the 2.4 GHz band [80]. Noubir et al. used one USRP1
and two RFX2400 boards to build a selective jammer [119]. Unfortunately the
reaction time of their setup was too slow to reliably jam frames [119, §6.1.4].
Cassola et al. required two USRP2s and two RFX2400 boards, totalling more
than $3600, to selectively jam frames in the 2.4 GHz band [34]. Their jammer
starts mangling frames sent using 1 Mbps at byte 38, while our jammer does this
at byte 52. However, our dongle costs only $15, can jam both frequency bands,
and is easier in use due to its smaller size. In concurrent and independent work,
Berger et al. used custom microcode to have control of medium access, encoding,
and decoding operations, and used this to implement selective jamming in the
2.4 GHz band [21]. The advantage of our approach is that we do not require
such low-level control over medium access operations performed in the chip.
Continuous and selective jammers have also been created to target other wireless
protocols [191, 195]. Our selective Wi-Fi jammer is unique because it is both
cheap and portable. Jamming can also be used as a defensive mechanism [21,
32, 191].

Beck and Tews found the first practically exploitable vulnerability in TKIP,
which required QoS enhancements to be enabled [164]. Ohigashi and Morri
used a MitM position to execute the attack even if QoS was not enabled [121].
In particular they assumed the client was not in range of the AP, and that the

CHAPTER CONCLUSION 67

attacker acted as a repeater by forwarding all frames between the client and AP.
In contrast, our MitM attack does not require that the client and AP are out of
range. Over the years additional improvements of the Beck and Tews attack
have been found [69, 116, 168, 185]. Several more theoretical attacks on TKIP
have also been published [112, 125, 156]. Finally, the closest related work to our
channel-based MitM attack we are aware of is the AirJack tool [94]. It clones
an unencrypted network on a different channel and forwards all traffic over
Ethernet. Hence it cannot clone encrypted networks, whereas our attack can.

3.8 Chapter Conclusion

We were able to implement several low-layer attacks on Wi-Fi using open source
Atheros firmware. This is surprising, since we only have access to a limited
API to control the radio (e.g., we cannot transmit arbitrary signals, do not
have access to raw signal data, cannot modify medium access algorithms, etc).
Additionally we bypassed systems designed to prevent some of these attacks,
indicating that previous works have underestimated the capabilities of attackers.
We also showed that our low-layer attacks facilitate attacks on higher-layer
protocols, by attacking TKIP when used as a group cipher. Since TKIP is used
significantly more as a group cipher than as a unicast cipher, this demonstrates
that weaknesses in TKIP are still of high practical value.

Finally, the selective jammer, channel MitM, and TKIP attacks are available
for download [175]. We hope these results aid in the creation of better counter-
measures, and motivate people to only use the more secure (AES)-CCMP.

Chapter 4

Breaking RC4 in WPA-TKIP
and TLS

“Having everything go your way is the road
to disillusionment. Knowing the difference be-
tween what’s impossible and what’s possible. . . ”

— Caitlin, Pokémon HeartGold

Abstract

We present new biases in RC4, break the Wi-Fi Protected Access Temporal
Key Integrity Protocol (WPA-TKIP), and design a practical plaintext recovery
attack against the Transport Layer Security (TLS) protocol. To empirically
find new biases in the RC4 keystream we use statistical hypothesis tests. This
reveals many new biases in the initial keystream bytes, as well as several new
long-term biases. Our fixed-plaintext recovery algorithms are capable of using
multiple types of biases, and return a list of plaintext candidates in decreasing
likelihood.

To break WPA-TKIP we introduce a method to generate a large number of
identical packets. This packet is decrypted by generating its plaintext candidate
list, and using redundant packet structure to prune bad candidates. From the
decrypted packet we derive the TKIP MIC key, which can be used to inject and
decrypt packets. In practice the attack can be executed within an hour. We

69

70 BREAKING RC4 IN WPA-TKIP AND TLS

also attack TLS as used by HTTPS, where we show how to decrypt a secure
cookie with a success rate of 94% using 9 · 227 ciphertexts. This is done by
injecting known data around the cookie, abusing this using Mantin’s ABSAB
bias, and brute-forcing the cookie by traversing the plaintext candidates. Using
our traffic generation technique, we are able to execute the attack in merely 75
hours.

Preamble

Parts of this chapter were previously published as:

M. Vanhoef and F. Piessens. “All your biases belong to us: Breaking RC4
in WPA-TKIP and TLS”. in: Proceedings of the 24th USENIX Security
Symposium (USENIX Security ’15). USENIX Association, Aug. 2015,
pp. 97–112

The main research effort of this work was lead by Mathy Vanhoef, under the
supervision of Frank Piessens.

This work won the best student paper award at USENIX Security 2015. In
combination with other recent attacks against RC4 [5, 60, 98], and due to the
IETF publishing RFC 7465 which prohibits the usage of RC4 in TLS [131],
this motivated major browser vendors to disable support of RC4. In particular,
Google Chrome [86] and Mozilla Firefox [13] dropped support for RC4 in January
2016. While Microsoft planned to drop support of RC4 in April 2016, customer
feedback made them prolong the support of RC4 [110]. Consequently, as of
June 2016, Internet Explorer and Edge still support RC4.

After the publication of this work, the usage of RC4 in TLS connections
has steadily kept dropping. While in February 2015 around 30% of all TLS
connections used RC4, in July 2015 this dropped to 13%, and in April 2016 this
further decreased to 3% [73].

To highlight the weaknesses in RC4, and encourage people to stop using it,
the website www.rc4nomore.com was created. It explains the results of our
work in layman’s terms, and includes a video where we demonstrate how to
decrypt a HTTP cookie protected using TLS and RC4. This work paid off: our
website got picked up by Ars Technica [65], by Bruce Schneier on his personal
blog [151], by The Register [36], by Golem News [61], etc. We believe this
helped to sped up the removal of RC4. On this website we also published several
datasets we generated, as well as the source code of some statistical tests we
used. In addition to these public datasets, researchers from Bonn university
requested our per-TSC statistics used in the attack against WPA-TKIP, in order

www.rc4nomore.com

INTRODUCTION 71

to replicate parts of this work. This dataset took 10 CPU years to generate,
but was not made public due to its large 8 GiB size.

In contrast to the original publication, this chapter contains a more detailed
analysis of new long-term biases that we discovered in the RC4 keystream.
This additional work encompassed the generation of more detailed datasets,
the analysis of these datasets, and a first step in the theoretical analysis of
their cause. More concretely, Section 4.3.4 has been updated, and contains new
results and findings.

4.1 Introduction

RC4 is (still) one of the most widely used stream ciphers. Arguably its most
well known usage is in SSL and WEP, and in their successors TLS [43] and
WPA-TKIP [192]. In particular it was heavily used after several attacks against
CBC-mode encryption schemes in TLS were published, such as BEAST [46],
the padding oracle attack [33], and Lucky 13 [6]. As a mitigation RC4 was
recommended. Because of this, in 2013 around 50% of all TLS connections
were using RC4 [5], and even in 2015 roughly 30% of all TLS connections still
used RC4 [183]. This motivated the search for new attacks, relevant examples
being [5, 60, 67, 75, 124, 125]. Of special interest to us is the attack proposed
by AlFardan et al., where roughly 13 · 230 ciphertexts are required to decrypt a
cookie sent over HTTPS [5]. This corresponds to about 2 000 hours of data in
their setup, hence the attack is considered close to being practical. Our goal
is to see how far these attacks can be pushed by exploring three areas. First,
we search for new biases in the keystream. Second, we improve fixed-plaintext
recovery algorithms. Third, we demonstrate techniques to perform our attacks
in practice.

First we empirically search for biases in the keystream. This is done by
generating a large amount of keystream, and storing statistics about them
in several datasets. The resulting datasets are then analyzed using statistical
hypothesis tests. Our null hypothesis is that a keystream byte is uniformly
distributed, or that two bytes are independent. Rejecting the null hypothesis is
equivalent to detecting a bias. Compared to manually inspecting graphs, this
allows for a more large-scale analysis. With this approach we found many new
biases in the initial keystream bytes, as well as several new long-term biases.

We break WPA-TKIP by decrypting a complete packet using RC4 biases and
deriving the TKIP MIC key. This key can be used to inject and decrypt
packets (see Chapter 2). In particular we modify the plaintext recovery attack
of Paterson et al. [124, 125], which abused biases induced by the weak per-packet

72 BREAKING RC4 IN WPA-TKIP AND TLS

key construction of WPA-TKIP, to return a list of candidates in decreasing
likelihood. Bad candidates are detected and pruned based on the (decrypted)
CRC of the packet. This increases the success rate of simultaneously decrypting
all unknown bytes. We achieve practicality using a novel method to rapidly
inject identical packets into a network. In practice the attack can be executed
within an hour.

We also attack RC4 as used in TLS and HTTPS, where we decrypt a
secure cookie in realistic conditions. This is done by combining the ABSAB
and Fluhrer-McGrew biases using variants of attacks by Isobe et al. and
AlFardan et al. [5, 75]. Our technique can also be extended to include other
biases. To abuse Mantin’s ABSAB bias we inject known plaintext around the
cookie, and exploit this to calculate Bayesian plaintext likelihoods over the
unknown cookie. We then generate a list of (cookie) candidates in decreasing
likelihood, and use this to brute-force the cookie in negligible time. The
algorithm to generate candidates differs from the WPA-TKIP one due to the
reliance on double-byte instead of single-byte likelihoods. All combined, we
need 9 · 227 encryptions of a cookie to decrypt it with a success rate of 94%.
Finally we show how to make a victim generate this amount within only 75
hours, and execute the attack in practice.

To summarize, our main contributions are:

• We use statistical tests to empirically detect biases in the keystream,
revealing large sets of new biases.

• We design plaintext recovery algorithms capable of using multiple types of
biases, which return a list of plaintext candidates in decreasing likelihood.

• We demonstrate practical exploitation techniques to break RC4 in both
WPA-TKIP and TLS.

The remainder of this chapter is organized as follows. Section 4.2 gives a
background on RC4, TKIP, and TLS. In Section 4.3 we introduce hypothesis
tests and report new biases. Plaintext recovery techniques are given in Sect. 4.4.
Practical attacks on TKIP and TLS are presented in Sect. 4.5 and Sect. 4.6,
respectively. Finally, we summarize related work in Sect. 4.7 and conclude in
Sect. 4.8.

4.2 Background

In this section we introduce RC4 and its usage in TLS and WPA-TKIP.

BACKGROUND 73

Listing (4.1) RC4 Key Scheduling
Algorithm (KSA)

1 j, S = 0, range(256)
2 for i in range(256):
3 j += S[i] + key[i % len(key)]
4 swap(S[i], S[j])
5 return S

Listing (4.2) RC4 Keystream
Generation Algorithm (PRGA)

1 S, i, j = KSA(key), 0, 0
2 while True:
3 i += 1
4 j += S[i]
5 swap(S[i], S[j])
6 yield S[S[i] + S[j]]

Figure 4.1: Implementation of RC4 in Python-like pseudo-code. All
additions are performed modulo 256.

4.2.1 The RC4 algorithm

The RC4 algorithm is intriguingly short and known to be very fast in software. It
consists of a Key Scheduling Algorithm (KSA) and a Pseudo-Random Generation
Algorithm (PRGA), which are both shown in Fig. 4.1. The state consists of a
permutation S of the set {0, . . . , 255}, a public counter i, and a private index
j. The KSA takes as input a variable-length key and initializes S. At each
round r = 1, 2, . . . of the PRGA, the yield statement outputs a keystream
byte Zr. All additions are performed modulo 256. A plaintext byte Pr is
encrypted to ciphertext byte Cr using Cr = Pr ⊕ Zr.

Short-term biases

Several biases have been found in the initial RC4 keystream bytes. We call
these short-term biases. The most significant one was found by Mantin and
Shamir. They showed that the second keystream byte is twice as likely to be zero
compared to uniform [100]. Or more formally that Pr[Z2 = 0] ≈ 2 · 2−8, where
the probability is over the random choice of the key. Because zero occurs more
often than expected, we call this a positive bias. Similarly, a value occurring
less often than expected is called a negative bias. This result was extended by
Maitra et al. [97] and further refined by Sen Gupta et al. [154] to show that
there is a bias towards zero for most initial keystream bytes. Sen Gupta et al.
also found key-length dependent biases: if ` is the key length, keystream byte Z`
has a positive bias towards 256− ` [154]. AlFardan et al. showed that all initial
256 keystream bytes are biased by empirically estimating their probabilities
when 16-byte keys are used [5]. While doing this they found additional strong
biases, an example being the bias towards value r for all positions 1 ≤ r ≤ 256.
This bias was also independently discovered by Isobe et al. [75].

74 BREAKING RC4 IN WPA-TKIP AND TLS

Table 4.1: Generalized Fluhrer-McGrew (FM) biases. Here i is the
public counter in the PRGA and r the position of the first byte of the
digraph. Probabilities for long-term biases are shown (for short-term
biases see Fig. 4.4).

Digraph value Condition Probability
(0,0) i = 1 2−16(1 + 2−7)
(0,0) i 6= 1, 255 2−16(1 + 2−8)
(0,1) i 6= 0, 1 2−16(1 + 2−8)
(0,i+ 1) i 6= 0, 255 2−16(1− 2−8)

(i+ 1,255) i 6= 254 ∧ r 6= 1 2−16(1 + 2−8)
(129,129) i = 2 ∧ r 6= 2 2−16(1 + 2−8)
(255,i+ 1) i 6= 1, 254 2−16(1 + 2−8)
(255,i+ 2) i ∈ [1, 252] ∧ r 6= 2 2−16(1 + 2−8)
(255,0) i = 254 2−16(1 + 2−8)
(255,1) i = 255 2−16(1 + 2−8)
(255,2) i = 0, 1 2−16(1 + 2−8)
(255,255) i 6= 254 ∧ r 6= 5 2−16(1− 2−8)

The bias Pr[Z1 = Z2] = 2−8(1−2−8) was found by Paul and Preneel [127]. Isobe
et al. refined this result for the value zero to Pr[Z1 = Z2 = 0] ≈ 3 · 2−16 [75].
In [75] the authors searched for biases of similar strength between initial bytes,
but did not find additional ones. However, we did manage to find new ones (see
Sect. 4.3.3).

Long-term biases

In contrast to short-term biases, which occur only in the initial keystream bytes,
there are also biases that keep occurring throughout the whole keystream. We
call these long-term biases. For example, Fluhrer and McGrew (FM) found that
the probability of certain digraphs, i.e., consecutive keystream bytes (Zr, Zr+1),
deviate from uniform throughout the whole keystream [56]. These biases depend
on the public counter i of the PRGA, and are listed in Table 4.1 (ignoring the
condition on r for now). In their analysis, Fluhrer and McGrew assumed that
the internal state of the RC4 algorithm was uniformly random. This assumption
is only true after a few rounds of the PRGA [56, 111, 154]. Consequently
these biases were generally not expected to be present in the initial keystream
bytes. However, in Sect. 4.3.3 we show that most of these biases do occur in the
initial keystream bytes, albeit with different probabilities than their long-term
variants.

BACKGROUND 75

Another long-term bias was found by Mantin [99]. He discovered a bias towards
the pattern ABSAB, where A and B represent byte values, and S a short
sequence of bytes called the gap. With the length of the gap S denoted by g,
the bias can be written as:

Pr[(Zr, Zr+1) = (Zr+g+2, Zr+g+3)] = 2−16(1 + 2−8e
−4−8g

256) . (4.1)

Hence the bigger the gap, the weaker the bias. Bricout et al. refined this result,
and showed that for certain values of Zr and Zr+1, the bias is non-existent,
or stronger than predicted by (4.1) [29]. Finally, Sen Gupta et al. found the
long-term bias [154]

Pr[(Zw256, Zw256+2) = (0, 0)] = 2−16(1 + 2−8) ,

where w ≥ 1. We discovered that a bias towards (128, 0) is also present at these
positions (see Sect. 4.3.4).

4.2.2 TKIP cryptographic encapsulation

The design goal of WPA-TKIP was for it to be a temporary replacement of
WEP [192, §11.4.2]. While it is being phased out by the Wi-Fi Alliance, our
survey in Chapter 2 showed its usage is still widespread in 2016. That is, out of
7 586 networks, we found that 59% of all protected networks allow TKIP, with
3% still exclusively supporting TKIP.

Our attack on TKIP relies on two elements of the protocol: its weak Message
Integrity Check (MIC) [164, 185], and its faulty per-packet key construction [5,
67, 124, 125]. We briefly introduce both aspects, assuming a 512-bit Pairwise
Transient Key (PTK) has already been negotiated between the Access Point (AP)
and client. From this PTK a 128-bit temporal encryption key (TK) and two
64-bit Message Integrity Check (MIC) keys are derived. The first MIC key is
used for AP-to-client communication, and the second for the reverse direction.
Some works claim that the PTK, and its derived keys, are renewed after a
user-defined interval, commonly set to 1 hour [164, 185]. However, we found
that generally only the Groupwise Transient Key (GTK) is periodically renewed.
Interestingly, our attack can be executed within an hour, so even networks
which renew the PTK every hour can be attacked.

When the client wants to transmit a payload, it first calculates a MIC value using
the appropriate MIC key and the Michael algorithm (see Fig. 4.2). Unfortunately
Michael is straightforward to invert: given plaintext data and its MIC value,
we can efficiently derive the MIC key [164]. After appending the MIC value, a
CRC checksum called the Integrity Check Value (ICV) is also appended. The

76 BREAKING RC4 IN WPA-TKIP AND TLS

header TSC SNAP IP TCP MIC ICV

encrypted

payload

Figure 4.2: Simplified TKIP frame with a TCP payload.

resulting packet, including MAC header and example TCP payload, is shown in
Fig. 4.2. The payload, MIC, and ICV are encrypted using RC4 with a per-packet
key. This key is calculated by a mixing function that takes as input the TK,
the TKIP sequence counter (TSC), and the transmitter MAC address (TA).
We write this as K = KM(TA,TK,TSC). The TSC is a 6-byte counter that is
incremented after transmitting a packet, and is included unencrypted in the
MAC header. In practice the output of KM can be modelled as uniformly
random [5, 125]. In an attempt to avoid weak-key attacks that broke WEP [57],
the first three bytes of K are set to [192, §11.4.2.1.1]:

K0 = TSC1 K1 = (TSC1 | 0x20) & 0x7f K2 = TSC0

Here, TSC0 and TSC1 are the two least significant bytes of the TSC. Since
the TSC is public, so are the first three bytes of K. Both formally and using
simulations, it has been shown this actually weakens security [5, 67, 124, 125].

4.2.3 The TLS record protocol

We focus on the TLS record protocol when RC4 is selected as the symmetric
cipher [43]. In particular we assume the handshake phase is completed, and a
48-byte TLS master secret has been negotiated.

To send an encrypted payload, a TLS record of type application data is created.
It contains the protocol version, length of the encrypted content, the payload
itself, and finally an HMAC [85]. The resulting layout is shown in Fig. 4.3.
The HMAC is computed over the header, a sequence number incremented for
each transmitted record, and the plaintext payload. Both the payload and
HMAC are encrypted. At the start of a connection, RC4 is initialized with a
key derived from the TLS master secret. This key can be modelled as being
uniformly random [5]. None of the initial keystream bytes are discarded.

In the context of HTTPS, one TLS connection can be used to handle multiple
HTTP requests. This is called a persistent connection. Slightly simplified,
a server indicates support for this by setting the HTTP Connection header
to keep-alive. This implies RC4 is initialized only once to send all HTTP

EMPIRICALLY FINDING NEW BIASES 77

type version length payload HMAC

header RC4 encrypted

Figure 4.3: TLS Record structure when using RC4.

requests, allowing the usage of long-term biases in attacks. Finally, cookies can
be marked as being secure, assuring they are transmitted only over a TLS
connection.

4.3 Empirically Finding New Biases

In this section we explain how to empirically yet soundly detect biases. While
we discovered many biases, we will not use them in our attacks. This simplifies
the description of the attacks. And, while using the new biases may improve
our attacks, using existing ones already sufficed to significantly improve upon
existing attacks. Hence our focus will mainly be on the most intriguing new
biases.

4.3.1 Soundly detecting biases

In order to empirically detect new biases, we rely on hypothesis tests. That is,
we generate keystream statistics over random RC4 keys, and use statistical tests
to uncover deviations from uniform. This allows for a large-scale and automated
analysis. To detect single-byte biases, our null hypothesis is that the keystream
byte values are uniformly distributed. To detect biases between two bytes, one
may be tempted to use as null hypothesis that the pair is uniformly distributed.
However, this falls short if there are already single-byte biases present. In this
case single-byte biases imply that the pair is also biased, while both bytes may
in fact be independent. Hence, to detect double-byte biases, our null hypothesis
is that they are independent. With this test, we even detected pairs that are
actually more uniform than expected. Rejecting the null hypothesis is now the
same as detecting a bias.

To test whether values are uniformly distributed, we use a chi-squared goodness-
of-fit test. A naive approach to test whether two bytes are independent, is using
a chi-squared independence test. Although this would work, it is not ideal when
only a few biases (outliers) are present. Moreover, based on previous work we
expect that only a few values between keystream bytes show a clear dependency
on each other [16, 56, 75, 99, 154]. Taking the Fluhrer-McGrew biases as an

78 BREAKING RC4 IN WPA-TKIP AND TLS

example, at any position at most 8 out of a total 65 536 value pairs show a clear
bias [56]. When expecting only a few outliers, the M-test of Fuchs and Kenett
can be asymptotically more powerful than the chi-squared test [58]. Hence we
use the M-test to detect dependencies between keystream bytes. To determine
which values are biased between dependent bytes, we perform proportion tests
over all value pairs.

We reject the null hypothesis only if the p-value is lower than 10−4. Holm’s
method is used to control the family-wise error rate when performing multiple
hypothesis tests. This controls the probability of even a single false positive
over all hypothesis tests. We always use the two-sided variant of a hypothesis
test, since a bias can be either positive or negative.

Simply giving or plotting the probability of two dependent bytes is not ideal.
After all, this probability includes the single-byte biases, while we only want
to report the strength of the dependency between both bytes. To solve this,
we report the absolute relative bias compared to the expected single-byte
based probability. More precisely, say that by multiplying the two single-byte
probabilities of a pair, we would expect it to occur with probability p. Given
that this pair actually occurs with probability s, we then plot the value |q| from
the formula s = p · (1 + q). In a sense the relative bias indicates how much
information is gained by not just considering the single-byte biases, but using
the real byte-pair probability.

4.3.2 Generating datasets

In order to generate detailed statistics of keystream bytes, we created a
distributed setup. We used roughly 80 standard desktop computers and three
powerful servers as workers. The generation of the statistics is done in C.
Python was used to manage the generated datasets and control all workers. On
start-up each worker generates a cryptographically random AES key. Random
128-bit RC4 keys are derived from this key using AES in counter mode. Finally,
we used R for all statistical analysis [136].

Our main results are based on two datasets, called first16 and consec512.
The first16 dataset estimates Pr[Za = x∧Zb = y] for 1 ≤ a ≤ 16, 1 ≤ b ≤ 256,
and 0 ≤ x, y < 256 using 244 keys. Its generation took roughly 9 CPU years.
This allows detecting biases between the first 16 bytes and the other initial 256
bytes. The consec512 dataset estimates Pr[Zr = x∧Zr+1 = y] for 1 ≤ r ≤ 512
and 0 ≤ x, y < 256 using 245 keys, which took 16 CPU years to generate. It
allows a detailed study of consecutive keystream bytes up to position 512.

We optimize the generation of both datasets. The first optimization is that

EMPIRICALLY FINDING NEW BIASES 79

one run of a worker generates at most 230 keystreams. This allows usage of
16-bit integers for all counters collecting the statistics, even in the presence of
significant biases. Only when combining the results of workers are larger integers
required. This lowers memory usage, reducing cache misses. To further reduce
cache misses we generate several keystreams before updating the counters. In
prior work, Paterson et al. used similar optimizations [124]. For the first16
dataset we use an additional optimization. Here we first generate several
keystreams, and then update the counters in a sorted manner based on the
value of Za. This optimization caused the most significant speed-up for the
first16 dataset.

4.3.3 New short-term biases

By analysing the generated datasets we discovered many new short-term biases.
We classify them into several sets.

Biases in (non-)consecutive bytes

By analysing the consec512 dataset we discovered numerous biases between
consecutive keystream bytes. Our first observation is that the Fluhrer-McGrew
biases are also present in the initial keystream bytes. Exceptions occur at
positions 1, 2 and 5, and are listed in Table 4.1 (note the extra conditions on the
position r). This is surprising, as the Fluhrer-McGrew biases were generally not
expected to be present in the initial keystream bytes [56]. However, these biases
are present, albeit with different probabilities. Figure 4.4 shows the absolute
relative bias of most Fluhrer-McGrew digraphs, compared to their expected
single-byte based probability (recall Sect. 4.3.1). For all digraphs, the sign of
the relative bias q is the same as its long-term variant as listed in Table 4.1. We
observe that the relative biases converge to their long-term values, especially
after position 257. The vertical lines around position 1 and 256 are caused by
digraphs which do not hold (or hold more strongly) around these positions.

A second set of strong biases have the form:

Pr[Zw16−1 = Zw16 = 256− w16] , (4.2)

with 1 ≤ w ≤ 7. In Table 4.2 we list their probabilities. Since 16 equals our key
length, these are likely key-length dependent biases.

Another set of biases has the form Pr[Zr = Zr+1 = x]. Depending on the
value x, these biases are either negative or positive. Hence summing over
all x and calculating Pr[Zr = Zr+1] would lose some statistical information.

80 BREAKING RC4 IN WPA-TKIP AND TLS

Digraph position

Ab
so

lu
te

 re
la

tiv
e

bi
as

2−8.5

2−8

2−7.5

2−7

2−6.5

1 32 64 96 128 160 192 224 256 288

(0, 0)
(0, 1)
(0,i+1)

(i+1,255)
(255, i+1)
(255, i+2)
(255,255)

Figure 4.4: Absolute relative bias of several Fluhrer-McGrew
digraphs in the initial keystream bytes, compared to their expected
single-byte based probability.

In principle, these biases also include the Fluhrer-McGrew pairs (0, 0) and
(255, 255). However, as the bias for both these pairs is much higher than for
other values, we excluded them in our analysis. Our new bias, in the form of
Pr[Zr = Zr+1], was detected up to position 512.

We also detected biases between non-consecutive bytes that do not fall in any
obvious categories. An overview of these is given in Table 4.2. We remark that
the biases induced by Z16 = 240 generally have a position, or value, that is a
multiple of 16. This is an indication that these are likely key-length dependent
biases.

Influence of Z1 and Z2

Arguably our most intriguing finding is the amount of information the first
two keystream bytes leak. In particular, Z1 and Z2 influence all initial 256
keystream bytes. We detected the following six sets of biases:

1) Z1 = 257− i ∧ Zi = 0 4) Z1 = i− 1 ∧ Zi = 1
2) Z1 = 257− i ∧ Zi = i 5) Z2 = 0 ∧ Zi = 0
3) Z1 = 257− i ∧ Zi = 257− i 6) Z2 = 0 ∧ Zi = i

EMPIRICALLY FINDING NEW BIASES 81

Table 4.2: Biases between consecutive and non-consecutive bytes.

First byte Second byte Probability
Consecutive biases:
Z15 = 240 Z16 = 240 2−15.94786(1− 2−4.894)
Z31 = 224 Z32 = 224 2−15.96486(1− 2−5.427)
Z47 = 208 Z48 = 208 2−15.97595(1− 2−5.963)
Z63 = 192 Z64 = 192 2−15.98363(1− 2−6.469)
Z79 = 176 Z80 = 176 2−15.99020(1− 2−7.150)
Z95 = 160 Z96 = 160 2−15.99405(1− 2−7.740)
Z111 = 144 Z112 = 144 2−15.99668(1− 2−8.331)
Non-consecutive biases:
Z3 = 4 Z5 = 4 2−16.00243(1 + 2−7.912)
Z3 = 131 Z131 = 3 2−15.99543(1 + 2−8.700)
Z3 = 131 Z131 = 131 2−15.99347(1− 2−9.511)
Z4 = 5 Z6 = 255 2−15.99918(1 + 2−8.208)
Z14 = 0 Z16 = 14 2−15.99349(1 + 2−9.941)
Z15 = 47 Z17 = 16 2−16.00191(1 + 2−11.279)
Z15 = 112 Z32 = 224 2−15.96637(1− 2−10.904)
Z15 = 159 Z32 = 224 2−15.96574(1 + 2−9.493)
Z16 = 240 Z31 = 63 2−15.95021(1 + 2−8.996)
Z16 = 240 Z32 = 16 2−15.94976(1 + 2−9.261)
Z16 = 240 Z33 = 16 2−15.94960(1 + 2−10.516)
Z16 = 240 Z40 = 32 2−15.94976(1 + 2−10.933)
Z16 = 240 Z48 = 16 2−15.94989(1 + 2−10.832)
Z16 = 240 Z48 = 208 2−15.92619(1− 2−10.965)
Z16 = 240 Z64 = 192 2−15.93357(1− 2−11.229)

Their absolute relative bias, compared to the single-byte biases, is shown in
Fig. 4.5. The relative bias of pairs 5 and 6, i.e., those involving Z2, are generally
negative. Pairs involving Z1 are generally positive, except pair 3, which always
has a negative relative bias. We also detected dependencies between Z1 and Z2
other than the Pr[Z1 = Z2] bias of Paul and Preneel [127]. That is, the following
pairs are strongly biased:

A) Z1 = 0 ∧ Z2 = x C) Z1 = x ∧ Z2 = 0
B) Z1 = x ∧ Z2 = 258− x D) Z1 = x ∧ Z2 = 1

Bias A and C are negative for all x 6= 0, and both appear to be mainly caused
by the strong positive bias Pr[Z1 = Z2 = 0] found by Isobe et al. Bias B and D

82 BREAKING RC4 IN WPA-TKIP AND TLS

Position other keystream byte (variable i)

Ab
so

lu
te

 re
la

tiv
e

bi
as

2−11

2−10

2−9

2−8

2−7

1 32 64 96 128 160 192 224 256

Bias 1
Bias 3
Bias 5

Bias 2
Bias 4
Bias 6

Figure 4.5: Biases induced by the first two bytes. The number of
the biases correspond to those in Sect. 4.3.3.

are positive. We also discovered the following three biases:

Pr[Z1 = Z3] = 2−8(1− 2−9.617) , (4.3)

Pr[Z1 = Z4] = 2−8(1 + 2−8.590) , (4.4)

Pr[Z2 = Z4] = 2−8(1− 2−9.622) . (4.5)

Note that all involve an equality either with Z1 or Z2.

Single-byte biases

We analyzed single-byte biases by aggregating the consec512 dataset, and by
generating additional statistics specifically for single-byte probabilities. The
aggregation corresponds to calculating

Pr[Zr = k] =
255∑
y=0

Pr[Zr = k ∧ Zr+1 = y] . (4.6)

We ended up with 247 keys used to estimate single-byte probabilities. For
all initial 513 bytes we could reject the hypothesis that they are uniformly
distributed. In other words, all initial 513 bytes are biased. Figure 4.6 shows
the probability distribution for some positions. Manual inspection of the

EMPIRICALLY FINDING NEW BIASES 83

Keystream byte value

0.00390577

0.00390589

0.00390601

0.00390613

0.00390625

0.00390637

0.00390649

0 32 64 96 128 160 192 224 256

Pr
ob

ab
ilit

y
Position 272
Position 304
Position 336
Position 368

Figure 4.6: Single-byte biases beyond position 256.

distributions revealed a significant bias towards Z256+k·16 = k · 32 for 1 ≤ k ≤ 7.
These are likely key-length dependent biases. Following [111] we conjecture
there are single-byte biases even beyond these positions, albeit less strong.

4.3.4 New long-term biases

To search for new long-term biases we created a variant of the first16 dataset.
It estimates

Pr[Z256w+a = x ∧ Z256w+b = y] (4.7)

for 0 ≤ a ≤ 16, 0 ≤ b < 256, 0 ≤ x, y < 256, and w ≥ 4. It is generated using
212 RC4 keys, where each key was used to generate 240 keystream bytes. This
took roughly 8 CPU years. The condition on w means we always dropped the
initial 1023 keystream bytes. Using this dataset we can detect biases whose
periodicity is a proper divisor of 256 (e.g., it detected all Fluhrer-McGrew biases).
Our new short-term biases were not present in this dataset, indicating they
indeed only occur in the initial keystream bytes, at least with the probabilities
we listed. We did find the new long-term bias

Pr[(Zw256, Zw256+2) = (128, 0)] = 2−16(1 + 2−8) (4.8)

for w ≥ 1. Surprisingly this was not discovered earlier, since a bias towards
(0, 0) at these positions was already known [154].

By aggregating our dataset we also detected several biases of the form
Pr[Zr = Zr+b] = 2−8(2± 2−16). We call these type of biases distant-equality
biases. Due to the small relative bias of 2−16, these are difficult to reliably
detect. We addressed this issue by generating a new dataset that specifically
estimates Pr[Z256w+a = Z256w+b] for 0 ≤ a ≤ 16, 0 ≤ b < 256, 0 ≤ x, y < 256,

84 BREAKING RC4 IN WPA-TKIP AND TLS

0.0

0.2

0.4

0.6

0.8

1.0

d (distance between bytes)

R
el

at
iv

e
bi

as
 ti

m
es

 2
16

4 32 64 96 128 160 192 224

Emperical
Prediction

Figure 4.7: Empirical relative bias times 216 of the long-term distant-
equality bias, in function of the distance d, for d ≥ 4. In other words,
this is the value of the function δ(d) in equation (4.11).

and w ≥ 4. It is generated using roughly 215 RC4 keys, where each key was
used to generate 240 keystream bytes. In total this dataset took 17 CPU years
to generate. By analysing it we found that these biases are independent of their
position in the keystream, i.e., they do not depend on the public counter i. The
discovered set of biases can be summarized as follows:

Pr[Zr = Zr+1] ≈ 2−8(1 + 2−16) , (4.9)

Pr[Zr = Zr+2] ≈ 2−8(1− 2−16) , (4.10)

Pr[Zr = Zr+d | d ≥ 4] ≈ 2−8(1 + δ(d) · 2−16) . (4.11)

Here δ(d) is a decreasing function, whose value is plotted in Fig. 4.7. The
dashed line shows the value of the function f(d) = e−4d/256. This formula
was inspired by Lemma 1 of Mantin in [99]. It states that, with a probably
of e−rd/256, r locations in the RC4 state will have the same value d rounds
later. Unfortunately, we do not yet have an exact explanation why our formula
closely matches our empirical observations, and leave a proper explanation as
future work. Interestingly, no bias was detected for the event Zr = Zr+3, i.e.,
keystream bytes that are three positions apart are not noticeably correlated.

At this point it is worth noting that Paul and Preneel theoretically predicted
the following bias [127, §2.4]:

Pr[Z256w+1 = Z256w+2] = 2−8(1− 2−16) . (4.12)

PLAINTEXT RECOVERY 85

They empirically confirmed this for w = 1. However, our results show that this
prediction no longer holds for larger values of w.

Note that the positive bias for the event Zr = Zr+1 cannot be explained by the
Fluhrer-McGrew biases. In particular, for most values of i, the positive bias for
digraph (0, 0) would be cancelled out by the negative bias for digraph (255, 255).
This would imply the bias for Zr = Zr+1 would not be present for most values
of i, which contradicts our empirical observations.

After replicating the work of Fluhrer and McGrew [56], and counting the
number of internal RC4 states consistent with the event Zr = Zr+1 for scaled
down versions of RC4, we did not detect a bias for this event. We took into
account that RC4 will never enter a Finney state while doing this [54]. The only
assumption made by the method of Fluhrer and McGrew, is that every state
which RC4 can enter is equally likely [56]. Since we did not rediscover the bias
towards Zr = Zr+1, it means this assumption does not hold. In other words,
the bias towards Zr = Zr+1 may be caused by currently unknown (long-term)
biases in the state of RC4 itself. We consider it an interesting future research
direction to further investigate this conjecture.

4.4 Plaintext Recovery

We will design plaintext recovery techniques for usage in two areas: decrypting
TKIP packets and HTTPS cookies. In other scenarios, variants of our methods
can be used.

4.4.1 Calculating likelihood estimates

Our goal is to convert a sequence of ciphertexts C into predictions about the
plaintext. This is done by exploiting biases in the keystream distributions
pk = Pr[Zr = k]. These can be obtained by following the steps in Sect. 4.3.2.
All biases in pk are used to calculate the likelihood that a plaintext byte equals
a certain value µ. To accomplish this, we rely on the likelihood calculations of
AlFardan et al. [5]. Their idea is to calculate, for each plaintext value µ, the
(induced) keystream distributions required to witness the captured ciphertexts.
The closer this matches the real keystream distributions pk, the more likely we
have the correct plaintext byte. Assuming a fixed position r for simplicity, the
induced keystream distributions are defined by the vector Nµ = (Nµ

0 , . . . , N
µ
255).

Each Nµ
k represents the number of times the keystream byte was equal to k,

86 BREAKING RC4 IN WPA-TKIP AND TLS

assuming the plaintext byte was µ:

Nµ
k = |{C ∈ C | C = k ⊕ µ}| . (4.13)

Note that the vectors Nµ and Nµ′ are permutations of each other. Based on
the real keystream probabilities pk we calculate the likelihood that this induced
distribution would occur in practice. This is modelled using a multinomial
distribution with the number of trails equal to |C|, and the categories being
the 256 possible keystream byte values. Since we want the probability of this
sequence of keystream bytes we get [124]:

Pr[C | P = µ] =
∏

k∈{0,...,255}

(pk)N
µ
k . (4.14)

Using Bayes’ theorem we can convert this into the likelihood λµ that the
plaintext byte is µ:

λµ = Pr[P = µ | C] ∼ Pr[C | P = µ] . (4.15)

For our purposes we can treat this as an equality [5]. The most likely plaintext
byte µ is the one that maximises λµ. This was extended to a pair of dependent
keystream bytes in the obvious way:

λµ1,µ2 =
∏

k1,k2∈{0,...,255}

(pk1,k2)N
µ1,µ2
k1,k2 . (4.16)

We found this formula can be optimized if most keystream byte values k1 and k2
are independent and uniform. More precisely, let us assume that all keystream
value pairs in the set I are independent and uniform:

∀(k1, k2) ∈ I : pk1,k2 = pk1 · pk2 = u , (4.17)

where u represents the probability of an unbiased double-byte keystream value.
Then we rewrite equation (4.16) to:

λµ1,µ2 = (u)M
µ1,µ2 ·

∏
k1,k2∈Ic

(pk1,k2)N
µ1,µ2
k1,k2 , (4.18)

where

Mµ1,µ2 =
∑

k1,k2∈I

Nµ1,µ2
k1,k2

= |C| −
∑

k1,k2∈Ic
Nµ1,µ2
k1,k2

(4.19)

and with Ic the set of dependent keystream values. If the set Ic is small, this
results in a lower time-complexity. For example, when applied to the long-term
keystream setting over Fluhrer-McGrew biases, roughly 219 operations are
required to calculate all likelihood estimates, instead of 232. A similar (though
less drastic) optimization can also be made when single-byte biases are present.

PLAINTEXT RECOVERY 87

4.4.2 Likelihoods from Mantin’s bias

We now show how to compute a double-byte plaintext likelihood using Mantin’s
ABSAB bias. More formally, we want to compute the likelihood λµ1,µ2 that
the plaintext bytes at fixed positions r and r + 1 are µ1 and µ2, respectively.
To accomplish this we abuse surrounding known plaintext. Our main idea is to
first calculate the likelihood of the differential between the known and unknown
plaintext. We define the differential Ẑgr as:

Ẑgr = (Zr ⊕ Zr+2+g, Zr+1 ⊕ Zr+3+g) . (4.20)

Similarly we use Ĉgr and P̂ gr to denote the differential over ciphertext and
plaintext bytes, respectively. The ABSAB bias of (4.1) can then be written as:

Pr[Ẑgr = (0, 0)] = 2−16(1 + 2−8e
−4−8g

256) = α(g) . (4.21)

When XORing both sides of Ẑgr = (0, 0) with P̂ gr we get

Pr[Ĉgr = P̂ gr] = α(g) . (4.22)

Hence Mantin’s bias implies that the ciphertext differential is biased towards the
plaintext differential. We use this to calculate the likelihood λµ̂ of a plaintext
differential µ̂. For ease of notation we assume a fixed position r and a fixed
ABSAB gap of g. Let Ĉ be the sequence of captured ciphertext differentials,
and µ′1 and µ′2 the known plaintext bytes at positions r + 2 + g and r + 3 + g,
respectively. Similar to our previous likelihood estimates, we calculate the
probability of witnessing the ciphertext differentials Ĉ assuming the plaintext
differential is µ̂:

Pr[Ĉ | P̂ = µ̂] =
∏

k̂∈{0,...,255}2

Pr[Ẑ = k̂]N
µ̂

k̂ , (4.23)

where
N µ̂

k̂
=
∣∣∣{Ĉ ∈ Ĉ | Ĉ = k̂ ⊕ µ̂

}∣∣∣ . (4.24)

Using this notation we see that this is indeed identical to an ordinary likelihood
estimation. Using Bayes’ theorem we get λµ̂ = Pr[P̂ = µ̂ | Ĉ] ∼ Pr[Ĉ | P̂ = µ̂].
Since only one differential pair is biased, we can apply and simplify
equation (4.18):

λµ̂ = (1− α(g))|C|−|û| · α(g)|µ̂| , (4.25)
where we slightly abuse notation by defining |µ̂| as

|µ̂| =
∣∣∣{Ĉ ∈ Ĉ | Ĉ = µ̂

}∣∣∣ (4.26)

88 BREAKING RC4 IN WPA-TKIP AND TLS

Finally we apply our knowledge of the known plaintext bytes to get our desired
likelihood estimate:

λµ1,µ2 = λµ̂⊕(µ′1,µ′2) . (4.27)

To estimate at which gap size the ABSAB bias is still detectable, we generated
248 blocks of 512 keystream bytes. Based on this we empirically confirmed
Mantin’s ABSAB bias up to gap sizes of at least 135 bytes. The theoretical
estimate in equation (4.1) slightly underestimates the true empirical bias. In
our attacks we use a maximum gap size of 128.

4.4.3 Combining likelihood estimates

Our goal is to combine multiple types of biases in a likelihood calculation.
Unfortunately, if the biases cover overlapping positions, it quickly becomes
infeasible to perform a single likelihood estimation over all bytes. In the worst
case, the calculation cannot be optimized by relying on independent biases.
Hence, a likelihood estimate over n keystream positions would have a time
complexity of O(22·8·n). To overcome this problem, we perform and combine
multiple separate likelihood estimates.

We will combine multiple types of biases by multiplying their individual
likelihood estimates. For example, let λ′µ1,µ2

be the likelihood of plaintext
bytes µ1 and µ2 based on the Fluhrer-McGrew biases. Similarly, let λ′g,µ1,µ2

be
likelihoods derived from ABSAB biases of gap g. Then their combination is
straightforward:

λµ1,µ2 = λ′µ1,µ2
·
∏
g

λ′g,µ1,µ2
. (4.28)

While this method may not be optimal when combining likelihoods of dependent
bytes, it does appear to be a general and powerful method. An open problem is
determining which biases can be combined under a single likelihood calculation,
while keeping computational requirements acceptable. Likelihoods based on
other biases, e.g., Sen Gupta’s and our new long-term biases, can be added as
another factor (though some care is needed so positions properly overlap).

To verify the effectiveness of this approach, we performed simulations where we
attempt to decrypt two bytes using one double-byte likelihood estimate. First
this is done using only the Fluhrer-McGrew biases, and using only one ABSAB
bias. Then we combine 2 · 129 ABSAB biases and the Fluhrer-McGrew biases,
where we use the method from Sect. 4.4.2 to derive likelihoods from ABSAB
biases. We assume the unknown bytes are surrounded at both sides by known
plaintext, and use a maximum ABSAB gap of 128 bytes. Additionally, we
assume these two bytes can take on any values, i.e., we assume an unrestricted

PLAINTEXT RECOVERY 89

Number of ciphertexts

Av
er

ag
e

re
co

ve
ry

 ra
te

0%

20%

40%

60%

80%

100%

227 229 231 233 235 237 239

Combined
FM only
ABSAB only

Figure 4.8: Average success rate of decrypting two bytes using:
(1) one ABSAB bias; (2) Fluhrer-McGrew (FM) biases; and (3)
combination of FM biases with 258 ABSAB biases. Results based
on 2048 simulations each.

plaintext space. Figure 4.8 shows the results of this experiment. Notice that
a single ABSAB bias is weaker than using all Fluhrer-McGrew biases at a
specific position. However, combining several ABSAB biases clearly results
in a major improvement. We conclude that our approach to combine biases
significantly reduces the required number of ciphertexts.

4.4.4 List of plaintext candidates

In practice it is useful to have a list of plaintext candidates in decreasing
likelihood. For example, by traversing this list we could attempt to brute-force
keys, passwords, cookies, etc. (see Sect. 4.6). In other situations the plaintext
may have a rigid structure allowing the removal of candidates (see Sect. 4.5).
We will generate a list of plaintext candidates in decreasing likelihood, when
given either single-byte or double-byte likelihood estimates.

First we show how to construct a candidate list when given single-byte plaintext
likelihoods. While it is trivial to generate the two most likely candidates,
beyond this point the computation becomes more tedious. Our solution is to
incrementally compute the N most likely candidates based on their length. That
is, we first compute the N most likely candidates of length 1, then of length 2,
and so on. Algorithm 1 gives a high-level implementation of this idea. Variable
Pr[i] denotes the i-th most likely plaintext of length r, having a likelihood
of Er[i]. The two min operations are needed because in the initial loops we are
not yet be able to generate N candidates, i.e., there only exist 256r plaintexts of
length r. Picking the µ′ which maximizes pr(µ′) can be done efficiently using a

90 BREAKING RC4 IN WPA-TKIP AND TLS

Algorithm 1: Generate plaintext candidates in decreasing
likelihood using single-byte estimates.
Input: L : Length of the unknown plaintext

λ1≤r≤L, 0≤µ≤255: single-byte likelihoods
N : Number of candidates to generate

Returns: List of candidates in decreasing likelihood
begin
P0[1]← ε
E0[1]← 0
for r = 1 to L do
for µ = 0 to 255 do
pos(µ)← 1
pr(µ)← Er−1[1] + log(λr,µ)

for i = 1 to min(N, 256r) do
µ← µ′ which maximizes pr(µ′)
Pr[i]← Pr−1[pos(µ)] ‖ µ
Er[i]← Er−1[pos(µ)] + log(λr,µ)
pos(µ)← pos(µ) + 1
pr(µ)← Er−1[pos(µ)] + log(λr,µ)
if pos(µ) > min(N, 256r−1) then
pr(µ)← −∞

return PN

priority queue. In practice, only the latest two versions of lists E and P need to
be stored. To better maintain numeric stability, and to make the computation
more efficient, we perform calculations using the logarithm of the likelihoods.
We implemented Algorithm 1 and report on its performance in Sect. 4.5, where
we use it to attack a wireless network protected by WPA-TKIP.

To generate a list of candidates from double-byte likelihoods, we first show how
to model the likelihoods as a hidden Markov model (HMM). This allows us to
present a more intuitive version of our algorithm, and refer to the extensive
research in this area if more efficient implementations are needed. The algorithm
we present can be seen as a combination of the classical Viterbi algorithm, and
Algorithm 1. Even though it is not the most optimal one, it still proved sufficient
to significantly improve plaintext recovery (see Sect. 4.6). For an introduction
to HMMs we refer the reader to [137]. Essentially an HMM models a system
where the internal states are not observable, and after each state transition,
output is (probabilistically) produced dependent on its new state.

PLAINTEXT RECOVERY 91

We model the plaintext likelihood estimates as a first-order time-inhomogeneous
HMM. The state space S of the HMM is defined by the set of possible plaintext
values {0, . . . , 255}. The byte positions are modelled using the time-dependent
(i.e., inhomogeneous) state transition probabilities. Intuitively, the “current
time” in the HMM corresponds to the current plaintext position. This means
the transition probabilities for moving from one state to another, which normally
depend on the current time, will now depend on the position of the byte. More
formally:

Pr[St+1 = µ2 | St = µ1] ∼ λt,µ1,µ2 , (4.29)

where t represents the time. For our purposes we can treat this as an equality. In
an HMM it is assumed that its current state is not observable. This corresponds
to the fact that we do not know the value of any plaintext bytes. In an
HMM there is also some form of output which depends on the current state.
In our setting a particular plaintext value leaks no observable (side-channel)
information. This is modelled by always letting every state produce the same
null output with probability one.

Using the above HMM model, finding the most likely plaintext reduces to finding
the most likely state sequence. This is solved using the well-known Viterbi
algorithm. Indeed, the algorithm presented by AlFardan et al. closely resembles
the Viterbi algorithm [5]. Similarly, finding the N most likely plaintexts is
the same as finding the N most likely state sequences. Hence any N -best
variant of the Viterbi algorithm (also called list Viterbi algorithm) can be used,
examples being [118, 146, 157, 161]. The simplest form of such an algorithm
keeps track of the N best candidates ending in a particular value µ, and is
shown in Algorithm 2. Similar to [5, 124] we assume the first byte m1 and last
byte mL of the plaintext are known. During the last round of the outer for-loop,
the loop over µ2 has to be executed only for the value mL. In Sect. 4.6 we use
this algorithm to generate a list of cookies.

Algorithm 2 uses considerably more memory than Algorithm 1. This is because
it has to store the N most likely candidates for each possible ending value µ.
We remind the reader that our goal is not to present the most optimal algorithm.
Instead, by showing how to model the problem as an HMM, we can rely on
related work in this area for more efficient algorithms [118, 146, 157, 161]. Since
an HMM can be modelled as a graph, all k-shortest path algorithms are also
applicable [49]. Finally, we remark that even our simple variant sufficed to
significantly improve plaintext recovery rates (see Sect. 4.6).

92 BREAKING RC4 IN WPA-TKIP AND TLS

Algorithm 2: Generate plaintext candidates in decreasing
likelihood using double-byte estimates.
Input: L : Length of the unknown plaintext plus two

m1 and mL: known first and last byte
λ1≤r<L, 0≤µ1,µ2≤255: double-byte likelihoods
N : Number of candidates to generate

Returns: List of candidates in decreasing likelihood
begin
for µ2 = 0 to 255 do
E2[µ2, 1]← log(λ1,m1,µ2)
P2[µ2, 1]← m1 ‖ µ2

for r = 3 to L do
for µ2 = 0 to 255 do
for µ1 = 0 to 255 do
pos(µ1)← 1
pr(µ1)← Er−1[µ1, 1] + log(λr,µ1,µ2)

for i = 1 to min(N, 256r−1) do
µ1 ← µ which maximizes pr(µ)
Pr[µ2, i]← Pr−1[µ1, pos(µ1)] ‖ µ2
Er[µ2, i]← Er−1[µ1, pos(µ1)] + log(λr,µ1,µ2)
pos(µ1)← pos(µ1) + 1
pr(µ1)← Er−1[µ1, pos(µ1)] + log(λr,µ1,µ2)
if pos(µ1) > min(N, 256r−2) then
pr(µ1)← −∞

return PN [mL, :]

4.5 Attacking WPA-TKIP

We use our plaintext recovery techniques to decrypt a full packet. From this
decrypted packet the MIC key can be derived, allowing an attacker to inject
and decrypt packets. The attack takes only an hour to execute in practice.

4.5.1 Calculating plaintext likelihoods

We rely on the attack of Paterson et al. to compute plaintext likelihood
estimates [124, 125]. They noticed that the first three bytes of the per-packet
RC4 key are public. As explained in Sect. 4.2.2, the first three bytes are fully

ATTACKING WPA-TKIP 93

determined by the TKIP Sequence Counter (TSC). It was observed that this
dependency causes strong TSC-dependent biases in the keystream [67, 124, 125],
which can be used to improve the plaintext likelihood estimates. For each
TSC value they calculated plaintext likelihoods based on empirical, per-TSC,
keystream distributions. The resulting 2562 likelihoods, for one plaintext byte,
are combined by multiplying them over all TSC pairs. In a sense this is similar
to combining multiple types of biases as done in Sect. 4.4.3, though here the
different types of biases are known to be independent. We use the single-byte
variant of the attack [124, §4.1] to obtain likelihoods λr,µ for every unknown
byte at a given position r.

The downside of this attack is that it requires detailed per-TSC keystream
statistics. Paterson at al. generated statistics for the first 512 bytes, which took
30 CPU years [124]. However, in our attack we only need these statistics for
the first few keystream bytes. We used 232 keys per TSC value to estimate the
keystream distribution for the first 128 bytes. Using our distributed setup the
generation of these statistics took 10 CPU years.

With our per-TSC keystream distributions we obtained similar results to those
of Paterson et al. [124, 125]. By running simulations we confirmed that the
odd byte positions [124, 125] can be recovered with a higher probability than
others. Similarly, the bytes at positions 49-51 and 63-67 are generally recovered
with higher probability as well. Both observations will be used to optimize the
attack in practice.

4.5.2 Injecting identical packets

We show how to fulfil the first requirement of a successful attack: the generation
of identical packets. If the IP of the victim is known, and incoming connections
towards it are not blocked, we can simply send identical packets to the victim.
Otherwise we induce the victim into opening a TCP connection to an attacker-
controlled server. This connection is then used to transmit identical packets to
the victim. A straightforward way to accomplish this is by social engineering
the victim into visiting a website hosted by the attacker. The browser will
open a TCP connection with the server in order to load the website. However,
we can also employ more sophisticated methods that have a broader target
range. One such method is abusing the inclusion of (insecure) third-party
resources on popular websites [117]. For example, an attacker can register a
mistyped domain, accidentally used in a resource address (e.g., an image URL)
on a popular website. Whenever the victim visits this website and loads the
resource, a TCP connection is made to the server of the attacker. In [117] these
types of vulnerabilities were found to be present on several popular websites.

94 BREAKING RC4 IN WPA-TKIP AND TLS

Additionally, any type of web vulnerability that can be abused to make a victim
execute JavaScript can be utilised. In this sense, our requirements are more
relaxed than those of the recent attacks on SSL and TLS, which require the
ability to run JavaScript code in the victim’s browser [5, 6, 46]. Another method
is to hijack an existing TCP connection of the victim, which under certain
conditions is possible without a man-in-the-middle position [71]. We conclude
that, while there is no universal method to accomplish this, we can assume that
we have (or somehow can control) a TCP connection with the victim. Using
this connection we inject identical packets by repeatedly retransmitting the
same TCP packet. Since retransmissions are valid TCP behaviour, this will
work even if the victim is behind a firewall.

We now determine the optimal structure of the injected packet. A naive
approach would be to use the shortest possible packet, meaning no TCP payload
is included. Since the total size of the LLC/SNAP, IP, and TCP header is 48
bytes, the MIC and ICV would be located at position 49 up to and including
60 (see Fig. 4.2). At these locations 7 bytes are strongly biased. In contrast, if
we use a TCP payload of 7 bytes, the MIC and ICV are located at position 56
up to and including 67. In this range 8 bytes are strongly biased, resulting in
better plaintext likelihood estimates. Through simulations we confirmed that
using a 7 byte payload increases the probability of successfully decrypting the
MIC and ICV. In practice, adding 7 bytes of payload also makes the length of
our injected packet unique. As a result we can easily identify and capture such
packets. Given both these advantages, we use a TCP data packet containing 7
bytes of payload.

4.5.3 Decrypting a complete packet

Our goal is to decrypt the injected TCP packet, including its MIC and ICV
fields. Note that all these TCP packets will be encrypted with a different RC4
key. For now we assume all fields in the IP and TCP packet are known, and we
will later show why we can safely make this assumption. Hence, only the 8-byte
MIC and 4-byte ICV of the packet remain unknown. We use the per-TSC
keystream statistics to compute single-byte plaintext likelihoods for all 12 bytes.
However, this alone would give a very low success probability of simultaneously
(correctly) decrypting all bytes. We solve this by realising that the TKIP ICV
is a simple CRC checksum which we can easily verify ourselves. Hence we can
detect bad candidates by inspecting their CRC checksum. We now generate a
plaintext candidate list, and traverse it until we find a packet having a correct
CRC. This drastically improves the probability of simultaneously decrypting
all bytes. From the decrypted packet we can derive the TKIP MIC key [164],
which can then be used to inject and decrypt arbitrary packets (see Chapter 2).

ATTACKING WPA-TKIP 95

Ciphertext copies times 220

Pr
ob

ab
ilit

y
M

IC
 k

ey
 re

co
ve

ry

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15

230 candidates
2 candidates

Figure 4.9: Success rate of obtaining the TKIP MIC key using nearly
230 candidates, and using only the two best candidates. Results are
based on 256 simulations each.

Ciphertext copies times 220

M
ed

ia
n

po
si

tio
n

co
rre

ct
 IC

V

210

214

218

222

226

1 3 5 7 9 11 13 15

Figure 4.10: Median position of a candidate with a correct ICV with
nearly 230 candidates. Results are based on 256 simulations each.

Figure 4.9 shows the success rate of finding a packet with a good ICV and
deriving the correct MIC key. For comparison, it also includes the success rates
had we only used the two most likely candidates. Figure 4.10 shows the median
position of the first candidate with a correct ICV. We plot the median instead
of average to lower influence of outliers, i.e., at times the correct candidate was
unexpectedly far (or early) in the candidate list.

The question that remains how to determine the contents of the unknown fields
in the IP and TCP headers of the packet. More precisely, the unknown fields are
the internal IP and port of the client, and the IP time-to-live (TTL) field. One
observation makes this clear: both the IP and TCP header contain checksums.
Therefore, we can apply exactly the same technique (i.e., candidate generation
and pruning) to derive the values of these fields with high success rates. This
can be done independently of each other, and independently of decrypting the
MIC and ICV.

96 BREAKING RC4 IN WPA-TKIP AND TLS

Another method to obtain the internal IP is to rely on HTML5 features. If the
initial TCP connection is created by a browser, we can first send JavaScript
code to obtain the internal IP of the victim using WebRTC [147]. We also
noticed that our NAT gateway generally did not modify the source port used
by the victim. Consequently we can simply read this value at the server. The
TTL field can also be determined without relying on the IP checksum. Using
a traceroute command we count the number of hops between the server and
the client, allowing us to derive the TTL value at the victim.

4.5.4 Empirical evaluation

To test the plaintext recovery phase of our attack we created a tool that parses a
raw pcap file containing the captured Wi-Fi packets. It searches for the injected
packets, extracts the ciphertext statistics, calculates plaintext likelihoods, and
searches for a candidate with a correct ICV. From this candidate, i.e., decrypted
injected packet, we derive the MIC key.

For the ciphertext generation phase we used an OpenVZ VPS as malicious server.
The incoming TCP connection from the victim is handled using a custom tool
written in Scapy. It relies on a patched version of Tcpreplay to rapidly inject
the identical TCP packets. The victim machine is a Latitude E6500 and is
connected to an Asus RT-N10 router running Tomato 1.28. The victim opens
a TCP connection to the malicious server by visiting a website hosted on it.
For the attacker we used a Compaq 8510p with an AWUS036nha to capture
the wireless traffic. Under this setup we were able to generate roughly 2500
packets per second. This number was reached even when the victim was actively
browsing YouTube videos. Thanks to the 7-byte payload, we uniquely detected
the injected packet in all experiments without any false positives.

We ran several tests where we generated and captured traffic for (slightly more)
than one hour. This amounted to, on average, capturing 9.5 · 220 different
encryptions of the packet being injected. Retransmissions were filtered based
on the TSC of the packet. In nearly all cases we successfully decrypted the
packet and derived the MIC key. Recall from Sect. 4.2.2 that this MIC key is
valid as long as the victim does not renew its PTK, and that it can be used
to inject and decrypt packets from the AP to the victim. For one capture our
tool found a packet with a correct ICV, but this candidate did not correspond
to the actual plaintext. While our current evaluation is limited in the number
of captures performed, it shows the attack is practically feasible, with overall
success probabilities appearing to agree with the simulated results of Fig. 4.9.

DECRYPTING HTTPS COOKIES 97

Listing 4.3: Manipulated HTTP request, with known plaintext
surrounding the cookie at both sides.

1 GET / HTTP/1.1
2 Host: site.com
3 User-Agent: Mozilla/5.0 (X11; Linux i686; rv:32.0) Gecko/20100101 Firefox/32.0
4 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
5 Accept-Language: en-US,en;q=0.5
6 Accept-Encoding: gzip, deflate
7 Cookie: auth=XXXXXXXXXXXXXXXX; injected1=known1; injected2=knownplaintext2; ...

4.6 Decrypting HTTPS Cookies

We inject known data around a cookie, enabling use of the ABSAB biases. We
then show that a HTTPS cookie can be brute-forced using only 75 hours of
ciphertext.

4.6.1 Injecting known plaintext

We want to be able to predict the position of the targeted cookie in the encrypted
HTTP requests, and surround it with known plaintext. To fix ideas, we do
this for the secure auth cookie sent to https://site.com. Similar to previous
attacks on SSL and TLS, we assume the attacker is able to execute JavaScript
code in the victim’s browser [5, 6, 46]. In our case, this means an active man-
in-the-middle (MitM) position is used, where plaintext HTTP channels can be
manipulated. Our first realisation is that an attacker can predict the length and
content of HTTP headers preceding the Cookie field. By monitoring plaintext
HTTP requests, these headers can be sniffed. If the targeted auth cookie is
the first value in the Cookie header, this implies we know its position in the
HTTP request. Hence, our goal is to have a layout as shown in Listing 4.3.
Here the targeted cookie is the first value in the Cookie header, preceded by
known headers, and followed by attacker injected cookies.

To obtain the layout in Listing 4.3 we use our MitM position to redirect the
victim to http://site.com, i.e., to the target website over an insecure HTTP
channel. If the target website uses HTTP Strict Transport Security (HSTS),
but does not use the includeSubDomains attribute, this is still possible by
redirecting the victim to a (fake) subdomain [24]. Since few websites use HSTS,
and even fewer use it properly [171], this redirection will likely succeed. Against
old browsers HSTS can even be bypassed completely [20, 24, 160]. Since secure
cookies guarantee only confidentiality but not integrity, the insecure HTTP

98 BREAKING RC4 IN WPA-TKIP AND TLS

channel can be used to overwrite, remove, or inject secure cookies [15, p. 4.1.2.5].
This allows us to remove all cookies except the auth cookie, pushing it to the
front of the list. After this we can inject cookies that will be included after the
auth cookie. An example of a HTTP(S) request manipulated in this manner
is shown in Listing 4.3. Here the secure auth cookie is surrounded by known
plaintext at both sides. This allows us to use Mantin’s ABSAB bias when
calculating plaintext likelihoods.

4.6.2 Brute-forcing the cookie

In contrast to passwords, many websites do not protect against brute-forcing
cookies. One reason for this is that the password of an average user has a much
lower entropy than a random cookie. Hence it makes sense to brute-force a
password, but not a cookie: the chance of successfully brute-forcing a (properly
generated) cookie is close to zero. However, if RC4 can be used to connect to
the web server, our candidate generation algorithm voids this assumption. We
can traverse the plaintext candidate list in an attempt to brute-force the cookie.

Since we are targeting a cookie, we can exclude certain plaintext values.
As RFC 6265 states, a cookie value can consists of at most 90 unique
characters [15, §4.1.1]. A similar though less general observation was already
made by AlFardan et al. [5]. Our observation allows us to give a tighter bound
on the required number of ciphertexts to decrypt a cookie, even in the general
case. In practice, executing the attack with a reduced character set is done by
modifying Algorithm 2 so the for-loops over µ1 and µ2 only loop over allowed
characters.

Figure 4.11 shows the success rate of brute-forcing a 16-character cookie using at
most 223 attempts. For comparison, we also include the probability of decrypting
the cookie if only the most likely plaintext was used. This also allows for an
easier comparison with the work for AlFardan et al. [5]. Note that they only
use the Fluhrer-McGrew biases, whereas we combine serveral ABSAB biases
together with the Fluhrer-McGrew biases. We conclude that our brute-force
approach, as well as the inclusion of the ABSAB biases, significantly improves
success rates. Even when using only 223 brute-force attempts, success rates of
more than 94% are obtained once 9 · 227 encryptions of the cookie have been
captured. We conjecture that generating more candidates will further increase
success rates.

DECRYPTING HTTPS COOKIES 99

Ciphertext copies times 227

Pr
ob

ab
ilit

y
su

cc
es

sf
ul

 b
ru

te
−f

or
ce

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15

223 candidates
1 candidate

Figure 4.11: Success rate of brute-forcing a 16-character cookie
using roughly 223 candidates, and only the most likely candidate,
dependent on the number of collected ciphertexts. Results based on
256 simulations each.

4.6.3 Empirical evaluation

The main requirement of our attack is being able to collect sufficiently many
encryptions of the cookie, i.e., having many ciphertexts. We fulfil this
requirement by forcing the victim to generate a large number of HTTPS requests.
As in previous attacks on TLS [5, 6, 46], we accomplish this by assuming the
attacker is able to execute JavaScript in the browser of the victim. For example,
when performing a man-in-the-middle attack, we can inject JavaScript into
any plaintext HTTP connection. We then use XMLHttpRequest objects to issue
Cross-Origin Requests to the targeted website. The browser will automatically
add the secure cookie to these (encrypted) requests. Due to the same-origin
policy we cannot read the replies, but this poses no problem, we only require
that the cookie is included in the request. The requests are sent inside HTML5
WebWorkers. This means our JavaScript code will run in the background of
the browser, and any open page(s) stay responsive. We use GET requests, and
carefully craft the values of our injected cookies so the targeted auth cookie
is always at a fixed position in the keystream (modulo 256). Recall that this
alignment is required to make optimal use of the Fluhrer-McGrew biases. An
attacker can learn the required amount of padding by first letting the client
make a request without padding. Since RC4 is a stream cipher, and no padding
is added by the TLS protocol, an attacker can easily observe the length of this
request. Based on this information it is trivial to derive the required amount of
padding.

To test our attack in practice we implemented a tool in C which monitors
network traffic and collects the necessary ciphertext statistics. This requires
reassembling the TCP and TLS streams, and then detecting the 512-byte

100 BREAKING RC4 IN WPA-TKIP AND TLS

(encrypted) HTTP requests. Similar to optimizing the generation of datasets as
in Sect. 4.3.2, we cache several requests before updating the counters. We also
created a tool to brute-force the cookie based on the generated candidate list.
It uses persistent connections and HTTP pipelining [53, §6.3.2]. That is, it uses
one connection to send multiple requests without waiting for each response.

In our experiments the victim uses a 3.1 GHz Intel Core i5-2400 CPU with
8 GB RAM running Windows 7. Internet Explorer 11 is used as the browser.
For the server a 3.4 GHz Intel Core i7-3770 CPU with 8 GB RAM is used. We
use nginx as the web server, and configured RC4-SHA1 with RSA as the only
allowable cipher suite. This assures that RC4 is used in all tests. Both the
server and client use an Intel 82579LM network card, with the link speed set
to 100 Mbps. With an idle browser this setup resulted in an average of 4 450
requests per second. When the victim was actively browsing YouTube videos
this decreased to roughly 4 100. To achieve such numbers, we found it’s essential
that the browser uses persistent connections to transmit the HTTP requests.
Otherwise a new TCP and TLS handshake must be performed for every request,
whose round-trip times would significantly slow down traffic generation. In
practice this means the website must allow a keep-alive connection. While
generating requests the browser remained responsive at all times. Finally, our
custom tool was able to test more than 20 000 cookies per second. To execute
the attack with a success rate of 94% we need roughly 9 · 227 ciphertexts. With
4 450 requests per seconds, this means we require 75 hours of data. Compared
to the (more than) 2 000 hours required by AlFardan et al. [5, §5.3.3] this is a
significant improvement. We remark that, similar to the attack of AlFardan et
al. [5], our attack also tolerates changes of the encryption keys. Hence, since
cookies can have a long lifetime, the generation of this traffic can even be spread
out over time. With 20 000 brute-force attempts per second, all 223 candidates
for the cookie can be tested in less than 7 minutes.

We have executed the attack in practice, and successfully decrypted a
16-character cookie. In our instance, capturing traffic for 52 hours already
proved to be sufficient. At this point we collected 6.2 · 227 ciphertexts. After
processing the ciphertexts, the cookie was found at position 46 229 in the
candidate list. This serves as a good example that, if the attacker has some
luck, less ciphertexts are needed than our 9 · 227 estimate. These results push
the attack from being on the verge of practicality, to feasible, though admittedly
somewhat time-consuming.

RELATED WORK 101

4.7 Related Work

Due to its popularity, RC4 has undergone wide cryptanalysis. Particularly well
known are the key recovery attacks that broke WEP [57, 163–165, 189]. Several
other key-related biases and improvements of the original WEP attack have
also been studied [82, 96, 126, 155].

We refer to Sect. 4.2.1 for an overview of various biases discovered in the
keystream [5, 29, 56, 67, 75, 97, 99, 100, 124, 125, 127, 154]. In addition to these,
the long-term bias Pr[Zr = Zr+1 | 2 · Zr = ir] = 2−8(1 + 2−15) was discovered
by Basu et al. [16]. While this resembles our new short-term bias Pr[Zr = Zr+1],
in their analysis they assume the internal state S is a random permutation, which
is true only after a few rounds of the PRGA. Isobe et al. searched for dependencies
between initial keystream bytes by empirically estimating Pr[Zr = y ∧ Zr−a = x]
for 0 ≤ x, y ≤ 255, 2 ≤ r ≤ 256, and 1 ≤ a ≤ 8 [75]. They did not discover any
new biases using their approach. Mironov modelled RC4 as a Markov chain
and recommended to skip the initial 12 · 256 keystream bytes [111]. Paterson
et al. generated keystream statistics over consecutive keystream bytes when
using the TKIP key structure [124]. However, they did not report which (new)
biases were present. Through empirical analysis, we show that biases between
consecutive bytes are present even when using RC4 with random 128-bit keys.

The first practical attack on WPA-TKIP was found by Beck and Tews [164] and
was later improved by other researchers [69, 168, 181, 185]. Recently several
works studied the per-packet key construction both analytically [67] and through
simulations [5, 124, 125]. For our attack we replicated part of the results of
Paterson et al. [124, 125], and are the first to demonstrate this type of attack
in practice. In [5] AlFardan et al. ran experiments where the two most likely
plaintext candidates were generated using single-byte likelihoods [5]. However,
they did not present an algorithm to return arbitrarily many candidates, nor
extended this to double-byte likelihoods.

The SSL and TLS protocols have undergone wide scrutiny [5, 6, 24, 33, 46, 160].
Our work is based on the attack of AlFardan et al., who estimated that 13 · 230

ciphertexts are needed to recover a 16-byte cookie with high success rates [5].
We reduce this number to 9 · 227 using several techniques, the most prominent
being usage of likelihoods based on Mantin’s ABSAB bias [99]. Isobe et al.
used Mantin’s ABSAB bias, in combination with previously decrypted bytes, to
decrypt bytes after position 257 [75]. However, they used a counting technique
instead of Bayesian likelihoods. As a result, they require roughly 234 ciphertexts
to recover bytes 258 to 261 with high probability, while we require roughly 230

ciphertexts. Additionally, it is not clear how resilient their technique is to errors
in the decryption process when additional bytes would be decrypted. In [120] a

102 BREAKING RC4 IN WPA-TKIP AND TLS

guess-and-determine algorithm combines ABSAB and Fluhrer-McGrew biases,
requiring roughly 234 ciphertexts to decrypt an individual byte with high success
rates. Garman et al. targeted passwords sent over IMAP and BasicAuth [60].
They exploit biases in the initial keystream bytes of RC4, and combine them
with a priori password distributions and password dictionaries. They obtain
good success rates using roughly 226 encryptions of a password, and estimate
an attack in practice takes around 300 hours. Finally, Bricout et al. rigorously
analyzed the structure and exploitation of Mantin’s ABSAB bias [29]. Similar
to our approach, they rely on known plaintext around the unknown targeted
bytes. Additionally, they show how to estimate the rank of the correct 2-byte
plaintext value. They used Viterbi and beam-search algorithms to generate
a list of multi-byte plaintext candidates, though determining the rank of the
correct multi-byte plaintext was left as an open problem.

4.8 Chapter Conclusion

While previous attacks against RC4 in TLS and WPA-TKIP were on the verge
of practicality, our work pushes them towards being practical and feasible. After
capturing 9 · 227 encryptions of a cookie sent over HTTPS, we can brute-force
it with high success rates in negligible time. By running JavaScript code in the
browser of the victim, we were able to execute the attack in practice within
merely 52 hours. Additionally, by abusing RC4 biases, we successfully attacked
a WPA-TKIP network within an hour. We consider it surprising this is possible
using only known biases, and expect these types of attacks to further improve in
the future. Based on these results, we strongly urge people to stop using RC4.

Chapter 5

Conclusion

“Time passes, people move. . . Like a river’s flow, it never
ends. . . A childish mind will turn to noble ambition. . . The
clear water’s surface reflects growth. . . Now listen to the
Serenade of Water to reflect upon yourself. . . ”

— Shiek, The Legend of Zelda: Ocarina of Time

We end this dissertation by summarizing our results, examining to what degree
our initial goals have been fulfilled, and discussing open problems and interesting
future research directions.

5.1 Summary of Contributions

Though WPA-TKIP was designed to be an intermediary solution, it is (still)
supported by a large number of networks. We showed it fails to provide a
sufficient level of security, by describing and demonstrating several new attacks.
Moreover, it was also shown that TKIP can be attacked when used to encrypt
broadcast and multicast packets. Since TKIP is used significantly more as a
group cipher than as a unicast cipher, this demonstrates that weaknesses in
TKIP are still of high practical value. However, this did not yet achieve our
desired goal: many encrypted Wi-Fi networks continue to support TKIP.

At the same time we were able to implement several low-layer attacks against the
Wi-Fi protocol using a commodity Wi-Fi device. This is surprising, since these

103

104 CONCLUSION

devices only offer a limited API to control the radio (e.g., we cannot transmit
arbitrary signals, do not have access to raw signal data, cannot modify medium
access algorithms, and so on). In particular we were able to implement a select
jammer, which otherwise required expensive and state-of-the-art hardware.

While previous attacks against RC4 in TLS and WPA-TKIP were on the verge
of practicality, our results push them towards being practical and feasible. After
capturing roughly one billion encryptions of a cookie sent over HTTPS, we can
brute-force it with high success rates in negligible time. By running JavaScript
code in the browser of the victim, we were able to execute the attack in practice
within merely 52 hours. Additionally, by abusing RC4 biases, we successfully
attacked a WPA-TKIP network within an hour. Together with other recent
attacks on RC4, these results motivated major browser vendors to drop support
of RC4 [13, 86, 122]. In this regard, our work on RC4 has been a major success.

5.2 Future Work

The work presented in this dissertation can be further improved and extended.
Some interesting research directions that can be worked out are discussed in
this section.

5.2.1 Wireless Network Security

Our survey in April 2016 showed that more than half of all encrypted Wi-Fi
networks still support WPA-TKIP. With this in mind, and given that the Wi-Fi
Alliance has not prohibited usage of TKIP, it is worthwhile to search for new
and more damaging attacks against this protocol. Existing attacks rely on MIC
failure messages as an oracle to determine whether the ICV of a modified packet
is correct. This makes attacks slow, and inapplicable against access points.
An alternative route is finding other side channels that leak whether the ICV
of a packet is correct. The first option that comes to mind is a timing-based
side channel. However, these may be difficult to exploit in practice. Instead it
may also be worthwhile to search for situations, where stations only react to
management bits in the plaintext 802.11 header if the packet has a correct ICV.

During this work several vulnerabilities were discovered in implementations of
WPA-TKIP and AES-CCMP (e.g., not verifying the authenticity of packets).
Most of the time this functionality is offloaded to the network card, and
implemented in closed source and proprietary firmware. Implementing a black-
box test suite that systematically tests for such implementation vulnerabilities

FUTURE WORK 105

might uncover additional flaws, and allows a systematic review of devices
belonging to various vendors. Ideally, the test suite would be incorporated in
the Wi-Fi Test Suite of the Wi-Fi Alliance [166], meaning only devices that
pass the test suite receive the “Wi-Fi certified” logo.

5.2.2 Cryptanalysis of RC4

Our work uncovered a large set of novel short-term and long-term biases in the
keystream of RC4. It is worthwhile to analytically determine their cause for
two reasons. Naturally, it increases our understanding of RC4. Additionally,
it may help in discovering more biases, which were missed due to the limited
types of datasets (i.e., statistics) we were able to generate.

We only evaluated our plaintext recovery attacks under specific attack scenarios.
For example, in our WPA-TKIP attack we decrypted a specific packet of a
given length, and against TLS and HTTPS our focus was purely on decrypting
16-character cookies. Put differently, during our evaluation we mainly explored
the influence of the number of captured ciphertexts on the success probability
of our attacks. However, it is also worthwhile to determine the impact of other
variables. More specifically, additional simulations can be performed for:

• Different lengths of the data that is being decrypted.

• Different character sets or restrictions on the plaintext (e.g. unrestricted,
hexadecimal or ASCII characters only, base64-encoded, and so on).

• Different values for the maximum gap length of Mantin’s ABSAB bias
that we use.

• Situations where there is only known plaintext on one side of the data
that we want to decrypt.

While performing these new simulations, it is also useful to keep track at which
position the correct decrypted plaintext value was found (if found at all). This
can be used to determine to which extent the number of generated candidates
influence the probability of successfully decrypting certain data.

Currently our plaintext recovery attacks against RC4 only make use of the
strongest known biases. Hence our attacks can be extended by also incorporating
weaker biases. For instance, in the long-term setting where one keystream
is continuously extended, the bias towards (0, 0) and (128, 0) at positions
(Zw255, Zw255+2) can also be incorporated in our attacks. In principle our new
long-term bias Zr = Zr+1 could also be included. However, due to its small

106 CONCLUSION

relative bias, we do not expect that this will significantly improve success rates.
Another route for improving the attacks would be to take into account the
application-specific character of the secret we are trying to decrypt. For instance,
cookies generally only use a limited character set. Here it would be interesting
to analyze common character sets and cookie lengths, and perform simulations
to determine how much ciphertexts are needed to decrypt various types of
cookies.

The attacks against RC4 presented in this dissertation combine biases in the
keystream, to recover the value of a repeated secret. Put differently, our attacks
do not work against secret information that is sent only once. However, if an
adversary could recover the internal state of RC4, he would be able to decrypt
all past and future data. Interestingly, there are known biases (correlations)
between the keystream, and the internal state of RC4 [16, 77, 95]. This makes
it interesting to search for a technique that combines all these correlations in
an attempt to improve state recovery attacks.

5.3 Concluding Remarks

When looking back over the presented research, and taking into account related
work and findings, an important general observation can be made. Namely, it is
common that the impact of seemingly sophisticated attacks is underestimated.
Though the first generation of certain attacks do seem impractical at times,
they constantly evolve and improve, even in the face of widely deployed
countermeasures. In other words, one should not ignore seemingly impractical
attacks: they will only get better over time.

Another important aspect is that we were able to implement and demonstrate
our attacks. This significantly strengthened the impact of our work. However,
in the context of attacks against Wi-Fi networks, we must be vigilant [91, 174]
that it remains possible to easily and cheaply implement proof-of-concepts. In
particular, vendors are moving functionality away from open-source drivers,
into closed-source and proprietary firmware [74], limiting our control over
devices. More worrisome, the Federal Communications Commission (FCC)
has recently proposed rule-making [50] that might cause vendors to lock
down the functionality of wireless chips [153]. If this means vendors make
it more difficult to monitor Wi-Fi traffic, or inject packets, it will become much
harder to demonstrate the impact attacks. Hence it would also become more
difficult to convince people to adopt more secure protocols, or patch existing
implementations.

Bibliography

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al.
“Imperfect forward secrecy: How Diffie-Hellman fails in practice”. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM. 2015, pp. 5–17 (p. 8).

[2] AGD. SSL and Export Ciphers: Logjam and FREAK. Retrieved 25 April
2016 form https://labs.portcullis.co.uk/blog/ssl-and-export-
ciphers-logjam-and-freak/. 2015 (p. 8).

[3] M. R. Albrecht and K. G. Paterson. Lucky Microseconds: A Timing
Attack on Amazon’s s2n Implementation of TLS. Cryptology ePrint
Archive, Report 2015/1129. 2015 (pp. 7, 8).

[4] N. J. AlFardan. “On the Design and Implementation of Secure Network
Protocols”. PhD thesis. Royal Holloway, University of London, 2014
(p. 2).

[5] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and
J. C. N. Schuldt. “On the Security of RC4 in TLS and WPA”. In:
USENIX Security. 2013 (pp. 10–12, 70–73, 75, 76, 85, 86, 91, 94, 97–101).

[6] N. J. AlFardan and K. G. Paterson. “Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols”. In: IEEE Symposium on Security and
Privacy. 2013 (pp. 7, 8, 10, 71, 94, 97, 99, 101).

[7] Amendment 6: Medium Access Control (MAC) Security Enhancements.
IEEE Std 802.11i. 2004 (pp. 5, 6).

[8] Anonymous (email id: nobody@jpunix.com). Thank you Bob Anderson:
RC4 Source Code. Retrieved 19 April 2016 from http://cypherpunks.
venona.com/date/1994/09/msg00304.html. Sept. 1994 (p. 10).

[9] N. Asokan, V. Niemi, and K. Nyberg. Man-in-the-Middle in Tunnelled
Authentication Protocols. Cryptology ePrint Archive, Report 2002/163.
2002 (p. 9).

107

https://labs.portcullis.co.uk/blog/ssl-and-export-ciphers-logjam-and-freak/
https://labs.portcullis.co.uk/blog/ssl-and-export-ciphers-logjam-and-freak/
http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://cypherpunks.venona.com/date/1994/09/msg00304.html

108 BIBLIOGRAPHY

[10] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J.
Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni, et al.
DROWN: Breaking TLS using SSLv2. Retrieved 26 April 2016 from
https://drownattack.com/drown-attack-paper.pdf. 2016 (p. 9).

[11] G. V. Bard. “A Challenging but Feasible Blockwise-Adaptive Chosen-
Plaintext Attack on SSL”. In: SECRYPT. INSTICC Press, 2006, pp. 99–
109 (pp. 6, 8).

[12] R. Barnes, M. Thomson, A. Pironti, and A. Langley. Deprecating Secure
Sockets Layer Version 3.0. RFC 7568. June 2015 (p. 5).

[13] R. Barnes. Intent to ship: RC4 disabled by default in Firefox 44. Retrieved
22 April 2016 from https://groups.google.com/forum/#!topic/
mozilla.dev.platform/JIEFcrGhqSM/discussion. Sept. 2015 (pp. 70,
104).

[14] D. J. Barrett and R. E. Silverman. SSH, the Secure Shell: The definitive
guide. O’Reilly Media, Inc., 2001 (p. 2).

[15] A. Barth. HTTP State Management Mechanism. RFC 6265. 2011 (p. 98).
[16] R. Basu, S. Ganguly, S. Maitra, and G. Paul. “A complete characteriza-

tion of the evolution of RC4 pseudo random generation algorithm.” In:
J. Mathematical Cryptology 2.3 (2008), pp. 257–289 (pp. 77, 101, 106).

[17] E. Bayraktaroglu, C. King, X. Liu, G. Noubir, R. Rajaraman, and B.
Thapa. “On the Performance of IEEE 802.11 under Jamming”. In: IEEE
INFOCOM. 2008 (p. 66).

[18] M. Beck. Enhanced TKIP Michael Attacks. Retrieved 4 Februari 2013
from http : / / download . aircrack - ng . org / wiki - files / doc /
enhanced_tkip_michael.pdf (pp. 19, 26, 29, 32, 39).

[19] J. Bellardo and S. Savage. “802.11 denial-of-service attacks: real
vulnerabilities and practical solutions”. In: Proc. of the 12th USENIX
Security Symp. 2003 (pp. 38, 66).

[20] D. Berbecaru and A. Lioy. “On the robustness of applications based
on the SSL and TLS security protocols”. In: Public Key Infrastructure.
Lecture Notes in Computer Science. Springer, 2007, pp. 248–264 (p. 97).

[21] D. S. Berger, F. Gringoli, N. Facchi, I. Martinovic, and J. Schmitt.
“Gaining Insight on Friendly Jamming in a Real-world IEEE 802.11
Network”. In: WiSec. 2014 (pp. 43, 66).

[22] G. Berger-Sabbatel, A. Duda, O. Gaudouin, M. Heusse, and F. Rousseau.
“Fairness and its Impact on Delay in 802.11 Networks”. In: GLOBECOM.
2004 (p. 46).

https://drownattack.com/drown-attack-paper.pdf
https://groups.google.com/forum/#!topic/mozilla.dev.platform/JIEFcrGhqSM/discussion
https://groups.google.com/forum/#!topic/mozilla.dev.platform/JIEFcrGhqSM/discussion
http://download.aircrack-ng.org/wiki-files/doc/enhanced_tkip_michael.pdf
http://download.aircrack-ng.org/wiki-files/doc/enhanced_tkip_michael.pdf

BIBLIOGRAPHY 109

[23] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M.
Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. “A messy
state of the union: Taming the composite state machines of TLS”. In:
IEEE Symposium on Security and Privacy (SP). 2015, pp. 535–552 (p. 8).

[24] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and P. Y. Strub.
“Triple handshakes and cookie cutters: Breaking and fixing authentication
over TLS”. In: IEEE Symposium on Security and Privacy (SP). IEEE.
2014, pp. 98–113 (pp. 7, 97, 101).

[25] K. Bhargavan, G. Leurent, D. Cadé, B. Blanchet, Z. Paraskevopoulou,
C. Hriţcu, M. Dénès, L. Lampropoulos, B. C. Pierce, A. Delignat-Lavaud,
et al. “Transcript Collision Attacks: Breaking Authentication in TLS,
IKE, and SSH”. In: NDSS. 2016 (p. 8).

[26] K. Bicakci and B. Tavli. “Denial-of-Service attacks and countermeasures
in IEEE 802.11 wireless networks”. In: Comput. Stand. Interfaces 31.5
(2009) (p. 38).

[27] A. Bittau, M. Handley, and J. Lackey. “The Final Nail in WEP’s Coffin”.
In: IEEE SP. 2006 (pp. 5, 19, 26, 39).

[28] D. Bleichenbacher. “Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS#1”. In: Advances in Cryptology
(CRYPTO). Lecture Notes in Computer Science. Springer. 1998, pp. 1–12
(pp. 6, 9).

[29] R. Bricout, S. Murphy, K. G. Paterson, and T. van der Merwe. Analysing
and Exploiting the Mantin Biases in RC4. Cryptology ePrint Archive,
Report 2016/063. 2016 (pp. 75, 101, 102).

[30] E. Butler. “FireSheep: cookie snatching made simple”. In: ToorCon
Conference. San Diego, CA. 2010 (p. 8).

[31] L. Butti and J. Tinnes. “Discovering and exploiting 802.11 wireless driver
vulnerabilities”. In: Journal in Computer Virology 4.1 (2008), pp. 25–37
(p. 39).

[32] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux. “On selfish behavior
in CSMA/CA networks”. In: IEEE INFOCOM. 2005 (p. 66).

[33] B. Canvel, A. P. Hiltgen, S. Vaudenay, and M. Vuagnoux. “Password
Interception in a SSL/TLS Channel”. In: Advances in Cryptology
(CRYPTO). Lecture Notes in Computer Science. 2003 (pp. 6, 8, 10,
71, 101).

[34] A. Cassola, W. Robertson, E. Kirda, and G. Noubir. “A Practical,
Targeted, and Stealthy Attack Against WPA Enterprise Authentication”.
In: NDSS. Apr. 2013 (pp. 9, 10, 43, 66).

110 BIBLIOGRAPHY

[35] C. M. Chernick, C. Edington III, M. J. Fanto, and R. Rosenthal.
Guidelines for the selection and use of transport layer security (TLS)
implementations. US Department of Commerce, National Institute of
Standards and Technology, 2005 (p. 11).

[36] R. Chirgwin. RC4 crypto: Get RID of it already, say boffins. Retrieved
23 April 2016 from http://www.theregister.co.uk/2015/07/16/
rc4_get_rid_of_it_already_say_boffins/. July 2015 (p. 70).

[37] Cisco. Cisco Wireless Controller Configuration Guide, release 8.0. 2016
(p. 18).

[38] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer-Verlag, 2001 (pp. 4, 6).

[39] W. De Groef, D. Devriese, M. Vanhoef, and F. Piessens. “Information
flow control for web scripts”. In: Foundations of Security Analysis and
Design (FOSAD). Vol. 8604. Lecture Notes in Computer Science. Springer
International Publishing, 2014, pp. 124–145. isbn: 9783319100814
(p. 124).

[40] Dictionary Attack on Cisco LEAP Vulnerability. Retrieved 26 April 2016
from DictionaryAttackonCiscoLEAPVulnerability. 2003 (p. 9).

[41] T. Dierks and C. Allen. The TLS Protocol. RFC 2246. June 1999 (p. 6).
[42] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.1. RFC 4346. Apr. 2006 (pp. 7, 8).
[43] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246. 2008 (pp. 7, 8, 71, 76).
[44] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. “A cryptographic

analysis of the TLS 1.3 handshake protocol candidates”. In: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM. 2015, pp. 1197–1210 (p. 7).

[45] DROWN Attack: SSLv2 has been known to be insecure for 20 years.
What’s the big deal? Retrieved 16 April 2016 from https://drownattack.
com/#faq-whycare. 2016 (p. 9).

[46] T. Duong and J. Rizzo. “Here come the XOR Ninjas”. In: Ekoparty
Security Conference. 2011 (pp. 6, 8, 10, 71, 94, 97, 99, 101).

[47] W. F. Ehrsam, C. H. Meyer, J. L. Smith, and W. L. Tuchman. Message
verification and transmission error detection by block chaining. US Patent
4,074,066. Feb. 1978 (p. 4).

[48] Electronic Frontier Foundation (EFF). The Message of Firesheep:
“Baaaad Websites, Implement Sitewide HTTPS Now!” Retrieved 26 April
2016 from urlhttps://www.eff.org/deeplinks/2010/10/message-firesheep-
baaaad-websites-implement. 2010 (p. 7).

http://www.theregister.co.uk/2015/07/16/rc4_get_rid_of_it_already_say_boffins/
http://www.theregister.co.uk/2015/07/16/rc4_get_rid_of_it_already_say_boffins/
Dictionary Attack on Cisco LEAP Vulnerability
https://drownattack.com/#faq-whycare
https://drownattack.com/#faq-whycare

BIBLIOGRAPHY 111

[49] D. Eppstein. “k-best enumeration”. In: arXiv preprint arXiv:1412.5075
(2014) (p. 91).

[50] Federal Communications Commission (FCC). “Amendment of Parts 0,
1, 2, 15 and 18 of the Commission’s Rules regarding Authorization of
Radiofrequency Equipment, Notice of Proposed Rule Making, ET Docket
No. 15-170”. In: (July 2015) (p. 106).

[51] N. Ferguson. “Michael: an improved MIC for 802.11 WEP”. In: IEEE
doc. 802.11-2/020r0 (Jan. 2002) (pp. 19, 26, 39).

[52] Wi-Fi Alliance. Technical Note: Removal of TKIP from Wi-Fi Devices.
Mar. 2015 (p. 18).

[53] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230. 2014 (p. 100).

[54] H. Finney. “An RC4 cycle that can’t happen”. In: Post in Usenet sci.crypt
(1994) (p. 85).

[55] G. Fleishman. Say Goodbye to WEP and TKIP. Retrieved 26 November,
2012 from http : / / wifinetnews . com / archives / 2010 / 06 / say _
goodbye_to_wep_and_tkip.html. 2010 (p. 33).

[56] S. R. Fluhrer and D. A. McGrew. “Statistical Analysis of the Alleged
RC4 Keystream Generator”. In: FSE. Lecture Notes in Computer Science.
2000 (pp. 11, 74, 77–79, 85, 101).

[57] S. Fluhrer, I. Mantin, and A. Shamir. “Weaknesses in the key scheduling
algorithm of RC4”. In: SAC. Lecture Notes in Computer Science. 2001
(pp. 5, 19, 76, 101).

[58] C. Fuchs and R. Kenett. “A Test for Detecting Outlying Cells in the
Multinomial Distribution and Two-Way Contingency Tables”. In: J. Am.
Stat. Assoc. 75 (1980), pp. 395–398 (p. 78).

[59] S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar, and J. Deng.
“Methods for Restoring MAC Layer Fairness in IEEE 802.11 Networks
with Physical Layer Capture”. In: REALMAN. ACM, 2006 (pp. 47, 66).

[60] C. Garman, K. G. Paterson, and T. Van der Merwe. “Attacks only Get
better: Password recovery Attacks against RC4 in TLS”. In: USENIX
Security. 2015 (pp. 11, 12, 70, 71, 102).

[61] H. Gierow. Der lange Abschied von RC4. Retrieved 23 April 2016,
form http://www.golem.de/news/verschluesselung-der-lange-
abschied-von-rc4-1507-114877.html. July 2015 (p. 70).

[62] S. M. Glass and V. Muthukkumarasamy. “A Study of the TKIP
Cryptographic DoS Attack”. In: 15th International Conference on
Networks. IEEE, 2007 (p. 38).

http://wifinetnews.com/archives/2010/06/say_goodbye_to_wep_and_tkip.html
http://wifinetnews.com/archives/2010/06/say_goodbye_to_wep_and_tkip.html
http://www.golem.de/news/verschluesselung-der-lange-abschied-von-rc4-1507-114877.html
http://www.golem.de/news/verschluesselung-der-lange-abschied-von-rc4-1507-114877.html

112 BIBLIOGRAPHY

[63] Y. Gluck, N. Harris, and A. Prado. “BREACH: reviving the CRIME
attack”. In: Black Hat Briefings. 2013 (p. 9).

[64] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, 2001. isbn: 9780521791724 (pp. 3, 4).

[65] D. Goodin. Once-theoretical crypto attack against HTTPS now verges on
practicality. Retrieved 23 April 2016 from http://arstechnica.com/
security/2015/07/once- theoretical- crypto- attack- against-
https-now-verges-on-practicality/. July 2015 (p. 70).

[66] M. Guennoun, A. Lbekkouri, A. Benamrane, M. Ben-Tahir, and K.
El-Khatib. “Wireless networks security: Proof of chopchop attack”. In:
WOWMOM. IEEE, 2008 (p. 24).

[67] S. S. Gupta, S. Maitra, W. Meier, G. Paul, and S. Sarkar. Dependence in
IV-related bytes of RC4 key enhances vulnerabilities in WPA. Cryptology
ePrint Archive, Report 2013/476. 2013 (pp. 71, 75, 76, 93, 101).

[68] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. “Tool Release:
Gathering 802.11n Traces with Channel State Information”. In: ACM
SIGCOMM CCR (2011) (p. 66).

[69] F. M. Halvorsen, O. Haugen, M. Eian, and S. F. Mjølsnes. “An Improved
Attack on TKIP”. In: 14th Nordic Conf. on Secure IT Systems (NordSec).
2009 (pp. 39, 48, 67, 101).

[70] B. Harris. Improved Arcfour Modes for the Secure Shell (SSH) Transport
Layer Protocol. RFC 4345. Jan. 2006 (p. 11).

[71] B. Harris and R. Hunt. “Review: TCP/IP security threats and attack
methods”. In: Computer Communications 22.10 (1999), pp. 885–897
(pp. 32, 94).

[72] J. Huang, J. Seberry, W. Susilo, and M. W. Bunder. “Security Analysis of
Michael: The IEEE 802.11i Message Integrity Code”. In: EUC Workshops.
2005, pp. 423–432 (pp. 19, 39).

[73] ICSI. The ICSI Certificate Notary. Retrieved 22 April 2016 from http:
//notary.icsi.berkeley.edu (p. 70).

[74] O. Ildis, Y. Ofir, and R. Feinstein. Wardriving from your pocket. REcon.
2013 (p. 106).

[75] T. Isobe, T. Ohigashi, Y. Watanabe, and M. Morii. “Full Plaintext
Recovery Attack on Broadcast RC4”. In: FSE. Lecture Notes in Computer
Science. 2013 (pp. 71–74, 77, 101).

[76] jbyler. Is it safe to enable SSLv2 ClientHello support? Retrieved 26
April 2016 from http://security.stackexchange.com/q/89930. 2016
(p. 9).

http://arstechnica.com/security/2015/07/once-theoretical-crypto-attack-against-https-now-verges-on-practicality/
http://arstechnica.com/security/2015/07/once-theoretical-crypto-attack-against-https-now-verges-on-practicality/
http://arstechnica.com/security/2015/07/once-theoretical-crypto-attack-against-https-now-verges-on-practicality/
http://notary.icsi.berkeley.edu
http://notary.icsi.berkeley.edu
http://security.stackexchange.com/q/89930

BIBLIOGRAPHY 113

[77] R. J. Jenkins. ISAAC and RC4 (1996). Retrieved 26 February 2015 from
http://burtleburtle.net/bob/rand/isaac.html (p. 106).

[78] E. Kasper. “Logjam, FREAK and Upcoming Changes in OpenSSL”. In:
OpenSSL Blog. 2015 (p. 8).

[79] K. Kaukonen and R. Thayer. A stream cipher encryption algorithm
“arcfour”. 1999 (p. 11).

[80] Y. S. Kim, P. Tague, H. Lee, and H. Kim. “Carving secure wi-fi zones
with defensive jamming”. In: ASIA CCS. ACM, 2012, pp. 53–54 (p. 66).

[81] R. T. King Jr. “RSA Data Security Says Exposed Code Poses No Threat”.
In: The Wall Street Journal (Sept. 1994) (p. 11).

[82] A. Klein. “Attacks on the RC4 stream cipher”. In: Designs, Codes and
Cryptography 48.3 (2008), pp. 269–286 (p. 101).

[83] A. Kochut, A. Vasan, A. U. Shankar, and A. Agrawala. “Sniffing Out
the Correct Physical Layer Capture Model in 802.11b”. In: ICNP. 2004
(pp. 43, 47, 66).

[84] B. Könings, F. Schaub, F. Kargl, and S. Dietzel. “Channel switch and
quiet attack: New DoS attacks exploiting the 802.11 standard”. In: LCN.
2009 (p. 38).

[85] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104. Feb. 1997 (p. 76).

[86] A. Langley. Intent to deprecate: RC4. Retrieved 22 April 2016 from https:
//groups.google.com/a/chromium.org/forum/#!msg/security-
dev/kVfCywocUO8/vgi_rQuhKgAJ. Sept. 2015 (pp. 70, 104).

[87] A. Langley. Overclocking SSL. Retrieved 23 June 2016 from https:
//www.imperialviolet.org/2010/06/25/overclocking-ssl.html.
2010 (p. 7).

[88] A. Langley. The POODLE bites again. Retrieved 26 April 2016 from
https://www.imperialviolet.org/2014/12/08/poodleagain.html.
2014 (p. 6).

[89] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. “An
Experimental Study on the Capture Effect in 802.11a Networks”. In:
Proc. of the 2nd ACM Intl. Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization. ACM. 2007, pp. 19–26
(pp. 47, 60, 66).

[90] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff. “A brief history of the
Internet”. In: ACM SIGCOMM Computer Communication Review 39.5
(2009), pp. 22–31 (p. 1).

http://burtleburtle. net/bob/rand/isaac.html
https://groups.google.com/a/chromium.org/forum/#!msg/security-dev/kVfCywocUO8/vgi_rQuhKgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/security-dev/kVfCywocUO8/vgi_rQuhKgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/security-dev/kVfCywocUO8/vgi_rQuhKgAJ
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html

114 BIBLIOGRAPHY

[91] LibrePlanet. Save WiFi. Retrieved 26 April 2015, from https : / /
libreplanet.org/wiki/Save_WiFi (p. 106).

[92] G. LosHuertos. “End of Privacy: Herding Firesheep in Starbucks”. In:
CNNMoney guest columnist (2010) (p. 7).

[93] lxgr. Is RC4 a problem for password-based authentication? Retrieved
24 April 2016 from http://crypto.stackexchange.com/q/3451. Aug.
2012 (p. 12).

[94] M. Lynn and R. Baird. “Advanced 802.11 Attack”. In: Black Hat Briefings.
2002 (p. 67).

[95] S. Maitra and S. S. Gupta. “New long-term glimpse of RC4 stream
cipher”. In: Information Systems Security. Lecture Notes in Computer
Science. Springer, 2013, pp. 230–238 (p. 106).

[96] S. Maitra and G. Paul. “New form of permutation bias and secret key
leakage in keystream bytes of RC4”. In: FSE. Lecture Notes in Computer
Science. 2008 (p. 101).

[97] S. Maitra, G. Paul, and S. S. Gupta. “Attack on broadcast RC4 revisited”.
In: Fast Software Encryption. Lecture Notes in Computer Science. 2011
(pp. 73, 101).

[98] I. Mantin. “Bar Mitzvah Attack”. In: Black Hat Asia Briefings. 2015
(p. 70).

[99] I. Mantin. “Predicting and Distinguishing Attacks on RC4 Keystream
Generator”. In: EUROCRYPT. Lecture Notes in Computer Science. 2005
(pp. 75, 77, 84, 101).

[100] I. Mantin and A. Shamir. “A Practical Attack on Broadcast RC4”. In:
FSE. Lecture Notes in Computer Science. 2001 (pp. 4, 73, 101).

[101] J. Manweiler, N. Santhapuri, S. Sen, R. Roy Choudhury, S. Nelakuditi,
and K. Munagala. “Order Matters: Transmission Reordering in Wireless
Networks”. In: MobiCom. IEEE, 2009 (p. 60).

[102] J. Markoff. “A Secret Computer Code Is Out”. In: The New York Times
(Sept. 1994) (p. 11).

[103] M. Marlinspike. “New tricks for defeating SSL in practice”. In: Black
Hat Briefings. 2009 (p. 7).

[104] C. Matte, M. Cunche, R. Franck, and M. Vanhoef. “Defeating MAC
Address Randomization Through Timing Attacks”. In: Proceedings of
the 9th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec ’16). July 2016 (pp. 14, 123).

[105] N. McAllister. “Facebook: ’Don’t worry, your posts are SECURE with
us’”. In: The Register (Aug. 2013) (p. 7).

https://libreplanet.org/wiki/Save_WiFi
https://libreplanet.org/wiki/Save_WiFi
http://crypto.stackexchange.com/q/3451

BIBLIOGRAPHY 115

[106] C. Meijer and R. Verdult. “Ciphertext-only cryptanalysis on hardened
Mifare Classic cards”. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM. 2015,
pp. 18–30 (p. 2).

[107] M. Metzger. KU Leuven PhD student has created virtually indefensible
Wi-Fi stealth jamming attacks. Retrieved 21 April 2016 from . Oct. 2015
(p. 42).

[108] P. E. Metzger. Re: RC4. Retrieved 20 April 2016 from http : / /
cypherpunks.venona.com/date/1994/09/msg00401.html. Sept. 1994
(p. 11).

[109] S. K. Miller. “Facing the challenge of wireless security”. In: IEEE
Transactions on Computers 34.7 (2001), pp. 16–18 (p. 5).

[110] B. Mills. RC4 will no longer be supported in Microsoft Edge and IE11
[Updated]. Retrieved 22 April 2016 from https://blogs.windows.com/
msedgedev/2016/03/16/rc4-will-no-longer-be-supported-in-
microsoft-edge-and-ie11-beginning-in-april/. Mar. 2016 (p. 70).

[111] I. Mironov. “(Not So) Random Shuffles of RC4”. In: CRYPTO. Lecture
Notes in Computer Science. 2002 (pp. 74, 83, 101).

[112] V. Moen, H. Raddum, and K. J. Hole. “Weaknesses in the temporal key
hash of WPA”. In: Mobile Computing and Comm. Review (2004) (pp. 48,
67).

[113] V. Moen, H. Raddum, and K. J. Hole. “Weaknesses in the temporal key
hash of WPA”. In: Mobile Computing and Communications Review 8.2
(2004), pp. 76–83 (p. 39).

[114] B. Möller. Security of CBC Ciphersuites in SSL/TLS: Problems and
Countermeasures. Retrieved 26 April 2016 from https://www.openssl.
org/~bodo/tls-cbc.txt (p. 6).

[115] B. Möller, T. Duong, and K. Kotowicz. This POODLE bites: exploiting
the SSL 3.0 fallback. 2014 (p. 6).

[116] M. Morii and Y. Todo. “Cryptanalysis for RC4 and Breaking WEP/WPA-
TKIP”. In: IEICE Transactions (2011), pp. 2087–2094 (pp. 23, 26, 38,
39, 48, 67).

[117] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. “You are what you include:
Large-scale evaluation of remote JavaScript inclusions”. In: CCS. 2012,
pp. 736–747 (p. 93).

[118] D. Nilsson and J. Goldberger. “Sequentially finding the N-Best List in
Hidden Markov Models”. In: International Joint Conferences on Artificial
Intelligence. 2001, pp. 1280–1285 (p. 91).

http://cypherpunks.venona.com/date/1994/09/msg00401.html
http://cypherpunks.venona.com/date/1994/09/msg00401.html
https://blogs.windows.com/msedgedev/2016/03/16/rc4-will-no-longer-be-supported-in-microsoft-edge-and-ie11-beginning-in-april/
https://blogs.windows.com/msedgedev/2016/03/16/rc4-will-no-longer-be-supported-in-microsoft-edge-and-ie11-beginning-in-april/
https://blogs.windows.com/msedgedev/2016/03/16/rc4-will-no-longer-be-supported-in-microsoft-edge-and-ie11-beginning-in-april/
https://www.openssl.org/~bodo/tls-cbc.txt
https://www.openssl.org/~bodo/tls-cbc.txt

116 BIBLIOGRAPHY

[119] G. Noubir, R. Rajaraman, B. Sheng, and B. Thapa. “On the Robustness
of IEEE 802.11 Rate Adaptation Algorithms Against Smart Jamming”.
In: WiSec. 2011, pp. 97–108 (p. 66).

[120] T. Ohigashi, T. Isobe, Y. Watanabe, and M. Morii. “Full Plaintext
Recovery Attacks on RC4 Using Multiple Biases”. In: IEICE Transactions
98.1 (2015), pp. 81–91 (p. 101).

[121] T. Ohigashi and M. Morii. “A Practical Message Falsification Attack
on WPA”. In: Joint Workshop on Information Security (JWIS). 2009
(pp. 48, 66).

[122] A. Oot. Ending support for the RC4 cipher in Microsoft Edge and
Internet Explorer 11. Retrieved 22 April 2016 from https://blogs.
windows.com/msedgedev/2015/09/01/ending-support-for-the-
rc4- cipher- in- microsoft- edge- and- internet- explorer- 11/.
Sept. 2015 (p. 104).

[123] S. Park, K. Kim, D. Kim, S. Choi, and S. Hong. “Collaborative QoS
architecture between DiffServ and 802.11e wireless LAN”. In: Vehicular
Technology Conference. 2003 (pp. 21, 27).

[124] K. G. Paterson, B. Poettering, and J. C. Schuldt. “Big Bias Hunting in
Amazonia: Large-Scale Computation and Exploitation of RC4 Biases”.
In: AsiaCrypt. Lecture Notes in Computer Science. 2014 (pp. 71, 75, 76,
79, 86, 91–93, 101).

[125] K. G. Paterson, J. C. N. Schuldt, and B. Poettering. “Plaintext Recovery
Attacks Against WPA/TKIP”. In: FSE. Lecture Notes in Computer
Science. 2014 (pp. 48, 67, 71, 75, 76, 92, 93, 101).

[126] G. Paul, S. Rathi, and S. Maitra. “On non-negligible bias of the first
output byte of RC4 towards the first three bytes of the secret key”. In:
Designs, Codes and Cryptography 49.1-3 (2008) (p. 101).

[127] S. Paul and B. Preneel. “A New Weakness in the RC4 Keystream
Generator and an Approach to Improve the Security of the Cipher”. In:
FSE. Lecture Notes in Computer Science. 2004 (pp. 74, 81, 84, 101).

[128] D. Pauli. Researcher messes up Wi-Fi with an rPi and bargain buy radio
stick. Retrieved 21 April 2016 from . Oct. 2015 (p. 42).

[129] K. Pelechrinis, G. Yan, S. Eidenbenz, and S. Krishnamurthy. “Detecting
Selfish Exploitation of Carrier Sensing in 802.11 Networks”. In: IEEE
INFOCOM. 2009 (pp. 46, 66).

[130] J. A. Perry. getting in trouble.. Retrieved 19 April 2016 from http:
//cypherpunks.venona.com/date/1994/09/msg00560.html. Sept.
1994 (p. 10).

[131] A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465. 2015 (p. 70).

https://blogs.windows.com/msedgedev/2015/09/01/ending-support-for-the-rc4-cipher-in-microsoft-edge-and-internet-explorer-11/
https://blogs.windows.com/msedgedev/2015/09/01/ending-support-for-the-rc4-cipher-in-microsoft-edge-and-internet-explorer-11/
https://blogs.windows.com/msedgedev/2015/09/01/ending-support-for-the-rc4-cipher-in-microsoft-edge-and-internet-explorer-11/
http://cypherpunks.venona.com/date/1994/09/msg00560.html
http://cypherpunks.venona.com/date/1994/09/msg00560.html

BIBLIOGRAPHY 117

[132] T. Pornin. Re: Google is using RC4, but isn’t RC4 considered unsafe?
Retrieved 26 April 2016 from http://crypto.stackexchange.com/a/
858. 2011 (p. 12).

[133] T. Pornin. Re: TLS: RC4 or not RC4? Retrieved 26 April 2016 from
http://security.stackexchange.com/a/32498. 2013 (p. 12).

[134] B. Preneel. “Mobile and Wireless Communications Security”. In: NATO
ASI on Aspects of Network and Information Security. 2008, pp. 119–133
(p. 5).

[135] O. Queseth. “The effect of selfish behavior in mobile networks using
CSMA/CA”. In: Proc. of the 61st IEEE Vehicular Technology Conf. 2005
(p. 66).

[136] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. 2014. url: http://www.R-
project.org (p. 78).

[137] L. Rabiner. “A tutorial on hidden Markov models and selected
applications in speech recognition”. In: Proceedings of the IEEE (1989)
(p. 90).

[138] S. Radosavac, J. S. Baras, and I. Koutsopoulos. “A framework for MAC
protocol misbehavior detection in wireless networks”. In: Proc. of the 4th

ACM workshop on Wireless security. WiSe ’05. 2005 (p. 66).
[139] M. Raya, J.-P. Hubaux, and I. Aad. “DOMINO: a system to detect

greedy behavior in IEEE 802.11 hotspots”. In: MobiSys. 2004, pp. 84–97
(pp. 46, 53, 54, 66).

[140] I. Ristic. DROWN Abuses SSL v2 to Attack TLS. Retrieved 26 April 2016
from https://blog.qualys.com/securitylabs/2016/03/01/drown-
abuses-ssl-v2-to-attack-rsa-keys-and-tls. 2016 (p. 9).

[141] I. Ristić. Is RC4 safe for use in SSL? Retrieved 26 April 2016 from
http://blog.ivanristic.com/2009/08/is-rc4-safe-for-use-in-
ssl.html. 2009 (p. 12).

[142] I. Ristić. Mitigating the BEAST attack on TLS. Retrieved 24 June 2016
from https://blog.qualys.com/ssllabs/2011/10/17/mitigating-
the-beast-attack-on-tls. 2011 (p. 8).

[143] R. L. Rivest and J. C. Schuldt. “Spritz—a spongy RC4-like stream cipher
and hash function”. In: Proceedings of the Charles River Crypto Day,
Palo Alto, CA, USA 24 (2014) (p. 10).

[144] J. Rizzo and T. Duong. “The CRIME attack”. In: Ekoparty Security
Conference. 2012 (p. 9).

http://crypto.stackexchange.com/a/858
http://crypto.stackexchange.com/a/858
http://security.stackexchange.com/a/32498
http://www.R-project.org
http://www.R-project.org
https://blog.qualys.com/securitylabs/2016/03/01/drown-abuses-ssl-v2-to-attack-rsa-keys-and-tls
https://blog.qualys.com/securitylabs/2016/03/01/drown-abuses-ssl-v2-to-attack-rsa-keys-and-tls
http://blog.ivanristic.com/2009/08/is-rc4-safe-for-use-in-ssl.html
http://blog.ivanristic.com/2009/08/is-rc4-safe-for-use-in-ssl.html
https://blog.qualys.com/ssllabs/2011/10/17/mitigating-the-beast-attack-on-tls
https://blog.qualys.com/ssllabs/2011/10/17/mitigating-the-beast-attack-on-tls

118 BIBLIOGRAPHY

[145] P. Robyns, B. Bonné, P. Quax, and W. Lamotte. “Short paper: exploiting
WPA2-enterprise vendor implementation weaknesses through challenge
response oracles”. In: Proceedings of the 2014 ACM conference on Security
and privacy in wireless & mobile networks. ACM. 2014, pp. 189–194
(p. 9).

[146] M. Roder and R. Hamzaoui. “Fast tree-trellis list Viterbi decoding”.
In: Communications, IEEE Transactions on 54.3 (2006), pp. 453–461
(p. 91).

[147] D. Roesler. STUN IP Address requests for WebRTC. Retrieved 17 June
2015 from https://github.com/diafygi/webrtc-ips (p. 96).

[148] RSA Data Security Inc. “RC4 Trademark”. Serial no. 74463805. Nov.
1993 (p. 11).

[149] M. Safyan. Bringing more secure search around the globe. Retrieved
20 April 2016 from https://search.googleblog.com/2012/03/
bringing-more-secure-search-around.html. Mar. 2012 (p. 7).

[150] B. Schneier. Jamming Wi-Fi. Retrieved 21 April 2016 from https:
//www.schneier.com/blog/archives/2015/10/jamming_wi-fi.html.
Oct. 2015 (p. 42).

[151] B. Schneier. New RC4 Attack. Retrieved 21 April 2016 from https://www.
schneier.com/blog/archives/2015/07/new_rc4_attack_1.html.
July 2015 (p. 70).

[152] B. Schneier. Re: RC4. Retrieved 20 April 2016 from http : / /
cypherpunks.venona.com/date/1994/09/msg00394.html. Sept. 1994
(p. 10).

[153] E. Schultz. “Yes, the FCC might ban your operating system”. In: Annual
LibrePlanet Conference. 2016 (p. 106).

[154] S. Sen Gupta, S. Maitra, G. Paul, and S. Sarkar. “(Non-)Random
Sequences from (Non-)Random Permutations - Analysis of RC4 Stream
Cipher”. In: Journal of Cryptology 27.1 (2014), pp. 67–108 (pp. 73–75,
77, 83, 101).

[155] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. “Discovery and
exploitation of new biases in RC4”. In: SAC. Lecture Notes in Computer
Science. 2011 (p. 101).

[156] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. “Statistical Attack on
RC4 Distinguishing WPA”. In: EUROCRYPT. 2011 (pp. 39, 67).

[157] N. Seshadri and C.-E. W. Sundberg. “List Viterbi decoding algorithms
with applications”. In: IEEE Transactions on Communications 42.234
(1994), pp. 313–323 (p. 91).

https://github.com/diafygi/webrtc-ips
https://search.googleblog.com/2012/03/bringing-more-secure-search-around.html
https://search.googleblog.com/2012/03/bringing-more-secure-search-around.html
https://www.schneier.com/blog/archives/2015/10/jamming_wi-fi.html
https://www.schneier.com/blog/archives/2015/10/jamming_wi-fi.html
https://www.schneier.com/blog/archives/2015/07/new_rc4_attack_1.html
https://www.schneier.com/blog/archives/2015/07/new_rc4_attack_1.html
http://cypherpunks.venona.com/date/1994/09/msg00394.html
http://cypherpunks.venona.com/date/1994/09/msg00394.html

BIBLIOGRAPHY 119

[158] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing Known Attacks
on Transport Layer Security (TLS) and Datagram TLS (DTLS). RFC
7457. Feb. 2015 (p. 6).

[159] T. Shimomura. Technical details of the attack described by Markoff in
NYT. Retrieved 23 April 2016 from https://groups.google.com/
d/msg/comp.security.misc/z5j323oQJeg/O7STL_6X_v4J. Jan. 1995
(p. 2).

[160] B. Smyth and A. Pironti. “Truncating TLS Connections to Violate
Beliefs in Web Applications”. In: WOOT’13: 7th USENIX Workshop on
Offensive Technologies. 2013 (pp. 97, 101).

[161] F. K. Soong and E.-F. Huang. “A tree-trellis based fast search for finding
the n-best sentence hypotheses in continuous speech recognition”. In:
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP). IEEE. 1991, pp. 705–708 (p. 91).

[162] D. Sterndark. RC4 Algorithm revealed. Retrieved 19 April 2016 from
https://groups.google.com/d/msg/sci.crypt/TPS_Ix7aTJ4/
oPwa0skAoxAJ. Sept. 1994 (p. 10).

[163] A. Stubblefield, J. Ioannidis, and A. D. Rubin. “A key recovery attack
on the 802.11b wired equivalent privacy protocol (WEP)”. In: TISSEC
(2004), pp. 319–332 (pp. 19, 101).

[164] E. Tews and M. Beck. “Practical Attacks Against WEP and WPA”. In:
WiSec. ACM, 2009, pp. 79–86 (pp. 19, 22, 24–26, 28, 39, 47, 48, 64, 66,
75, 94, 101).

[165] E. Tews, R.-P. Weinmann, and A. Pyshkin. “Breaking 104 bit WEP in
less than 60 seconds”. In: JISA. 2007 (p. 101).

[166] The Wi-Fi Alliance. Certification: Wi-Fi Test Suite. http://www.Wi-
FiTestSuite.org (p. 105).

[167] S. Thomas. SSL and TLS essentials. Wiley Computer Publishing, 2000,
p. 3 (p. 1).

[168] Y. Todo, Y. Ozawa, T. Ohigashi, and M. Morii. “Falsification Attacks
against WPA-TKIP in a Realistic Environment”. In: IEICE Transactions
(2012), pp. 588–595 (pp. 34, 39, 48, 67, 101).

[169] S. Turner and T. Polk. Prohibiting Secure Sockets Layer (SSL) Version
2.0. RFC 6176. Mar. 2011 (pp. 2, 5, 9).

[170] Twitter. Securing your Twitter experience with HTTPS. Retrieved 20
April 2016 from https://blog.twitter.com/2012/securing-your-
twitter-experience-with-https. Feb. 2012 (p. 7).

https://groups.google.com/d/msg/comp.security.misc/z5j323oQJeg/O7STL_6X_v4J
https://groups.google.com/d/msg/comp.security.misc/z5j323oQJeg/O7STL_6X_v4J
https://groups.google.com/d/msg/sci.crypt/TPS_Ix7aTJ4/oPwa0skAoxAJ
https://groups.google.com/d/msg/sci.crypt/TPS_Ix7aTJ4/oPwa0skAoxAJ
http://www.Wi-FiTestSuite.org
http://www.Wi-FiTestSuite.org
https://blog.twitter.com/2012/securing-your-twitter-experience-with-https
https://blog.twitter.com/2012/securing-your-twitter-experience-with-https

120 BIBLIOGRAPHY

[171] T. Van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen.
“Large-scale security analysis of the web: Challenges and findings”. In:
Trust and Trustworthy Computing (TRUST). Springer, 2014, pp. 110–126
(p. 97).

[173] T. Van Goethem, M. Vanhoef, F. Piessens, and W. Joosen. “Request and
Conquer: Exposing Cross-Origin Resource Size”. In: USENIX Security.
2016 (p. 43).

[174] M. Vanhoef. A Case For Open Radio Software. 2015 (p. 106).
[175] M. Vanhoef. Modwifi: Advanced Wi-Fi Attacks Using Commodity

Hardware. http://modwifi.bitbucket.org/ (pp. 42, 44, 55, 58, 61, 65,
67).

[176] M. Vanhoef. Modwifi: Advanced Wi-Fi Attacks Using Commodity
Hardware. https://github.com/vanhoefm/modwifi (p. 42).

[177] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk. “State-
ful declassification policies for event-driven programs”. In: Proceedings
of the 27th IEEE Computer Security Foundations Symposium (CSF ’14).
IEEE, July 2014, pp. 293–307 (pp. 13, 124).

[178] M. Vanhoef, C. Matte, M. Cunche, L. Cardoso, and F. Piessens. Tracking
802.11 stations without relying on the link layer identifier. Retrieved 24
April 2016 from http://ieee802.org/1/files/public/docs2016/e-
cunche-dot11-tracking-0416.pdf (p. 13).

[179] M. Vanhoef, C. Matte, M. Cunche, L. Cardoso, and F. Piessens. “Why
MAC Address Randomization is not Enough: An Analysis of Wi-Fi
Network Discovery Mechanisms”. In: Proceedings of the 11th ACM
SIGSAC Symposium on Information, Computer and Communications
Security (ASIA CCS ’16). ACM, May 2016, pp. 413–424 (pp. 13, 123).

[181] M. Vanhoef and F. Piessens. “Advanced Wi-Fi attacks using commodity
hardware”. In: ACSAC. 2014 (p. 101).

[183] M. Vanhoef and F. Piessens. “All your biases belong to us: Breaking
RC4 in WPA-TKIP and TLS”. In: USENIX Security. 2015 (p. 71).

[185] M. Vanhoef and F. Piessens. “Practical verification of WPA-TKIP
vulnerabilities”. In: ASIA CCS. ACM, 2013, pp. 427–436 (pp. 48, 67, 75,
101).

[187] M. Vanhoef and F. Piessens. “Predicting, Decrypting, and Abusing
WPA2/802.11 Group Keys”. In: USENIX Security. 2016 (p. 43).

[188] S. Vaudenay. “Security Flaws Induced by CBC Padding—Applications
to SSL, IPSEC, WTLS...” In: Advances in Cryptology—EUROCRYPT
2002. Lecture Notes in Computer Science. Springer. 2002, pp. 534–545
(pp. 6, 8).

http://modwifi.bitbucket.org/
https://github.com/vanhoefm/modwifi
http://ieee802.org/1/files/public/docs2016/e-cunche-dot11-tracking-0416.pdf
http://ieee802.org/1/files/public/docs2016/e-cunche-dot11-tracking-0416.pdf

BIBLIOGRAPHY 121

[189] S. Vaudenay and M. Vuagnoux. “Passive–only key recovery attacks on
RC4”. In: SAC. Lecture Notes in Computer Science. 2007 (p. 101).

[190] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC
(CCM). RFC 3610. 2003 (pp. 4, 6).

[191] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders. “WiFire: A
Firewall for Wireless Networks”. In: SIGCOMM. 2011 (p. 66).

[192] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Spec. IEEE Std 802.11-2012. 2012 (pp. 5, 10, 19–21, 23, 24, 29, 36–38,
45, 47, 63, 71, 75, 76).

[193] A. Wool. “A note on the fragility of the Michael message integrity
code”. In: IEEE Transactions on Wireless Communications 3.5 (2004),
pp. 1459–1462 (pp. 19, 29, 39).

[194] J. Wright. “Weaknesses in LEAP challenge/response”. In: DEF CON
Hacking Conference. 2003 (p. 9).

[195] W. Xu, W. Trappe, Y. Zhang, and T. Wood. “The Feasibility of
Launching and Detecting Jamming Attacks in Wireless Networks”. In:
Proc. of ACM MobiHoc. 2005, pp. 46–57 (p. 66).

List of Publications

Papers at International Conferences and Symposia,
Published in Full in Proceedings

• M. Vanhoef and F. Piessens. “Predicting, Decrypting, and Abusing
WPA2/802.11 Group Keys”. In: Proceedings of the 25th USENIX Security
Symposium (USENIX Security ’16). USENIX Association, Aug. 2016

• T. Van Goethem, M. Vanhoef, F. Piessens, and W. Joosen. “Request
and Conquer: Exposing Cross-Origin Resource Size”. In: Proceedings of
the 25th USENIX Security Symposium (USENIX Security ’16). USENIX
Association, Aug. 2016

• C. Matte, M. Cunche, R. Franck, and M. Vanhoef. “Defeating MAC
Address Randomization Through Timing Attacks”. In: Proceedings of
the 9th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec ’16). July 2016

• M. Vanhoef, C. Matte, M. Cunche, L. Cardoso, and F. Piessens. “Why
MAC Address Randomization is not Enough: An Analysis of Wi-Fi
Network Discovery Mechanisms”. In: Proceedings of the 11th ACM
SIGSAC Symposium on Information, Computer and Communications
Security (ASIA CCS ’16). ACM, May 2016, pp. 413–424

• M. Vanhoef and F. Piessens. “All your biases belong to us: Breaking RC4
in WPA-TKIP and TLS”. in: Proceedings of the 24th USENIX Security
Symposium (USENIX Security ’15). USENIX Association, Aug. 2015,
pp. 97–112

• M. Vanhoef and F. Piessens. “Advanced Wi-Fi attacks using commodity
hardware”. In: Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC ’14). ACM, Dec. 2014, pp. 256–265

123

124 LIST OF PUBLICATIONS

• M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk. “Stateful
declassification policies for event-driven programs”. In: Proceedings of the
27th IEEE Computer Security Foundations Symposium (CSF ’14). IEEE,
July 2014, pp. 293–307

• M. Vanhoef and F. Piessens. “Practical verification of WPA-TKIP
vulnerabilities”. In: Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security (ASIA CCS ’13).
ACM, May 2013, pp. 427–436

Chapters in Books

• W. De Groef, D. Devriese, M. Vanhoef, and F. Piessens. “Information
flow control for web scripts”. In: Foundations of Security Analysis and
Design (FOSAD). vol. 8604. Lecture Notes in Computer Science. Springer
International Publishing, 2014, pp. 124–145. isbn: 9783319100814

“Wake me, when you need me.”

— Master Chief, Halo 3

The End

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IMINDS-DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
http://www.cs.kuleuven.be

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Stream ciphers
	Block ciphers

	The Evolution of Network Protocols
	Wi-Fi
	Transport Layer Security (TLS)

	Overview of Selected Attacks on TLS and WPA
	The power and necessity of convincing attacks
	Other prominent attacks

	A Brief History of RC4
	A secret computer code
	Known flaws and early warnings

	Other Contributions
	Outline of the Dissertation

	Practical Verification of WPA-TKIP Vulnerabilities
	Introduction
	Temporal Key Integrity Protocol (TKIP)
	Connecting
	Sender
	Receiver
	Quality of Service extension
	Beck and Tews attack

	Denial of Service
	Injection of More and Bigger Packets
	Exploiting fragmentation
	Implementation: performing a portscan

	Decrypting Arbitrary Packets
	The Michael algorithm
	Michael state reset
	Decryption attack

	Experiments
	Networks supporting TKIP
	Adherence to the 802.11 specification
	Verifying our attacks

	Related Work
	Chapter Conclusion

	Advanced Wi-Fi Attacks Using Commodity Hardware
	Introduction
	The 802.11 Standard
	Medium Access Control (MAC)
	Physical Layer (PHY)
	Temporal Key Integrity Protocol
	Atheros firmware implementation

	Unfair Channel Usage
	Experimental setup
	One selfish station
	Multiple selfish stations
	Defeating countermeasures

	Jamming
	Continuous jamming
	Selective jamming

	Channel-Based MitM
	Background
	Intercepting encrypted traffic
	Implementation
	Experiments
	Countermeasures

	TKIP as a Group Cipher
	Attack details
	Implementation and experiments
	Countermeasures

	Related Work
	Chapter Conclusion

	Breaking RC4 in WPA-TKIP and TLS
	Introduction
	Background
	The RC4 algorithm
	TKIP cryptographic encapsulation
	The TLS record protocol

	Empirically Finding New Biases
	Soundly detecting biases
	Generating datasets
	New short-term biases
	New long-term biases

	Plaintext Recovery
	Calculating likelihood estimates
	Likelihoods from Mantin's bias
	Combining likelihood estimates
	List of plaintext candidates

	Attacking WPA-TKIP
	Calculating plaintext likelihoods
	Injecting identical packets
	Decrypting a complete packet
	Empirical evaluation

	Decrypting HTTPS Cookies
	Injecting known plaintext
	Brute-forcing the cookie
	Empirical evaluation

	Related Work
	Chapter Conclusion

	Conclusion
	Summary of Contributions
	Future Work
	Wireless Network Security
	Cryptanalysis of RC4

	Concluding Remarks

	Bibliography
	List of Publications

