Mathy Vanhoef

Public PhD Defense

A Security Analysis of the WPA-TKIP and TLS Security Protocols

Data handled by computers:

Banking details

Messaging

Adult websites

Private files

Mobile devices

Goal of dissertation

Is the transmission of this data properly protected?

How is data transmitted?

Study security of network protocols used at:

- 1. Your wireless network
- 2. Your internet connection

How is data transmitted?

Study security of network protocols used at:

- **1. Your wireless network**
- 2. Your internet connection

Wireless network security

Wireless router

Easy to intercept transmitted data

Solution: pick password and use encryption!

Available cipher suites?

Available cipher suites?

Is WPA-TKIP still used?

Usage in 2013:

66% support TKIP

19% support only TKIP

Need more arguments to kill TKIP!

Is WPA-TKIP still used?

Usage in 2016:

59% support TKIP

3% support only TKIP

Need more arguments to kill TKIP!

Discovered new attacks

- 1. Efficient Denial of Service
- 2. Forge arbitrary packets to client
- 3. Decrypt traffic towards client

In 2016, 59% of networks still are vulnerable!

Conclusion

Use only AES-CCMP!

Passphrase:

Encryption:

How is data transmitted?

Study security of network protocols used at:

- 1. Your wireless network
- **2. Your internet connection**

Securing internet traffic

Websites can be secured using HTTPS

mozilla

- Internally TLS can use AES, RC4,...
- Which one is widely used? Is it secure?

Is RC4 still used?

In 2013 half of all TLS connections used RC4

RC4 encryption

KU LEUVEN

RC4 encryption

Password123! → RC4 → 56, 0, 234, 102, ...

- The numbers (keystream) should be random
- Not the case for RC4 due to **biases**!

RC4 encryption

Password123! \rightarrow RC4 \rightarrow 56, 0, 234, 102, ...

- The numbers (keystream) should be random
- Not the case for RC4 due to **biases**!

Why is this bad?

Imagine only second keystream byte is used

Probability

- When is zero is 'rolled', no encryption occurs
- Most frequent ciphertextbyte is the real value

After encryption, image is unrecognizable

RC4 biases → Most frequent pixel value is the real value

Replace all pixels in block with most frequent value!

Try to recover rough outline using bigger blocks?

Try to recover rough outline using bigger blocks?

How to recover details?

Capture multiple encryptions!

Combine with biases to recover all info:

How to recover details?

Capture multiple encryptions:

Combine with biases to recover all info:

Summary: abusing RC4 biases

Encryption

Use Biases

Multiple Encryptions

Cork

Plug

Our contributions

We improved these techniques by:

- Also using other biases
- Generating a list of plaintext candidates
- Rapidly generating multiple encryptions

Using this we decrypt a HTTPS cookie.

Cookies are unique identifiers

Cookies are unique identifiers

Cookies are unique identifiers

Decrypting the cookie

Generate many requests, use biases to recover the cookie!

Decrypting 16-character cookie

Decrypting 16-character cookie

Practical impact

In response, browsers disabled RC4:

Chrome: dropped support in v48 (20 Jan. 2016)

Firefox: dropped support in v44 (26 Jan. 2016)

IE11: supports RC4

Edge: supports RC4

"will be disabled in forthcoming update"

Questions?

