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Abstract
Home and workplace networks typically safeguard against external
threats but allow internal devices to communicate freely with each
other. As a result, malicious code on an internal device can collect
sensitive data about other devices or directly attack them.

In this paper, we study mobile apps as potential sources of local
network attacks, analyse their behaviour, design new defences, and
evaluate and bypass existing mitigations. We first focus on Android,
where apps with only the Internet permission can access all devices
in the Local Area Network (LAN), meaning malicious apps can ex-
tract private LAN data, manipulate discovery protocols to obtain a
Machine-in-the-Middle (MitM) position, and directly attack devices.
To defend against such mobile-based attacks, we define an access
model to securely differentiate between LAN and global Internet ac-
cess. We implement this model on Android by creating LANShield:
an app that refines Android’s permission model, and can monitor
and block LAN access of apps using a virtual network interface. We
use LANShield to manually perform tests of 399 Android apps and
find, among other observations, that 89 apps unexpectedly access
the LAN, and 93 apps scan the network. In contrast to Android, iOS
already separates the local and global Internet, but does so based
on a proprietary LAN access model. We compare this access model
to ours, and present multiple bypasses for an app to circumvent Ap-
ple’s local network permission. Finally, we reported all our findings
to affected vendors, and hope our work will motivate the adoption
of stronger permission models on mobile devices.
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1 Introduction
Local home networks are generally assumed to be secure, enclosed
networks that are safe from malicious actors without physical pres-
ence. As a result, devices in local networks are often unprotected
against access from other devices in the same network. For example,
anyone in the sameWi-Fi network can control Sonos and other Uni-
versal Plug and Play (UPnP)-based smart speakers and raise/lower
the volume levels. Furthermore, Internet of Things (IoT) devices
are rarely updated [35], making them especially vulnerable and
susceptible to LAN attacks.

The rise of untrusted apps on a user’s mobile device challenges
the assumption that connections from within the LAN are inher-
ently trustworthy: currently, malicious or compromised apps enable
attackers to infiltrate a victim’s LAN without the need for physi-
cal access. For instance, the Switcher and Roba.o malware were
contained in malicious mobile apps and attacked Wi-Fi routers by
brute-forcing the admin password, altering Domain Name System
(DNS) server settings, and thereby redirecting all DNS queries to
an attacker-controlled server [23, 60].

Unfortunately, there is no open or standardised defence to pre-
vent mobile apps from attacking the LAN. For instance, on Android,
there is no separation between LAN and global Internet access, al-
lowing malicious apps with only the common install-time Internet
permission to attack LAN devices. As motivation, and to establish
a baseline for evaluating defences, we first implement four LAN
attacks in an Android app. While doing so, we become the first
to show that an Android app with only the Internet permission
can obtain a MitM position between LAN devices. Previously, this
was only possible using rooted phones [21, 22, 29, 36, 37, 40, 67, 82].
Most notably, we abuse this MitM position to disrupt an SSH service
and to brute-force the password of a smart power socket.

As a defence, we define a formal model that distinguishes local
from global Internet access. We realise this model in LANShield,
an Android app allowing users to control LAN access of other
apps. LANShield notifies users when an app attempts to access the
LAN, allowing the user to exclude apps from accessing a specific
address range. All combined, LANShield refines Android’s Internet
permission to differentiate between LAN and global Internet access.

To understand the impact of our LAN access model as the basis
for a local network permission, and to more generally investigate
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the conditions under which mobile apps access the LAN, we test
apps and analyse their LAN behaviour using LANShield. In contrast
to previous work, which relied on automated setups to assess app
LAN behaviour [79], we manually test apps to gain deeper insight
into behavioural patterns and ensure broad app and code cover-
age. In particular, we manually interact with apps and examine the
effect on LAN access when, (1) the app runs in the background/-
foreground, (2) the user (dis)agrees with the privacy policy, and
(3) the user does (not) grant specific runtime permissions. In total,
we conducted 854 tests, covering 399 apps from five different cate-
gories. We identify 89 apps that unexpectedly access the LAN. We
further identified 93 apps that perform network scans using service
discovery protocols and 24 that unexpectedly try to access every
single IP address in the LAN. Most interestingly, a notable fraction
of these LAN accesses is caused by a monetisation Software Devel-
opment Kit (SDK) and can occur even when disagreeing with the
app’s privacy policy. We compare these results against automated
tests to highlight the strengths and limitations of each approach.

Unlike Android, iOS has a permission to prevent unauthorised
apps from accessing the LAN without the user’s consent. Although
this permission is a step in the right direction, its design is not open,
meaning its precise security guarantees are unclear. We system-
atically analyse its security and discover three novel methods to
bypass this permission. Additionally, and in contrast to previously-
discovered iOS bypasses [79], we implement the bypasses in a
Proof-of-Concept (PoC) app using standard developer tools and
demonstrate the practical impact of such bypasses. For instance,
we abuse our novel iOS bypasses to make a router use a malicious
DNS server. We responsibly disclosed our findings to Apple and
demonstrated mitigations for each bypass. In addition, we reverse-
engineered the permission’s implementation and documented its
inner workings.

To summarise, our main contributions are:
• We demonstrate through four example attacks how mali-
cious apps on non-rooted phones with only the Internet
permission can directly attack devices in the LAN or obtain
a MitM position (Section 3).

• We define what is considered LAN access in the context
of mobile apps and develop LANShield, an app that refines
Android’s permission model and intercepts LAN traffic (Sec-
tion 4). We release the app and its source code.

• We conduct 854 manual app tests using LANShield and com-
pare the results to automated approaches (Section 5).

• We analyse and reverse-engineer the iOS local network per-
mission and find several bypasses (Section 6).

Lastly, we cover related work in Section 7.2 and conclude in Sec-
tion 8.

2 Background
This section introduces our primary threat model, the security mod-
els of Android and iOS, and common service discovery protocols.

2.1 Threat model: Malicious App
Threat Model. The user unintentionally installs a malicious app
controlled by the attacker, e.g., by disguising it as a benign app. Like-
wise, the adversary may also develop a Trojan SDK, which a benign

app developer unknowingly includes. The malicious app can per-
form LAN I/O operations typically limited by the mobile platform
to the transport layer (TCP/UDP) and ping (ICMP echo) requests.
Furthermore, the app can send/receive multicast and broadcast
packets. The attacker does not have access to the link layer since
the user’s phone is not rooted (e.g., Address Resolution Protocol
(ARP) spoofing is not possible). On iOS, this app is also subject to
Apple’s permission model, requiring the user to give consent to
access the LAN.

Threat Types. We consider attackers with three possible goals and
consider three possible threats: T.1 Directly attacking devices in
the local network to manipulate their behaviour; T.2 Scanning the
network to profile the user and extract personal data; T.3 Achieving
a MitM position between devices in the network using multicast
and broadcast-based protocols.

Examples of threat T.1 are the Switcher [23] and Roba.o mal-
ware [60] that attack the router. Examples of threat T.2 are malicious
apps using discovery protocols such as multicast DNS (mDNS) and
Simple Service Discovery Protocol (SSDP) to fingerprint local net-
works. For instance, Girish et al. passively monitored 2335 mobile
apps and discovered that 9% scan home networks [41]. Finally, ex-
amples of threat T.3 include mDNS service takeovers, as described
by Farrah et al. [38] and other multicast and broadcast discovery
protocols.

2.2 Android Security Model
Android permits untrusted code to run on a device, provided the end
user explicitly consents to it through downloading and installing
an app. The platform follows a multi-party consent model, meaning
no action can be performed unless the user, the platform, and the
app’s developer approve it [66]. Security decisions are made and
enforced at the process boundary. Android does not have in-process
compartmentalisation. External code included by the app’s devel-
oper, such as a monetisation SDK, is executed with the same rights
and permissions as the rest of the app. There are generally three
permission types [45]:

Install-time permissions. This type of permission is presented
to the user before installing an app and is granted upon instal-
lation. A sub-type of install-time permissions is the normal per-
mission, which defines permissions with a low privacy risk. An
example of a normal permission is the INTERNET permission.

Runtime Permissions. Runtime permissions, also called danger-
ous permissions, require explicit user consent at runtime before
an app can access certain features or data, e.g., the location set
of permissions.

Special permissions. Permissions labelled as special prompt the
user to explicitly activate them on a separate UI page, usually
through a toggle. These permissions are set to protect especially
sensitive resources and can be viewed in the Special app access
page on the user’s phone.

2.3 iOS Security Model
Android and iOS have similar security models. No external third-
party code is executed before the user installs an app from an app
store and opens it. Like Android, all code in an iOS app runs with
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Table 1: Local network communication actions and whether
they require Apple’s local network permission, as stated by
an Apple representative [73].

Proto. Action Perm. req.

TCP create outgoing connection ✓

accept incoming connection ✗

UDP

send unicast, multicast, broadcast ✓

bind (i.e., connect) socket to a destination ✓

receive incoming unicast ✗

receive incoming multicast, broadcast ✓

the same permission level. Therefore, a malicious SDK linked by a
benign developer has the same capabilities as the app. Apple offers
a similar permission system to Android: many permissions require
user consent, while some less sensitive permissions are granted
upon installation.

In contrast to Google, Apple introduced the “local network pri-
vacy controls” in iOS and iPadOS 14 in 2020 [8]. The system auto-
matically requests permission when an app attempts to access the
LAN for the first time. Apple justifies this permission by arguing
that apps can collect sensitive information on devices in their users’
LANs and use it to profile them [8]. They define a local network
as an “IP network associated with a broadcast-capable network
interface” [72]. Every IP address on such a network is considered a
local network address [72]. Table 1 lists all network communication
subject to the local network permissionmodel. All outgoing commu-
nication to the LAN will require explicit permission from the user.
Incoming unicast connections with UDP and TCP are unrestricted
and not considered harmful. Furthermore, Apple declares that the
permission not only affects low-level networking but extends to
high-level APIs such as NSURLSession and WKWebView [73].

2.4 Service Discovery Protocols
In the LAN, devices can advertise services and allow users and other
devices to access them. In contrast to the Internet’s DNS, local hosts
do not have fixed names that describe their services and, therefore,
need to advertise their services differently.
mDNS & DNS-SD. The mDNS protocol was proposed in a draft
IETF document [90], implemented by Apple, and later defined in
RFC 6762 [26]. It uses the multicast addresses 224.0.0.251 and
ff02::fb on UDP port 5353 and can be combined with DNS-based
Service Discovery (DNS-SD) to, in a decentralised manner, dis-
cover and advertise services in the local network [25]. The DNS-
SD protocol typically queries domains such as a._tcp.local or
a._udp.local, where a is the name of the requested service. Since
2021, Android also resolves .local domains using mDNS [44].
When a host joins the multicast group, they will first query for
all resource records they wish to allocate, e.g., hostname, service
name, to ensure that no other host in the LAN has already reserved
them [26]. This is known as the probing phase. After receiving no
reply, the host will send a multicast packet with their new reg-
istered resource records. This is known as the announcing phase.
Acquiring a hostname allows a host to advertise services other LAN
clients can access, such as SSH, HTTP, etc. When a host in the

LAN wants to discover a service, they can send an mDNS query
for the specific service type, e.g., _http._tcp.local [25]. When a
conflicted record is identified, the host providing the service will
go back to the probing and announcing phases, where the winner
will get to keep the conflicting record, and the loser must change
the conflicting record. This will prompt hosts offering such ser-
vices to reply, and devices in the multicast group will update their
cache to facilitate the newly discovered services. Linux implements
mDNS/DNS-SD using Avahi [17], while Apple calls their implemen-
tation Bonjour [7].

SSDP/UPnP. The SSDP uses the multicast addresses 239.255.255
.250, ff02::c (link-local IPv6), and ff05::c (site-local IPv6) on
port 1900 to discover local devices. It is based on HTTP messages,
notably M-SEARCH requests and is used in UPnP [2, 5].

3 Motivation: Attacks against LAN Devices
Local networks typically consist of privacy-sensitive devices such
as IP cameras, which co-exist in the same network as phones with
several different installed apps. Unbeknownst to users, apps with
the normal install-time Internet permission can passively monitor
the network, leverage MitM positions, or even attack other devices.
To highlight the need for more refined Internet permissions, this
section demonstrates how malicious apps without root privileges
can compromise the LAN. More specifically, we demonstrate four
example attacks.

Firstly, we demonstrate two direct attacks against devices in the
LAN. The first attack alters the router’s DNS settings, while the
second attack gains access to an IP camera. Secondly, we present
twoMitM attacks. The first attack targets mDNS services and allows
a malicious app to obtain a MitM position in the LAN, while the
second attack obtains a MitM position between a client and a smart
power plug which utilises a custom UDP-based broadcast protocol.

3.1 Direct LAN Device Attacks
We demonstrate how a malicious app can directly attack devices in
the LAN, matching threat type T.1.

3.1.1 Attacking the router. For our first attack, we developed a PoC
Android app that can reconfigure the DNS settings of a popular
home router. The targeted router, a TP-Link WR841N, is config-
urable using a local web interface and uses factory-default creden-
tials. To carry out the attack, our app uses three HTTP requests: one
to log in, one to update the DNS settings, and one to reboot the de-
vice. Other possible attacks include: 1) setting up a VPN interface to
route all Internet traffic through an attacker-controlled server, 2) dis-
abling network access, and 3) uploading a hijacked firmware image
to execute arbitrary code or gain persistent control over the router.
Note that similar attacks were also observed in practice [23, 60].
An iOS variant of this router attack was also implemented, enabled
by an iOS bypass later discussed in Section 6.2.2.

3.1.2 Attacking an IP camera. In our second attack, we target an
IP video camera in the LAN. This attack is based on the reverse en-
gineering work of [89], adapted to Android. The malicious app first
scans the local IP subnet to discover the device using a UDP-based
custom protocol. Then, the malicious app can follow the IP camera’s
unencrypted and unauthenticated custom session establishment
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_http._tcp.local query

Service = HttpService, port=8080, Hostname = A.local
Address= Host A

Time

HttpService
resolves to
Attacker

Host B Attacker

Service = HttpService, port=8080, Hostname = A.local
Address= Attacker,TTL=1

Goodbye HttpService, A.local

Service = HttpService-2, port=8080, Hostname = A-2.local
Address= Spoofed, TTL = 1

Who is A2.local ?
Service = HttpService2, port=8080, Hostname = A2.local

Address= Host A Wait 1
Second

Service = HttpService, port=8080, Hostname = A.local
Address= Attacker, TTL = 3000

Host A

1

2

3

4

5

6

7

Figure 1: mDNS attack against service names.

protocol. Upon establishing a session, the attacker can receive all
data traffic from the IP camera.

3.2 Obtaining a MitM with Mobile Apps
We next demonstrate how a malicious Android app with merely
the normal install-time Internet permission can abuse multicast
and broadcast-based protocols to obtain a MitM position. Through
a MitM position, an attacker can disrupt, fingerprint and exploit
devices and services in the LAN. These attacks match threat type T.3,
but also threat type T.2, since broadcast and multicast protocols can
be used to passively fingerprint the LAN (e.g., listen for broadcast
and multicast packets and retrieve information such as services
offered in the network).

3.2.1 mDNS Attacks. We show that a malicious app can send
mDNS response messages, announcing a service name currently
allocated by another host in the network. This ultimately forces the
service-providing host to abandon its service and adopt a new one,
allowing the attacker to impersonate the service-providing host.
Here we use the terms service-providing host and client host to refer
to hosts in a LAN that provide an mDNS service and who want to
access an mDNS service, respectively.

In our experiments, we identified that some implementations,
such as Avahi Linux, might not return to the probing phase upon re-
ceiving conflicting mDNS responses. Instead, they will send mDNS
“goodbye”messages for all their services under that hostname. These
“goodbye” messages, which are mDNS reply messages where the
resource records in the answer section have a TTL of 0, will make
clients in the group delete the hostname and service from their
caches 1 second after the message has been sent [26]. If an adver-
tisement is received for that hostname before the 1 second has
passed, that hostname may be “rescued”, meaning that all resource
records that were about to expire will be recovered. As a result, a de-
vice attempting to resolve the service will not obtain the attacker’s

address, since the service has been removed from every device’s
cache. After sending the “goodbye” messages, the service-providing
host will acquire a new hostname and send a service advertisement.

To circumvent this, we refined Farrah’s et al. [38] service name
attack, resulting in an attack with two differences: 1) this attack
not only forces the service-providing host to change to another
service, but also, due to an Avahi implementation, disallows them
from establishing any permanent service in the network, and 2) this
attack works against service-providing hosts which send “goodbye”
messages upon identifying conflicting service records. The mDNS
attack is depicted in Figure 1. In step 1 , the attacker will query for a
specific type of service, e.g., _http._tcp.local services, acquiring
the service name and hostname sent by the service-providing host in
step 2 . In step 3 , the attacker will send query responses identical
to those of the service-providing host, only changing the IP address
of the A record to match that of the attacker and setting the TTL of
all resource records to 1. After the service-providing host identifies
the conflict, it will send a “goodbye” message and attempt to acquire
a new service name and hostname, as shown in steps 4 and 5 . The
attacker will then wait 1 second to ensure that the service-providing
host’s address is removed from the group’s cache [26]. In step 6 ,
the attacker can re-acquire the original service and hostname with
a longer TTL, e.g., TTL equal to 3000, to be kept in a MitM position
for a longer time (e.g., 3000 seconds).

The attacker sets the TTL to 1 in step 3 because if the multicast
group receives one of these packets after the “goodbye” message
in step 4 , resource records are only “rescued” for 1 second. This
minimises the attacker’s waiting period to 1 second before all re-
source records are deleted. Otherwise, the attacker would wait a
longer period.

When the service-providing host acquires the new hostname
and service name, the attacker repeats the same process. For the
new services and hostnames the service-providing host attempts to
acquire, the attacker advertises them under a spoofed, potentially
random address, as shown in step 7 . This will cause the service-
providing host to identify a conflict, but potential clients will not
map the new hostnames and service names to the attacker, allow-
ing the attacker to remain in a MitM position using the original
hostname and service name.

Finally, during experimentation, we identified that the Avahi
mDNS implementation on Linux will set a long rate limit after 8
consecutive mDNS conflicts. This entails that the malicious app will
remain in an exclusive MitM position for a specific service for an
extended period.We provide an unlisted YouTube video showcasing
the service attack against an Avahi host providing an SSH service.

3.2.2 Smart Power Socket. As a second example, we demonstrate
that a malicious Android app can control an insecure Kankun smart
power socket. Our PoC is a modified version of a Python script [4]
adapted for Android. Our PoC replies to the Kankun’s custom broad-
cast UDP protocol to establish a MitM position, which allows it
to subsequently intercept control packets. Since the smart power
socket uses a fixed AES key to encrypt all control packets, our PoC
app can then decrypt the power socket’s password, and, using the
recovered password, remotely control the smart power socket.

3.2.3 Required Permissions. According to Android documentation,
on some devices, the multicast lock must be set to reliably receive
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multicast traffic [48]. Otherwise, the Wi-Fi stack of these devices
drops incoming multicast and broadcast packets. To set the mul-
ticast lock, the app requires the CHANGE_WIFI_MULTICAST_STATE
permission. However, when testing the attacks on our Android
device, they were always successful without requiring the multicast
lock or the permission. To validate this, we forcefully closed all
other apps and entered Ultra power-saving mode to ensure the
attacks succeeded even when no other app held a multicast lock.
Therefore, we conjecture that on most devices, the Wi-Fi stack de-
livers multicast/broadcast frames to the Android kernel by default.
All in all, a malicious app only requires the widely-used INTERNET
permission to carry multicast and broadcast-based attacks.

3.3 LAN Security Still Unsolved
As demonstrated in this section, attackers can exploit the lack of
distinction between LAN and global Internet access permissions
on Android phones to obtain a MitM position between devices
or even directly attack them. Separating LAN access from global
Internet connectivity would allow users to block untrusted apps
from accessing privacy-sensitive information within the LAN while
still allowing them access to the Internet.

Unfortunately, no open model exists for mobile apps that se-
curely separates LAN from global Internet access. Furthermore,
existing firewall apps like NetGuard do not have functionality to
differentiate between LAN or Internet access [19]. Although iOS has
a local network access permission, its implementation and design
are closed, making its security guarantees unclear. In this paper, we
address this gap by defining a model for mobile apps that securely
separates LAN from global Internet accesses, similar to Private Net-
work Access (PNA) for browsers [78]. We implement this model on
Android in an app called LANShield, study the LAN behaviour of
Android apps using LANShield, and analyse the security of iOS’s
local network permission in the context of our LAN access model.

4 A Model and Android Implementation for
Secure LAN Access

In this section, we first define a model on how to securely separate
LAN from global Internet access. We then implement this model on
Android by creating LANShield, an app that monitors and controls
other apps’ access to the local network and is designed to be usable
even by non-technical users. We verify its security by confirming
it prevents the attacks of Section 3. In the next section, we use
LANShield to study the LAN behaviour of Android apps.

4.1 LAN Access Model
To separate LAN from global Internet access, we need a precise
definition of LAN access; specifically, we need a LAN access model.
A naive yet insecure definition would be to define the local network
as only the subnet associated with a network interface, e.g., the
Wi-Fi or Ethernet interface. This definition would allow an app in a
network with the subnet 192.168.1.0/24 to access 192.168.2.1
without being considered LAN access, because the latter address is
not part of a subnet associated with a network interface. While the
latter address is not part of a directly connected local network, a
network configuration with multiple local networks that can access
each other is possible. For instance, if a user attaches a second

router to their ISP-provided router, then the user’s LAN consists of
multiple local networks and subnets, and access to devices within
any of these subnets should be considered local network access.

In our mobile LAN model, we define local network access as any
subnet associated with a network interface and as a selection of
private or local subnet ranges. In general, we consider local, private,
and (non-global) broadcast and multicast addresses as LAN access.
The term local refers to all private-use and link-local addresses
typically used to interact with the LAN, and the term private refers
to reserved non-globally routable addresses as defined by IANA [20].
All combined, the following ranges are always considered LAN
access in our model (see also Table 4 in the Appendix):

Local addresses. For IPv4, a range of private-use addresses is de-
fined in RFC1918 [69], which, for instance, contains the subnet
192.168.0.0/16. For IPv6, the site-local range fec0::/10 has a
similar purpose, and these addresses are valid only within an or-
ganisation, i.e., routers must not forward such packets outside their
organisation [31]. Additionally, unique local addresses in the sub-
net fc00::/7, which are the successors of the (now deprecated)
site-local IPv6 addresses [52, 58]. Link-local addresses are also con-
sidered LAN access for both IPv4 and IPv6 with the subnets of
169.254.0.0/16 and fe80::/10, respectively [24, 32].

Private addresses. Traffic to non-globally routable addresses, i.e.,
private addresses, is also considered. Although these are not typi-
cally used for LAN access, misconfigured or non-standard networks
may still use them. This includes ranges for benchmarking [1, 30],
documentation [15, 34, 59], discard-only IPv6 addresses [55], the
6in4 relay anycast prefix [57, 87], and the IPv6 segment routing
prefix [61]. For IPv4, we additionally consider the IETF subnet
192.0.0.0/24 [28] to be LAN access since almost all its addresses
are not globally routable.

Broadcast and multicast addresses. All IPv4 broadcast and multi-
cast traffic, and all IPv6 multicast traffic, including traffic towards
global-scope multicast destinations, are considered LAN access [32].

Comparison to PNA. Compared to PNA for browsers [78], which
attempts to prevent websites from attacking devices in a client’s
internal network through the browser, we do not consider the
Carrier-Grade NAT address range, i.e., 100.64.0.0/10, as LAN access.
This is because we observed several apps in certain countries ac-
cessing these IP ranges during normal usage. A second difference
is that PNA only includes one private address range, namely the
benchmarking range 198.18.0.0/15 [1], while we include 15 private
ranges (see Table 4). A third essential difference is that the loopback
ranges 127.0.0.0/8 and ::1/128 are considered private access in PNA
while they are not considered LAN access in our model. Although
loopback traffic can also be a security concern [64, 91], we consider
the protection of on-device inter-app communication an orthogonal
problem, and here focus on access control to LAN devices. Fourth,
our model includes broadcast and multicast ranges for both IPv4
and IPv6. Lastly, we also include the (now deprecated) site-local
address range fec0::/10 since older devices may still use it.

4.2 Implementation on Android: LANShield
We implemented our LAN access model on Android by creating
LANShield. This app separates LAN and global Internet traffic,
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Figure 2: Overview of all components of LANShield.

effectively refining Android’s Internet permission. LANShield ac-
complishes this by intercepting all traffic destined for the LAN from
apps that are not permitted to access it and redirecting it to a sink.
The user can choose for which apps LAN access is blocked.

4.2.1 Design. Our app creates a virtual network interface (TUN
device) that acts as a sink for blocked traffic. We update the device’s
routing table to direct traffic destined for specific addresses or
subnets based on the LAN access model discussed in Section 3 to
this sink. Additionally, we add routing rules to exclude traffic from
apps that are allowed LAN access from being routed through the
virtual interface. Adding and configuring the virtual network device
is implemented using the VpnService API and does not require
root access nor a modified version of Android. Previous works used
a similar mechanism to intercept and monitor Internet traffic on
Android [62, 65, 76, 81].

An overview of how LANShield works is shown in Figure 2. In
the first example (top, grey arrows), 1 an app generates traffic
towards a public Internet address. 2 Android routes this traffic via
the Wi-Fi interface (wlan0), bypassing LANShield. 3 The traffic is
transmitted to the access point and 4 forwarded to the Internet.

In the second example, 1 an app sends traffic to a local address.
6 If the app is blocked from LAN access, Android routes the traffic
to the TUN interface (tun0). 7 LANShield intercepts this traffic,
logs metadata, optionally notifies the user, and drops the packet.

Local traffic from apps that are explicitly allowed is not routed
through the TUN interface and instead follows the same steps as
public Internet traffic. It is sent to the access point 3 and forwarded
onto the local network 5 . This ensures no overhead is introduced
for traffic the user does not wish to block.

4.2.2 App Access Policy. LANShield lets users control which apps
can access the LAN. A global default policy blocks or allows LAN
traffic, with distinct settings for system and non-system apps. Users
can override this setting per app. For example, a user can configure
LANShield to block all non-system LAN access by default. When
a non-system app then attempts LAN access for the first time,
LANShield shows a notification prompting the user to set a policy
for that app, similar to Android’s runtime permission dialogues,
see Figure 6 in the Appendix.

4.2.3 Intercepted Address Ranges. We intercept traffic according
to our LAN model defined in Section 4.1. In other words, we iterate
over all interfaces and intercept traffic to the subnet(s) associated

with each interface, which is especially essential for IPv6 since local
networks may use globally routable addresses. Additionally, we
intercept traffic to all ranges listed in Table 4 of the Appendix.

4.2.4 Evaluation. As a security evaluation of LANShield, we assess
its ability to block malicious traffic targeting the LAN. Specifically,
we test whether LANShield can detect and prevent malicious LAN
traffic generated by the malicious apps developed in Section 3. In
all four attacks, LANShield successfully notifies the user of the
malicious app’s attempt to access the LAN. Moreover, if the user
chooses to block LAN traffic, the attacks become infeasible.

4.2.5 Open access. We will release LANShield as open-source soft-
ware allowing researchers to study the LAN behaviour of Android
apps. Furthermore, we publish the app on the Google Play and F-
Droid app stores, offering users control over which apps are allowed
to access their LAN. Figure 7 contains screenshots of LANShield’s
user interface.

4.3 Data Collected by LANShield
LANShield logs metadata for each blocked packet. Specifically, it
records the destination IP address and port number, transport layer
protocol (e.g., TCP/UDP/ICMP), the UID of the sending app, and a
timestamp. Users can view this metadata in the LANShield interface,
where blocked traffic is grouped per app. There is also an option to
export the recorded metadata to a JSON file.

4.4 Performance Evaluation
We evaluate the overhead of LANShield in terms of battery, memory,
and network performance using a Pixel 9 Pro device.

4.4.1 Energy Consumption. We measure LANShield’s energy con-
sumption across different use cases to identify potential battery
usage overheads (see Figure 9 in the Appendix). For each case, we
collect ten 10-minute measurements using Power Profiler [49], cap-
turing CPU, WLAN, Disk, and Memory power usage. We apply
t-tests to assess statistical significance between scenarios. In the
first experiment, we compare (1) an app sending max-MTU UDP
packets at 1k packets/sec with LANShield allowing traffic, and (2)
the same app with LANShield disabled. No significant overhead is
observed (p-values > 0.65 for all components). In our second exper-
iment, we benchmark power consumption in two scenarios: (1) an
app scanning a /24 subnet every minute with LANShield blocking
traffic, and (2) the same app with LANShield disabled. Here, we
observe a statistically significant difference in CPU, memory and
WLAN (p < 0.0001 for all three). More specifically, CPU and mem-
ory power consumption see an increase of approximately 26% and
13% when LANShield is blocking LAN traffic, while WLAN usage
decreases by 18% . This suggests LANShield reduces WLAN en-
ergy use by blocking traffic, but increases the CPU’s and memory’s
battery consumption when processing it.

4.4.2 Memory Usage. To estimate LANShield’s memory usage, we
track LANShield’s memory consumption for 5 minutes in three
scenarios and choose a sample value every 30 seconds, resulting
in 10 values for each scenario. We compare: (1) an app sending 1k
max-MTU UDP packets every second to a host on the LAN while
LANShield is blocking the traffic, (2) two apps sending 1k packets
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each while LANShield is blocking the traffic and (3) LANShield is
enabled, but no traffic is sent. In scenarios 1, 2 and 3, the app’s aver-
age memory consumption is 29.1MB, 28.66MB, and 25.91MB with
standard deviations 1.11, 1.18 and 0.03, respectively. Furthermore,
we identify a statistically significant difference when LANShield is
blocking 1k and 2k packets vs. when no traffic is sent (p < 0.0001
for both), but no statistically significant difference when LANShield
is blocking 1k vs. 2k packets. This indicates that LANShield causes
additional memory consumption by logging metadata of blocked
traffic, which does not necessarily increase with the amount of
traffic being processed.

4.4.3 Network Throughput. We benchmark the transfer rate and
bitrate of the device using iPerf3 [3] by sending TCP traffic to
a server in our LAN and collecting 10 measurements for when
LANShield is disabled vs. enabled. We conducted a two-tailed t-test
and found no statistically significant differences. This is expected;
permitted network traffic is routed as usual, leaving transfer rate
and bitrate unaffected. To identify any potential impact on global
traffic, we benchmark transfer rate and bitrate in scenarios where
two processes send global and local traffic simultaneously when
LANShield is: (1) allowing LAN traffic, (2) disabled, and (3) blocking
LAN traffic. We identify no statistically significant difference for
global traffic regarding transfer or bitrates in (1) vs. (2) , but identify
a statistically significant difference between (3) vs. (1) and (2) (p <=
0.0001 for both transfer rate and bitrate in all cases). This statistically
significant difference may indicate that LANShield blocking LAN
traffic improves Internet transfer rate and bitrates when sending
LAN and global traffic simultaneously, as blocking LAN traffic frees
up Wi-Fi bandwidth.

5 Testing the LAN Behaviour of Android Apps
Using LANShield

In this section, we study the LAN behaviour of apps by manu-
ally interacting with them and compare our results to an auto-
mated approach. We highlight the impact of granting permissions,
(dis)agreeing with privacy policies, and we discuss suspicious scan-
ning behaviour of advertisement SDKs.

5.1 Testing Methodology
We manually interacted with apps while LANShield was enabled
and configured to detect LAN accesses. To ensure a varied testing
pool, we selected at most 100 apps from each of the following five
categories, resulting in a total of 399 usable apps:

Random. To have a representative baseline of tested apps, we
randomly selected 100 apps from Androzoo [63]. The selected
apps had to have the INTERNET permission in their manifest, be
available on the Play Store, have a minimum of one thousand
downloads, and be last updated in 2024 (i.e., the app’s last version
was less than a year old).

Most Downloaded. To study whether widely-used apps that have
access to network status information might access the local
network, we selected the top 100 most downloaded apps that
have one or more of the following permissions in their manifest:
ACCESS_NETWORK_STATE, READ_PHONE_STATE or the BACKGROUND,
COARSE or FINE location permissions. We selected apps with

these permissions to study the impact of granting privacy-related
permissions that may lead to fingerprinting. More specifically,
these permissions may allow an app to gain network information.
For example, the getScanResults() method, which returns a
list of all Access Points (APs) from the latest scan, requires both
ACCESS_NETWORK_STATE and FINE location permissions [51].

Multicast. To study apps that are more likely to access devices
on the LAN, we selected apps that contained strings related to
multicast discovery protocols. Namely, we selected apps that con-
tained the strings _tcp.local or _udp.local relating to mDNS,
or the strings 239.255.255.250 or M-SEARCH * HTTP/1.1 used
by SSDP/UPnP (recall Section 2.4). We collaborated with Google
to scan all APKs tested by Play Protect in a single day for these
strings. For each of the four strings, we randomly selected 25
apps that contained this string resulting in a total of 100 apps.

IPv6. To increase the probability of detecting local IPv6 traffic,
we collaborated with Google to scan for apps containing the
strings ff02::1, ff02::2, and ff02::fb, corresponding to the
multicast IPv6 address to reach all nodes, all routers, and mDNS,
respectively. This resulted in only 12 apps. While creating LAN-
Shield, we found that the app “Kuaishou” used IPv6 and added it
as the 13th app in the IPv6 category.

Umlaut SDK. While creating LANShield, we noticed that some
apps scan the entire network. By reverse-engineering these apps
we found that the com.umlaut.crowd SDK was responsible for
this behaviour in the observed cases. To study the behaviour of
this SDK in more detail, we collaborated with Google to query
for all Play Store apps that used this SDK. We selected the top 100
most downloaded apps containing this SDK, as these are more
likely to be functional.

Two people tested each app by manually navigating through its
User Interface (UI). Several aspects were evaluated such as whether:
(1) the app accessed the local network; (2) the access was vital for
the app’s functionality (3) the LAN access occurred immediately
after granting permissions or was delayed until the user agreed to
a privacy policy, and (5) the access was considered malicious (e.g.,
sweep scanning). Installing, testing, and recording results for one
app took approximately 10 minutes, amounting to roughly 18 days
of work hours for all experiments.

For special cases, such as apps that were restricted in specific
countries, a third person performed an additional test. Finally,
the metadata of all local network flows (recall Section 4.3) were
exported to a JSON file using LANShield, which enabled cross-
checking of the information provided by the testers and allowed
further analysis at a later stage.

5.2 Results
A total of 854 tests were conducted using LANShield on 413 unique
apps (see Table 5 in the Appendix for raw results). Out of the
413 apps, 14 (3.39%) could not be tested because they were either
not available on the Play Store, not accessible through third-party
websites, only compatible with old Android devices, or crashed on
startup. This resulted in a total of 399 available apps to test.

5.2.1 General LAN Behaviour. When considering a random selec-
tion of apps or looking at the most downloaded apps, respectively
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No LAN access
Expected access
Unexpected access

57%

Figure 3: App categories and their LAN behaviour. More de-
tailed results are provided in Table 5.

5% and 4% of them accessed the local network (see Figure 3). In
the Multicast category, 43% of the apps accessed the LAN, which
confirms that our string-based search is more effective in return-
ing apps that send local network traffic than a random selection
of apps. Interestingly, this means that the other 57% of Multicast
apps contain multicast-related strings without LAN access being
detected. This may be because apps only access the LAN under
specific conditions that we did not explore or, in some cases, might
have unreachable code.

In the Umlaut category, 67% of the apps accessed the LAN, a
strong indication that the com.umlaut.crowd SDK contained in
these apps accesses the LAN. In the IPv6 category, although only 13
apps were tested, 5 (38%) exhibited LAN access behaviour. However,
only the “Kuaishou” app used IPv6 to access the LAN: it contacted
an address starting with fd00:6868:6868:0. The purpose of this
is unclear, although it appears to be a hardcoded address.

Broadcast/Multicast Network Scanning. We detected 93 apps that
use SSDP, 3 that use NetBIOS, and 2 that use mDNS to discover local
devices. Additionally, 6 apps broadcast packets to 255.255.255.255
and 12 only access unicast IPs in the LAN.

Background Access. Among the 124 apps that access the LAN, 18
also did so when running in the background, with only 2 being
expected to access the LAN. This suggests that it would be bene-
ficial to have a permission that only allows LAN access when the
app is being used, similar to Android’s location or microphone
permissions.

5.2.2 Categorising (Un)expected LAN Access. The detected LAN
accesses of the 399 tested apps were classified as expected and unex-
pected. Unexpected access implies that LAN access did not appear
to be required for the app’s functionality, i.e., the tester would have
blocked the app from accessing the LAN, and the functionality
would not have been impaired. Expected access implies that LAN
access was required for the app to function normally.

In the Random and Most Downloaded categories, 80% (4 out of 5)
and 50% (2 out of 4) of LAN accesses were considered unexpected,
respectively. In the IPv6 category, 40% (2 out of 5) of LAN accesses
were unexpected. Overall, this indicates that any Android user
might reasonably likely have at least one app installed that accesses
the local network without their knowledge.

(a) Auto Call Recorder. (b) Simple Weather App.

Figure 4: An implicit and explicit privacy policy of two apps
that scan the local network for all hosts in the current subnet.

In the Multicast category, 55.8% (24 out of 43) out of the LAN
accesses were considered unexpected. This suggests that, out of
the apps that contain strings or code to access the local network,
a slight majority will access the local network without the user’s
knowledge, highlighting the need for developers and platforms to
provide more transparency on an app’s local network activities.

For the Umlaut category, 85% (57 out of 67) of the LAN accesses
were unexpected. This is significantly higher than in other cate-
gories, likely because the Umlaut SDK is being used in these apps.

5.2.3 Potentially Malicious behaviour. Most apps are not expected
to sweep scan the entire local network, i.e., accessing every IP
address in the LAN. However, we found that 33 apps ran a sweep
scan on the LAN, and 73% (24 out of 33) of those apps were not
expected to access the LAN at all. Since network scans may be
used to fingerprint the LAN and extract data [41], we consider this
behaviour potentially malicious. We considered an app to be sweep
scanning when it accesses more than 50 unique local IP addresses.

5.2.4 Impact of Privacy Policies on LAN Behaviour. We define a
privacy policy in the context of an app as a UI element that discloses
information related to data collection, sharing, storing, etc., by the
app. An example of a privacy policy that was initially not detected
by both testers is shown in Figure 4a: pressing “Let’s Start!” entails
you implicitly agree with the privacy policy. This implies that the
app is not usable without agreeing to the privacy policy, in contrast
with other apps such as the one in Figure 4b. While testing apps,
we observed that some access the local network immediately after
a user agrees to a privacy policy. This was noticeable because LAN-
Shield shows a notification for each new LAN access. To investigate
this further, we measured how many apps access the LAN before
showing a privacy policy: among the 124 apps that accessed the
LAN, 80.6% (100 out of 124) initiated network access without the
user’s consent to any privacy policy. Notably, this LAN behaviour
was most prevalent in the Multicast and Umlaut categories, with
32% (32 out of 100) and 61% (61 out of 100) respectively. In contrast,
other categories exhibited significantly lower rates, all below 4%.
This implies that apps frequently access the network without user
consent in the Multicast and Umlaut categories, thereby potentially
posing a risk to user privacy.

Among the 54 apps that accessed the LAN and had a privacy
policy, 22.2% (12 out of 54) altered their LAN behaviour when the
privacy policy was declined, either ceasing or reducing LAN access.
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This indicates that some apps adjust their network activity when
users reject the privacy policy to avoid unauthorised actions, at
least when the app is usable without agreeing to the privacy policy.

5.2.5 Impact of Runtime Permissions on LAN Behaviour. Out of 79
apps that requested runtime permissions, 8.9% (7) accessed the LAN
only after obtaining these permissions. We found this surprising
since accessing the LAN does not require any runtime permissions.
Additionally, 79.0% (98 out of 124) of the apps that accessed the LAN
did so without requesting or being granted runtime permissions.
When denying runtime permissions, 45.6% (36 out of 79) of the apps
changed their LAN access behaviour, either ceasing or reducing
their access. We conjecture that these apps only execute certain
code after obtaining a given set of permissions, highlighting that it
is necessary to grant runtime permissions to fully explore an app’s
LAN access behaviour.

The unexpected network scansweremainly performed byUmlaut
apps: 38% (22 out of 57) of Umlaut apps that were not expected to
access the LAN perform a network scan. Reverse engineering of
these apps indicated that they used the isReachable API on every
IP address in the current subnet.

5.2.6 The Monedata/Umlaut SDK As previously indicated, many
network scans, which indicate potentially malicious behaviour,
were caused by the com.umlaut.crowd SDK. Based on online infor-
mation, this company sources crowd data by integrating their SDK
into thousands of Android and iOS apps to collect mobile network
performance and usage data [88]. The Umlaut SDK is, in turn, part
of the Monedata SDK, which combines several tracking SDKs into
a single solution [83]. It is noteworthy that the documentation of
Monedata mentions “Collecting the user consent is MUST to be able
to monetise your app” [68]. However, 71.87% (69 out of 96) of apps,
such as smsr.com.cw, performed a network scan or ran an SSDP
discovery before agreeing to a privacy policy.

5.3 Case Studies
Simple Weather App. An interesting case of an app with unex-
pected and potentially malicious LAN access is the weather app
net.difer.weather. After installation, it accesses the LAN with-
out opening the app. This app uses the Monedata SDK; however,
when it is first initialised, it only asks for the location and notifica-
tion permissions. After briefly using the app or reopening it, it also
asks for the background location permission. Once full location
access is granted, the user is asked to agree to a support inquiry
and the privacy policy. If the user agrees, it will start scanning
the entire local network. This LAN scan is also performed if other
runtime permissions are not granted, highlighting the need for a
new LAN-specific runtime permission.

CallSafe: Caller ID & Contacts. This app detected whether a VPN
was enabled and, if so, disallowed the user from using the app.
We tested this app by connecting to a Wi-Fi hotspot and using
Wireshark to monitor network traffic. The app used SSDP/UPnP
to discover devices and scanned for all hosts in the current subnet.
This is suspicious behaviour: the app mentions the risk of a VPN
stealing your data while unexpectedly scanning the local network.

5.4 Comparison to automated testing
To compare the effectiveness of triggering LAN access automatically
vs. via human-guided app stimulation, we conduct automated tests
using the Android Exerciser Monkey [42]. These tests are done
on the same set of apps, using the same setup with LANShield to
monitor LAN traffic as used in the manual tests.

Test setup. For our automated tests, we use a physical Android 15
device. Before testing, the device is factory reset, and all non-system
apps are removed. For each app, the test procedure includes: (1) start
LANShield, configured to only capture traffic from the app being
tested, (2) install the target APK, (3) grant all runtime permissions
listed in the app’s manifest, (4) simulate user interaction using the
Exerciser Monkey for five minutes, (5) stop and uninstall the app,
and (6) stop LANShield and collect the captured traffic.

Results. Table 6 in the Appendix contains the results. Automated
testing triggered LAN access in 114 apps, slightly fewer than the
124 apps detected manually. Automated testing missed LAN access
in 31 cases identified manually (Only H ), but detected LAN access
in 21 apps not detected manually (Only A). Similarly, automated
testing triggered a sweep scan in 37 apps, of which 23 were not
detected manually, but missed the sweep scan in 19 apps that were
detected manually.

Discussion. Both human-guided and automated testing were ef-
fective in triggering LAN accesses, where each detected some LAN-
accessing apps that the other missed. We conjecture that manual
tests missed some LAN accesses due to differences in the testing
procedure, human error, and time constraints faced by manual
testers. For example, automated testing granted all runtime permis-
sions at the start of each test, which may have influenced app or
SDK behaviour. In particular, the Umlaut SDK was often observed
to initiate LAN scanning only when location access was granted
(see 5.2.6), potentially explaining the higher detection rate of LAN
scanning in the Umlaut category for automated testing. In contrast,
manual testers may have accidentally declined permission requests
or failed to trigger them, resulting in missed behaviours. While
having some limitations, the advantage of manual testing remains
that it allows determining the impact of granting permissions, the
impact of agreeing with privacy policies, and determining whether
LAN access was expected or not. We recommend combining both
approaches in future testing workflows to maximise coverage and
detection of LAN interaction or other app behaviours.

5.5 Implications
Our manual tests revealed that many Android apps access the local
network without the user’s awareness or consent. While many
of the tested apps had some legitimate use-case, e.g., interacting
with an IoT device, we also identified that a monetisation SDK
automatically performs network scans without prior consent. Only
a few apps requested the user consent for LAN access; many apps
accessed the LAN before obtaining user consent. Considering the
possible attacks against devices in the LAN, these issues highlight
the need for a newAndroid permission so users can control whether
an app is allowed to access the LAN.

We argue for implementing an Android runtime permission that
allows users to control if and when an app can access the local
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Table 2: Summary of bypasses allowing a malicious app to
circumvent the local network permission on iOS, the threats
(2nd column), and if user interaction is required (3rd column).

Issue Threats Inter.

WKWebView (Section 6.2.1) T.1 ✗

Safari Extension(Section 6.2.2) T.1 ✓

Device Discovery Extension (Section 6.2.3) T.1, T.2 ✓

watchOS Relay (Section 6.2.4) T.1, T.2 ✗

Mis-definition of LAN (Section 6.2.5) T.1 ✗

network. For example, a user should be able to restrict an app from
having LAN access when it is running in the background. Our app
LANShield is a first step in this direction, showing how fine-grained
LAN access permissions can be implemented.

6 Analysis of iOS’ Local Network Permission
The previous sections demonstrated the necessity for a separate
LAN permission, different from a general Internet one. Apple knew
about these threats and implemented the local networking permis-
sion in iOS 14, released in September 2020. As with all permissions
on iOS, the user must explicitly grant it by confirming a system
dialogue. A malicious app that could bypass this permission and
potentially gain unrestricted access to the local network could at-
tack devices in the network, profile and localise the user, or acquire
a MitM position between local devices. Unfortunately, bypassing
Apple’s permission system is not uncommon. For example, over
100 bypasses of the macOS permission system were found by two
researchers in the last four years [39]. In this section, we analyse
the implementation of the local networking permission on iOS and
identify five possible bypasses.

Schmidt et al. [79] analysed the iOS local networking permis-
sion during a similar time frame as we did. Their article [79], to be
published at IEEE S&P 2025, lists two issues that we also indepen-
dently found and extended with example attacks (Section 6.2.5 &
Section 6.2.1). Although they reported these issues in June 2022,
Apple has still not mitigated them at the time of writing. Further-
more, we reported the same issues to Apple in June 2024, and Apple
did not mark these issues as duplicates, potentially indicating mis-
communication within Apple’s product security team.

Beyond the bypasses described in [79], we found three additional
ways to circumvent the local network permission. Each bypass was
implemented as part of a PoC in a malicious app; the bypasses only
use public iOS APIs, and we demonstrate how each could exploit
the LAN. We reported the security issues to Apple; they reproduced
each report and confirmed the issues. Apple mitigated the issue
described in Section 6.2.3 with the iOS 18 update, and they assigned
CVE-2024-44147.

6.1 Methodology
We describe our methodology for analysing the iOS local network
permission. We use a combination of testing based on Apple’s devel-
oper documentation and reverse engineering the implementation
to find potential issues. First, we define a set of test cases identi-
fied while reading Apple’s documentation. We examined official
APIs for network access and app extensions, which run as separate

processes and could therefore have different permissions than the
host app. We added a complete list of the test cases in the Appendix
(Table 3). We developed a malicious app that includes all our test
cases. A test case succeeds if the app can access a host on the local
network or find hosts through service discovery without showing
the permission dialogue to the user. All tests are performed on iOS
17.5 and confirmed on iOS 18 using non-rooted iPhones.

Second, we reverse-engineer the Apple local network permission
by combining static and dynamic reverse engineering. We follow
the proven reverse engineering strategies of [27, 54, 84]. We identify
binaries and iOS system frameworks handling permissions using
system logs. Then, we use Ghidra to analyse these binaries statically
and Frida to dynamically hook into functions, to print arguments
or modify behaviour. We use an Apple security research device,
i.e., an iPhone with root-level access provided by Apple to security
researchers. We primarily use reverse engineering to understand
how the local network permission is implemented and to identify
the root causes of the bypasses found. We present the results of our
reverse engineering effort in Section 6.3.
Example Attacks. To verify our bypasses, we implement an attack
for two threats described in Section 2.1 (T.1, T.2). T.1 has been imple-
mented as an attack on the Wi-Fi router that changes the router’s
DNS settings. We focus on routers with default passwords and have
implemented two variants of the attack: OpenWRT and a TP-Link
router. T.2 has been implemented as mDNS service discovery using
Apple’s NWBrowser API. The attack returns the service names and
hostnames in the local network. Our YouTube Playlist demonstrates
the bypasses in Section 6.2.1 to Section 6.2.5 using our PoC app.

6.2 Local Network Permission Bypasses
We found several issues that would allow a malicious app to access
the local network. In this section, we describe the issues, example
exploits, their limitations, and mitigations.

6.2.1 WebView Bypass. The WKWebView allows an app to browse
and interact with web content without the user leaving the app.
Most third-party browsers on iOS must also use WKWebView because
Apple does not allow other web-rendering engines outside of the
European Union [85]. Although WKWebView is hosted in a third-
party app, web requests in the WKWebView are not bound to the
local network permission. The root cause of this issue lies in the
details of the WKWebView implementation. Requests made through
WKWebView are not performed by the app but by the WebPageProxy.
This proxy creates a separate WebContent process for each visited
website. As these processes are system processes, websites on Safari
are handled in the same manner; no restrictions apply. WebKit is
open-source, allowing one to verify this implementation flaw by
reading the source code [86].
Exploiting this behaviour. The host app can set WKWebView’s opac-
ity to 0.0, effectively hiding the attack from a victim. As the host
app manages the web view, it is entirely under its control. The
WKWebView allows the injection of custom JavaScript code, which
runs in the context of the visited website [14]. We exploit this with
an attack on threat T.1. The app opens the router’s management
website in the web view and executes JavaScript code, which logs
in with a default password and manipulates the settings. Finally,
the app reboots the router. The JavaScript code is not hindered by
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the Same-Origin Policy (SOP) because the web view already points
to the router’s website.
Limitations. As the adversary may only access the local network
via a browser-like web view, it is limited to the capabilities of
a browser and custom JavaScript code. Therefore, an adversary
cannot create low-level socket connections or send mDNS service
discovery requests [70].
Mitigation. A WKWebViewmust have the same permissions as other
networking-related code in an app. The current bypass is clearly un-
intended by Apple because they explicitly mention theWKWebView
as part of the local network permission model in their FAQs [73].

6.2.2 Safari Web Extension Bypass. Apple introduced app exten-
sions in iOS 8, which allow apps to run code outside their host app’s
process. At the time of writing, iOS supports 37 app extensions [9].
By definition, extensions should share their permissions with the
host app and also not allow access to the LAN if the user did not
grant permission in the host app [74].

However, we find that browser extensions, i.e., Safari web ex-
tensions, do not follow this approach. Safari web extensions can
extend and personalise browsing functionality by modifying web
content or blocking ads. They are programmed using the same API
as Firefox, Chrome, and Edge extensions. Developers must program
the extension in JavaScript, and they can define when it executes,
e.g., when loading a website. On iOS, browser extensions need to
be bundled with a host app. In addition to the JavaScript code, Sa-
fari extensions also contain a native part that can communicate
with the host app and the extension. We find that the JavaScript
code of extensions is executed in the context of the browser and is,
therefore, not bound to the permissions of the host app.
Exploiting this behaviour. A malicious app can bundle a genuine-
looking Safari browser extension, e.g., an ad blocker, with the app.
App extensions, like web views, are also bound to the SOP by default.
However, using the extension’s configuration file (manifest.json),
the adversary can define exceptions, allowing the extension to
access any host (see [43]). The user has to give consent to this
configuration, but this consent does not list further privileges, such
as LAN access. In our PoC app, we demonstrate the exploit for
threat T.1 and modify the DNS of an OpenWRT-based router that
uses the default login.
Limitations. Similar to the web view bypass, the extension is lim-
ited to the JavaScript APIs in a browser. Furthermore, web ex-
tensions have stronger restrictions and may not access cookies
returned in the Set-Cookie header or set all headers in a web re-
quest, e.g., the Referrer header is omitted. Consequently, the web
extension may not be able to exploit any IoT device in the network,
nor can it use sockets to perform service discoveries with mDNS
and SSDP. However, our PoC demonstrates that even the widely
used OpenWRT routers can be vulnerable to such attacks.

6.2.3 Device Discovery Extension Bypass. Another extension that
does not need to request permission to access the LAN is the De-
viceDiscoveryExtension (DDE). This extension enables developers
to find third-party media receivers, e.g., Google Chromecast, to
which an app may then stream content. Developers can execute
custom code in the extension to scan for media receivers using
mDNS, SSDP, or Bluetooth. By design, the extension is not affected

Figure 5: TheDeviceDiscoveryExtension (DDE) has full access
to the local network and can share all information over aUDP
socket to the host app, which is restricted by the permission.

by the iOS permission model and can access the local network and
perform Bluetooth scanning without restrictions. This behaviour is
expected and documented: “Because DDE runs in a system sand-
box, the extension doesn’t need to ask the user for local network or
Bluetooth permissions.” [10] The mentioned system sandbox should
limit the code running in it and prevent it from communicating
back to the host app. The sandbox prohibits the extension from
writing to disk. However, we find that an oversight enables the ex-
tension to use an open UDP socket in the host app as a side-channel.
Opening UDP sockets and receiving data is not prohibited by the
local networking permission (see Table 1).
Exploiting this behaviour. Figure 5 presents the basis of an attack
in which the unrestricted extension may access the LAN while the
permission prohibits the host app. Since the host app continues to
run while the extension is executed, the DDE can send any data
retrieved from the local network back to the host app using an
open UDP socket. In our PoC app, we implement two exploits: as
network access is unrestricted, we exploit threat T.1 and modify the
DNS of a TP-Link router that uses a default password. Additionally,
since mDNS service discovery is not restricted, we scan for services
in the network and send all information to the host app.
Limitations. To launch the extension, the user has to interact with
the app to initiate media streaming by tapping a system-defined
button. The button cannot be invoked in the background (see Fig. 8a
in the Appendix). When launched, the system also displays a media
receiver picker, which is identical to the AirPlay receiver picker
in the system UI. The extension’s process is killed when the user
closes the media receiver picker. Since our attack completes within
5 seconds, we are not hindered by this time limit.
Mitigation. Apple introduced the DDE to give privileged access to
the local network and Bluetooth for a limited time without granting
the app full access. Apple has already limited the DDE by disal-
lowing it from writing files to disk. Also, the media receiver picker
presented is rendered by the Springboard process, prohibiting the
host app from accessing it directly or creating screenshots. Only
the selected media receiver will be provided to the app. We propose
that Apple adds a temporary permission for the DDE. When the
user taps the button, the system displays a dialogue asking the user
if they permit access to the local network and Bluetooth to find
media receivers; this way, the user can make an informed decision.
Apple mitigated this issue after our report by blocking outgoing
UDP packets to localhost, effectively removing our side-channel.

6.2.4 watchOS Relay. The Apple Watch Operating System (OS)
shares most of its permissions with iOS but lacks the local network
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permission. Therefore, we find that a watchOS app may access any
host in the LAN. Furthermore, if the watchOS app starts an audio
session, it will gain temporary access to low-level networking APIs,
allowing the app to perform mDNS service discovery.
Exploiting this behaviour. Most watchOS apps are extensions or
companion apps to an iOS app. Therefore, both apps running on
different devices can communicate in the background using the
WatchConnectivity framework. Our adversary model uses an iOS
app accompanied by a watchOS app. By default, watchOS apps
are installed automatically on every Apple Watch paired with an
iPhone. In our PoC app, we include a watchOS companion app
that the iOS app can instruct to run an attack exploiting threats
T.1 and T.2. We can use the full network APIs while the watchOS
app performs audio playback, allowing us to exploit the router and
scan for services with mDNS.
Limitations. One limitation is that the watch app requires starting
an audio playback session to gain access to the low-level network-
ing APIs needed for mDNS [11]. However, only the Apple Watch
Series 10 has an integrated speaker, allowing audio playback. If the
attacker starts an audio playback session on another Apple Watch
model, the watch will connect to Bluetooth headphones, potentially
alerting the user. This limitation does not impact the attack against
the Wi-Fi router.
Mitigation. As the Apple Watch can perform networking similar
to iOS, it should also include the same local network permission.
We suggest porting the permission from iOS to the Apple Watch, as
Apple has already done with other permissions, such as Bluetooth.

6.2.5 Mis-definition of Local Network Access. Apple defines the
local network as any subnet associated with a broadcast-capable
network interface, e.g., the Wi-Fi or Ethernet interface [72]. This
definition includes networks using a subnet with public IP addresses,
e.g., non-RFC1918 IPv4 subnets such as 94.100.43.1/24 or non-
local IPv6 subnets such as 2001:41b8:83c:f900::/64.

Unlike our own LAN access model of Section 4.1, Apple allows
an app in a network with, e.g., subnet 192.168.1.0/24, to access
devices in other local subnets such as 192.168.2.0/24 without
requiring local network permission. We reported this to Apple,
and they replied that this is expected behaviour. However, we and
previous work [79] consider this behaviour insecure and misleading
since malicious apps can still access private devices within a user’s
home or organisation. This observation also contrasts with the PNA
standard for browsers, where the local network is defined by a range
of IP addresses instead of only the current subnet [78]. Furthermore,
Schmidt et al. [79] found that the local network permission does
not apply to the address space of a VPN configuration.
Exploiting this behaviour. A malicious app can access any local IP
address outside the device’s current subnet, e.g., if a user has both
their ISP’s router and a custom router, malicious apps connected to
one router could attack devices on the other router’s network. We
implement this attack in our PoC app: the iPhone is connected to
the subnet at 192.168.2.0/24; our app connects to a router outside
its subnet with the local IP address 192.168.1.1. We exploit threat
T.1 and change the DNS of the router.
Limitations. This attack would only work for a limited number of
network configurations. Service discovery using mDNS or SSDP is
not possible, as these protocols use fixed multicast addresses.

Mitigation. Wepropose that all local addresses defined by RFC1918
should be subject to the permission [69]. For IPv6, Apple should
extend its definition of LAN addresses to include link-local and
site-local addresses, as defined in RFC4193 [52].

6.3 Internals of the Local Network Permission
We reverse-engineered the implementation of iOS’ local network
permission and explain the details in this section. The local network
permission is deeply integrated into the system and follows a VPN-
like configuration, allowing connection- and packet-based decisions
about whether an app can access the local network.
Checking Permission. The Network framework handles all net-
working operations of an app. As an example, consider a simple
HTTP request to a LAN address. When the app sends this request
to a LAN address, the app uses the Network framework to set up
the TCP connection. Then, the Network Extension Control Protocol
(NECP) subsystem decides whether the access is granted. NECP is
integrated into the kernel and manages the access of processes to
specific interfaces. The implementation of NECP is part of Apple’s
open-source macOS kernel [13, 75].
Granting Permission. If the user has not yet decided whether LAN
access should be granted to the app in question, the UserEventAgent
process receives an Inter Process Communication (IPC) message
instructing it to ask for the user’s permission. This process then
instructs the SpringBoard (the iOS home screen) to display a per-
mission alert for requesting local network access. If the user accepts,
the nehelper process updates the configuration file to allow local
network access for this app. Once the configuration is updated,
the nesessionmanager restarts the local process with the updated
configuration, enabling the app to access the local network.

Interestingly, the logs also refer to a VPN configuration. While
NECP does not run a full VPN setup, it uses the same routing tables
to decide which IP address ranges can be accessed by which app.

7 Discussion & Related Work
This section outlines limitations of our work and compares it to
related work.

7.1 Limitations
LANShield. LANShield uses Android’s getConnectionOwnerUid
API to identify the app responsible for generated traffic. However,
for UDP packets, this API only reliably returns the sending app’s
UID while the corresponding socket remains open. If the socket
is closed immediately after sending, the UID may not be resolved,
and the sender app remains unknown. In such cases, LANShield
still notifies the user, who can infer the app based on contextual
information (e.g., foreground app). Furthermore, Android does not
support intercepting incoming connections without root access, a
limitation shared by tools like NetGuard [19].
Experiments. Around 32% (127 out of 399) apps required a valid
login to use their full functionality. Such apps were tested by ex-
ploring only the functionality accessible without logging in. Third,
the features of some apps only function in specific countries, e.g.,
local streaming or TV apps such as net.jawwy.tv.

As with all behavioural testing, our approach may yield false
negatives. Apps may access the LAN only under specific conditions,

12



LANShield: Analysing and Protecting Local Network Access on Mobile Devices Proceedings on Privacy Enhancing Technologies YYYY(X)

e.g., after account creation, not triggered during testing. However,
false positives are not possible in our study, i.e., LANShield will
never misclassify non-LAN traffic as LAN traffic.

7.2 Related Work
LAN Traffic Analysis. Reardon et al. created a framework to detect
covert channels in Android apps [77]. They found 42 Unity-based
apps using ioctl calls to get the device’s MAC address, without
holding the ACCESS_NETWORK_STATE permission. Moreover, they
found 5 apps that retrieved the MAC addresses of local devices from
the ARP cache. Accessing the ARP cache is no longer possible in
Android 10 and above [6, 46]. Girish et al. studied how local proto-
cols are used in smart homes [41]. They tested apps, comprising a
mix of IoT-specific and randomly selected apps, while being stimu-
lated with programmatically generated random user input on a test
device connected to their custom IoT test network with companion
IoT devices. The traffic generated by these apps was captured and
analysed along with the crowdsourced IoT Inspector dataset [56].
They also estimate the available entropy of passively observed local
network traffic. Hagar studied 2300 apps to determine whether they
access the LAN [53]. They found 8 apps doing ARP scans and 29
apps sending SSDP requests. Schmidt et al. studied the security
of the iOS LAN permission, analysed how users understand this
permission and automatically tested 10862 apps for LAN access.

While prior work previously examined apps accessing the LAN,
we demonstrate attack vectors for MitM and direct attacks from
Android apps on non-rooted phones. Furthermore, we implement
LANShield offering a fine-grained LAN permission on Android.
Using LANShield, wemanually test apps for LAN access, replicating
the behaviour of a regular user. Finally, evaluate the LANpermission
on iOS and find three novel bypasses.
mDNS Attacks. Although prior work explores how attackers can
establish a MitM using mDNS [16, 18, 38], our work is the first to
showcase how an attacker can establish a MitM position through
a malicious Android app. Furthermore, to the best of our knowl-
edge, our attack is the first which considers clients who terminate
conflicting resource records by sending “goodbye” messages.
Android. In 2011, Android 4.0 added the VPNService API to add
and configure a virtual network interface (TUN) [47]. Later, in 2015,
the PrivacyGuard project used this to intercept network traffic, sim-
ilarly to LANShield, to detect information leaks [81]. Razaghpanah
et al. created Haystack that also uses a virtual interface to intercept
and analyse traffic [76]. To the best of our knowledge, the Privacy-
Guard and Haystack code is not public. Le et al. created AntMonitor,
which also relies on VpnService to monitor traffic on Android [62],
but lacks IPv6 and ICMP support, which we considered essential
for LANShield. Wu et al. found that roughly 15% of Android apps
have open ports [91]. This was discovered using a crowdsourcing
app that periodically reads the proc filesystem to get a list of open
sockets. This approach no longer works on newer phones since
Android blocks access to the proc filesystem.
Defenses. Apple extended the local network permission to macOS
starting frommacOS Sequoia [12]. For browsers, there is a draft stan-
dard to protect cross-origin requests to local network resources [78].
Several researchers proposed solutions that aim to protect the LAN
and IoT devices from internal and external attackers through a new

network device, which monitors connections, identifies malicious
accesses, and blocks them based on policies [71, 80].

App-based Solutions for LAN Access Control. Soteris et al. created
HanGuard [33] in 2017, an app that coordinates with the home
router to protect against attacks from malicious apps. HanGuard
works both for Android and iOS, before iOS implemented a LAN
permission. On Android, the solution regularly checks the procfs
file system to detect ongoing TCP and UDP connections. Their mon-
itor app reports allowed connections to the home router, which will
forward or drop the packets. HanGuard provided a battery-efficient
solution for Android versions below 10, but is unfortunately no
longer compatible with newer Android releases as these block ac-
cess to the procfs file system [50]. The router must also collaborate
with the HanGuard app to allow or block connections. This requires
an updated router firmware, initial setup, and a secure communica-
tion channel between the router and the app.

NetGuard also uses a virtual interface to intercept traffic, but
cannot distinguish between LAN and Internet traffic on a per-app
basis [19]. Instead, NetGuard can only block domains globally, and
only has an option to allow LAN access globally.

LANShield provides an up-to-date implementation running on
Android 9 to 15; the latest version at the time of writing. It does
not require a specific home router, protecting any network from
malicious apps. While virtual interfaces can impact performance,
LANShield routes only blocked apps’ LAN traffic through its sink
interface, leaving other traffic unaffected.

8 Conclusion
We found that Android apps may access and even scan the local net-
work without the user’s knowledge, with some monetisation SDKs
even scanning all hosts in the network. To motivate the need for a
separate LAN permission, we demonstrate four different attacks a
malicious Android app can perform with only the Internet permis-
sion. Despite iOS’s local network permission, we found bypasses
that still grant apps LAN access.

We hope our work encourages mobile OSs, such as Android,
to add a new runtime permission which allows users to control
apps’ LAN access. Additionally, as a more fine-grained defence,
mobile operating systems should provide methods to only allow
an app to communicate with user-selected devices in the local
network. Finally, we disclosed our findings to Google during our
collaboration and are hopeful that our results will inspire them to
deploy a new local network permission to Android.

Ethics Considerations
LAN Attacks. The malicious apps in Section 3 were only installed
on our own device in a lab environment, where no other users could
be affected, i.e., all devices in the LAN were under our control.

iOS Security Analysis. All the iOS vulnerabilities were reported
to Apple. Apple has reproduced them and will address them in
upcoming updates to their operating systems.

Artifacts
All artifacts, including LANShield and PoC attack apps, can be
found on https://zenodo.org/uploads/15660194

13

https://zenodo.org/uploads/15660194


Proceedings on Privacy Enhancing Technologies YYYY(X) Beitis, Robben et al.

Acknowledgments
This work is supported by the NLnet Foundation, Google’s Android
Security and PrIvacy REsearch (ASPIRE) Award, the Cybersecurity
Research Programme Flanders, the Research Fund KU Leuven, and
the German Federal Ministry of Education and Research and the
Hessian State Ministry for Higher Education, Research, and the
Arts within their joint support of the National Research Center for
Applied Cybersecurity ATHENE.

The researchers used GPT-4o and Grammarly to correct gram-
matical errors and typographical errors across the entire paper.

References
[1] 1999. Benchmarking Methodology for Network Interconnect Devices. RFC 2544.

https://doi.org/10.17487/RFC2544
[2] 2008. UPnP Device Architecture 1.0. Retrieved 1 July 2024 from https:

//www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf.
[3] 2025. iPerf - The ultimate speed test tool for TCP, UDP and SCTP. Retrieved 12

May 2025 from https://iperf .fr/.
[4] 0x00string. 2015. kankuncontroller. Retrieved 24 February 2025 from https:

//github.com/0x00string/kankuncontroller/tree/master.
[5] Shivaun Albright, Paul J. Leach, Ye Gu, Yaron Y. Goland, and Ting Cai. 1999.

Simple Service Discovery Protocol/1.0. Internet-Draft draft-cai-ssdp-v1-03. Internet
Engineering Task Force. https://datatracker.ietf .org/doc/draft-cai-ssdp-v1/03/
Work in Progress.

[6] Network Analyzer. 2023. Privacy restrictions in Android 10. Retrieved 30
June 2024 from https://support.netanalyzer-an.techet.net/article/153-privacy-
restrictions-in-android-q.

[7] Apple. 2002. Bonjour. Retrieved 5 January 2025 from https:
//developer.apple.com/library/archive/documentation/Cocoa/Conceptual/
NetServices/Introduction.html.

[8] Apple. 2023. If an App Would like to Connect to Devices on Your Local Network.
Retrieved 20 August 2024 from https://support.apple.com/en-us/102229.

[9] Apple. 2024. App Extensions. Retrieved 13 August 2024 from https://
developer.apple.com/app-extensions/.

[10] Apple. 2024. DeviceDiscoveryExtension: Stream media to a third-party device
that a user selects in a system menu. Retrieved 30 June 2024 from https://
developer.apple.com/documentation/devicediscoveryextension.

[11] Apple. 2024. TN3135: Low-level Networking on watchOS. Retrieved 5 November
2024 from https://developer.apple.com/documentation/technotes/tn3135-low-
level-networking-on-watchos.

[12] Apple. 2024. What’s new in privacy. Retrieved 30 June 2024 from https://
developer.apple.com/videos/play/wwdc2022/10096/.

[13] Apple. 2024. XNU Kernel. https://github.com/apple-oss-distributions/xnu
[14] Apple. 2025. addUserScript(). Retrieved 9 January 2025 from

https://developer.apple.com/documentation/webkit/wkusercontentcontroller/
adduserscript(_:) .

[15] Jari Arkko, Michelle Cotton, and Leo Vegoda. 2010. IPv4 Address Blocks Reserved
for Documentation. RFC 5737. https://doi.org/10.17487/RFC5737

[16] Antonios Atlasis. 2017. An Attack-in-Depth Analysis of multicast DNS and DNS
Service Discovery. Retrieved 26 December 2024 from https://github.com/aatlasis/
Pholus.

[17] Avahi. 2004. Avahi. Retrieved 5 January 2025 from https://avahi.org.
[18] Xiaolong Bai, Luyi Xing, Nan Zhang, XiaoFeng Wang, Xiaojing Liao, Tongxin

Li, and Shi-Min Hu. 2016. Staying Secure and Unprepared: Understanding
and Mitigating the Security Risks of Apple ZeroConf . In 2016 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA,
655–674. https://doi.org/10.1109/SP.2016.45

[19] Marcel Bokhorst. 2024. NetGuard: Frequently Asked Questions (FAQ). Retrieved
20 July 2024 from https://github.com/M66B/NetGuard/blob/master/FAQ.md.

[20] Ron Bonica, Michelle Cotton, Brian Haberman, and Leo Vegoda. 2017. Updates to
the Special-Purpose IP Address Registries. RFC 8190. https://doi.org/10.17487/
RFC8190

[21] bponury. 2011. DroidSheep : ARP-Spoofing App for Android. Retrieved 10
December 2024 from https://xdaforums.com/t/app-wifikill-disable-internet-for-
network-hoggers-android-4-x.1282900/.

[22] bponury. 2011. WifiKill - disable internet for network hoggers (Android 4.x).
Retrieved 10 December 2024 from https://xdaforums.com/t/app-wifikill-disable-
internet-for-network-hoggers-android-4-x.1282900/.

[23] Nikita Buchka. 2016. Switcher: Android joins the ’attack-the-router’ club. Re-
trieved 25 August 2023 from https://securelist.com/switcher-android-joins-the-
attack-the-router-club/76969/.

[24] Stuart Cheshire, Dr. Bernard D. Aboba, and Erik Guttman. 2005. Dynamic Configu-
ration of IPv4 Link-Local Addresses. RFC 3927. https://doi.org/10.17487/RFC3927

[25] Stuart Cheshire and Marc Krochmal. 2013. DNS-Based Service Discovery. RFC
6763. https://doi.org/10.17487/RFC6763

[26] Stuart Cheshire and Marc Krochmal. 2013. Multicast DNS. RFC 6762. https:
//doi.org/10.17487/RFC6762

[27] Jiska Classen, Alexander Heinrich, Robert Reith, and Matthias Hollick. 2022. Evil
Never Sleeps: WhenWireless Malware Stays On after Turning Off iPhones. In Pro-
ceedings of the 15th ACMConference on Security and Privacy inWireless and Mobile
Networks (San Antonio, TX, USA) (WiSec ’22). Association for Computing Ma-
chinery, New York, NY, USA, 146–156. https://doi.org/10.1145/3507657.3528547

[28] Michelle Cotton, Leo Vegoda, Ron Bonica, and Brian Haberman. 2013. Special-
Purpose IP Address Registries. RFC 6890. https://doi.org/10.17487/RFC6890

[29] Decimation. 2015. [Tutorial] How to use netKillUI (WiFiKill for iOS). Retrieved
10 December 2024 from https://www.reddit.com/r/jailbreak/comments/35caeg/
tutorial_how_to_use_netkillui_wifikill_for_ios/.

[30] Dr. Steve E. Deering, Robert L. Fink, Tony L. Hain, and Bob Hinden. 2000. Initial
IPv6 Sub-TLA ID Assignments. RFC 2928. https://doi.org/10.17487/RFC2928

[31] Dr. Steve E. Deering and Bob Hinden. 2003. Internet Protocol Version 6 (IPv6)
Addressing Architecture. RFC 3513. https://doi.org/10.17487/RFC3513

[32] Dr. Steve E. Deering and Bob Hinden. 2006. IP Version 6 Addressing Architecture.
RFC 4291. https://doi.org/10.17487/RFC4291

[33] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, XiaoFeng Wang, Carl A. Gunter,
Xiaoyong Zhou, and Michael Grace. 2017. HanGuard: SDN-driven protection of
smart home WiFi devices from malicious mobile apps. In Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Networks (Boston,
Massachusetts) (WiSec ’17). Association for Computing Machinery, New York,
NY, USA, 122–133. https://doi.org/10.1145/3098243.3098251

[34] Diego Dugatkin, Ahmed Hamza, Gunter Van de Velde, and Chip Popoviciu. 2008.
IPv6 Benchmarking Methodology for Network Interconnect Devices. RFC 5180.
https://doi.org/10.17487/RFC5180

[35] Frank Ebbers. 2023. A Large-Scale Analysis of IoT Firmware Version Distribution
in theWild . IEEE Transactions on Software Engineering 49, 02 (Feb. 2023), 816–830.
https://doi.org/10.1109/TSE.2022.3163969

[36] EdgaBimbam. 2012. Network Spoofer *trick your friends*. Retrieved 10 De-
cember 2024 from https://xdaforums.com/t/app-network-spoofer-trick-your-
friends.1692921/.

[37] emeykey. 2021. dSploit ArpSpoof forked module for Android 6-11. Retrieved 10
December 2024 from https://github.com/emeykey/arpspoof-android.

[38] Dhia Farrah and Marc Dacier. 2021. Zero Conf Protocols and their numerous
Man in the Middle (MITM) Attacks . In 2021 IEEE Security and Privacy Workshops
(SPW). IEEE Computer Society, Los Alamitos, CA, USA, 410–421. https://doi.org/
10.1109/SPW53761.2021.00060

[39] Csaba Fitzl and Wojciech Reguła. 2024. The Final Chapter: Unlimited Ways to
Bypass Your macOS Privacy Mechanisms. Retrieved 5 November 2024 from
https://www.youtube.com/watch?v=Px3uzzQxdag.

[40] Hosein Ghanbari. 2014. networkKill-IOS. Retrieved 10 December 2024 from
https://github.com/hosein-gh/networkKill-IOS.

[41] Aniketh Girish, Tianrui Hu, Vijay Prakash, Daniel J. Dubois, Srdjan Matic,
Danny Yuxing Huang, Serge Egelman, Joel Reardon, Juan Tapiador, David
Choffnes, and Narseo Vallina-Rodriguez. 2023. In the Room Where It Hap-
pens: Characterizing Local Communication and Threats in Smart Homes. In
Proceedings of the 2023 ACM on Internet Measurement Conference (Montreal QC,
Canada) (IMC ’23). Association for Computing Machinery, New York, NY, USA,
437–456. https://doi.org/10.1145/3618257.3624830

[42] Google. 2023. UI/Application Exerciser Monkey. Retrieved 3 August 2023 from
https://developer.android.com/studio/test/other-testing-tools/monkey.

[43] Google. 2024. Declare Permissions | Chrome Extensions. Retrieved 13 August 2024
from https://developer.chrome.com/docs/extensions/develop/concepts/declare-
permissions.

[44] Google. 2024. DNS Resolver. Retrieved 3 January 2025 from https://
source.android.com/docs/core/ota/modular-system/dns-resolver.

[45] Google. 2024. Permissions on Android. Retrieved 9 January 2025 from https:
//developer.android.com/guide/topics/permissions/overview.

[46] Google. 2024. Privacy changes in Android 10. Retrieved 30 June 2024
from https://developer.android.com/about/versions/10/privacy/changes#proc-
net-filesystem.

[47] Google. 2024. VPN | Connectivity. Retrieved 2 July 2024 from https://
developer.android.com/develop/connectivity/vpn.

[48] Google. 2024. WifiManager.MulticastLock. Retrieved 23 January
2024 from https://developer.android.com/reference/android/net/wifi/
WifiManager.MulticastLock.html.

[49] Google. 2025. Power Profiler. Retrieved 12 May 2025 from https://
developer.android.com/studio/profile/power-profiler.

[50] Google. 2025. Privacy Changes in Android 10. Retrieved 6 May 2025 from
https://developer.android.com/about/versions/10/privacy/changes.

[51] Google. 2025. WifiManager. Retrieved 18 February 2025
from https://developer.android.com/reference/android/net/wifi/
WifiManager#getScanResults() .

14

https://doi.org/10.17487/RFC2544
https://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
https://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0.pdf
https://iperf.fr/
https://github.com/0x00string/kankuncontroller/tree/master
https://github.com/0x00string/kankuncontroller/tree/master
https://datatracker.ietf.org/doc/draft-cai-ssdp-v1/03/
https://support.netanalyzer-an.techet.net/article/153-privacy-restrictions-in-android-q
https://support.netanalyzer-an.techet.net/article/153-privacy-restrictions-in-android-q
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://support.apple.com/en-us/102229
https://developer.apple.com/app-extensions/
https://developer.apple.com/app-extensions/
https://developer.apple.com/documentation/devicediscoveryextension
https://developer.apple.com/documentation/devicediscoveryextension
https://developer.apple.com/documentation/technotes/tn3135-low-level-networking-on-watchos
https://developer.apple.com/documentation/technotes/tn3135-low-level-networking-on-watchos
https://developer.apple.com/videos/play/wwdc2022/10096/
https://developer.apple.com/videos/play/wwdc2022/10096/
https://github.com/apple-oss-distributions/xnu
https://developer.apple.com/documentation/webkit/wkusercontentcontroller/adduserscript(_:)
https://developer.apple.com/documentation/webkit/wkusercontentcontroller/adduserscript(_:)
https://doi.org/10.17487/RFC5737
https://github.com/aatlasis/Pholus
https://github.com/aatlasis/Pholus
https://avahi.org
https://doi.org/10.1109/SP.2016.45
https://github.com/M66B/NetGuard/blob/master/FAQ.md
https://doi.org/10.17487/RFC8190
https://doi.org/10.17487/RFC8190
https://xdaforums.com/t/app-wifikill-disable-internet-for-network-hoggers-android-4-x.1282900/
https://xdaforums.com/t/app-wifikill-disable-internet-for-network-hoggers-android-4-x.1282900/
https://xdaforums.com/t/app-wifikill-disable-internet-for-network-hoggers-android-4-x.1282900/
https://xdaforums.com/t/app-wifikill-disable-internet-for-network-hoggers-android-4-x.1282900/
https://securelist.com/switcher-android-joins-the-attack-the-router-club/76969/
https://securelist.com/switcher-android-joins-the-attack-the-router-club/76969/
https://doi.org/10.17487/RFC3927
https://doi.org/10.17487/RFC6763
https://doi.org/10.17487/RFC6762
https://doi.org/10.17487/RFC6762
https://doi.org/10.1145/3507657.3528547
https://doi.org/10.17487/RFC6890
https://www.reddit.com/r/jailbreak/comments/35caeg/tutorial_how_to_use_netkillui_wifikill_for_ios/
https://www.reddit.com/r/jailbreak/comments/35caeg/tutorial_how_to_use_netkillui_wifikill_for_ios/
https://doi.org/10.17487/RFC2928
https://doi.org/10.17487/RFC3513
https://doi.org/10.17487/RFC4291
https://doi.org/10.1145/3098243.3098251
https://doi.org/10.17487/RFC5180
https://doi.org/10.1109/TSE.2022.3163969
https://xdaforums.com/t/app-network-spoofer-trick-your-friends.1692921/
https://xdaforums.com/t/app-network-spoofer-trick-your-friends.1692921/
https://github.com/emeykey/arpspoof-android
https://doi.org/10.1109/SPW53761.2021.00060
https://doi.org/10.1109/SPW53761.2021.00060
https://www.youtube.com/watch?v=Px3uzzQxdag
https://github.com/hosein-gh/networkKill-IOS
https://doi.org/10.1145/3618257.3624830
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.chrome.com/docs/extensions/develop/concepts/declare-permissions
https://developer.chrome.com/docs/extensions/develop/concepts/declare-permissions
https://source.android.com/docs/core/ota/modular-system/dns-resolver
https://source.android.com/docs/core/ota/modular-system/dns-resolver
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/about/versions/10/privacy/changes#proc-net-filesystem
https://developer.android.com/about/versions/10/privacy/changes#proc-net-filesystem
https://developer.android.com/develop/connectivity/vpn
https://developer.android.com/develop/connectivity/vpn
https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock.html
https://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock.html
https://developer.android.com/studio/profile/power-profiler
https://developer.android.com/studio/profile/power-profiler
https://developer.android.com/about/versions/10/privacy/changes
https://developer.android.com/reference/android/net/wifi/WifiManager#getScanResults()
https://developer.android.com/reference/android/net/wifi/WifiManager#getScanResults()


LANShield: Analysing and Protecting Local Network Access on Mobile Devices Proceedings on Privacy Enhancing Technologies YYYY(X)

[52] Brian Haberman and Bob Hinden. 2005. Unique Local IPv6 Unicast Addresses.
RFC 4193. https://doi.org/10.17487/RFC4193

[53] Paul Theodor Hager. 2022. Curious Apps: Large-scale Detection of Apps Scanning
Your Local Network. Bachelor’s Thesis. Technische Universität Wien.

[54] Alexander Heinrich, Milan Stute, Tim Kornhuber, and Matthias Hollick. 2021.
Who Can Find My Devices? Security and Privacy of Apple’s Crowd-Sourced
Bluetooth Location Tracking System. In Proceedings on Privacy Enhancing Tech-
nologies, Vol. 2021 (3). 227–245. https://doi.org/10.2478/popets-2021-0045

[55] Nick Hilliard and David Freedman. 2012. A Discard Prefix for IPv6. RFC 6666.
https://doi.org/10.17487/RFC6666

[56] Danny Yuxing Huang, Noah Apthorpe, Frank Li, Gunes Acar, and Nick Feamster.
2020. IoT Inspector: Crowdsourcing Labeled Network Traffic from Smart Home
Devices at Scale. 4, 2, Article 46 (June 2020), 21 pages. https://doi.org/10.1145/
3397333

[57] Christian Huitema. 2001. An Anycast Prefix for 6to4 Relay Routers. RFC 3068.
https://doi.org/10.17487/RFC3068

[58] ChristianHuitema and Brian E. Carpenter. 2004. Deprecating Site Local Addresses.
RFC 3879. https://doi.org/10.17487/RFC3879

[59] Geoff Huston, Anne Lord, and Dr. Philip F. Smith. 2004. IPv6 Address Prefix
Reserved for Documentation. RFC 3849. https://doi.org/10.17487/RFC3849

[60] Kaspersky. 2023. Roaming Mantis implements new DNS changer in its malicious
mobile app in 2022. Retrieved 29 June 2023 from https://securelist.com/roaming-
mantis-dns-changer-in-malicious-mobile-app/108464/.

[61] Suresh Krishnan. 2024. SRv6 Segment Identifiers in the IPv6 Addressing Architecture.
Internet-Draft draft-ietf-6man-sids-06. Internet Engineering Task Force. https:
//datatracker.ietf .org/doc/draft-ietf-6man-sids/06/ Work in Progress.

[62] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas Gjoka, and
Athina Markopoulou. 2015. AntMonitor: A System for Monitoring from Mobile
Devices. In Proceedings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing
and Crowdsharing of Big (Internet) Data (London, United Kingdom) (C2B(1)D
’15). Association for Computing Machinery, New York, NY, USA, 15–20. https:
//doi.org/10.1145/2787394.2787396

[63] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas Gjoka, and
Athina Markopoulou. 2015. AntMonitor: A System for Monitoring from Mobile
Devices (C2B(1)D ’15). Association for Computing Machinery, New York, NY,
USA, 15–20. https://doi.org/10.1145/2787394.2787396

[64] Chia-Chi Lin, Hongyang Li, Xiao-yong Zhou, and XiaoFeng Wang. 2014. Screen-
milker: How to Milk Your Android Screen for Secrets. In Network and Distributed
Systems Security (NDSS) Symposium. https://doi.org/10.14722/ndss.2014.23049

[65] Wouter Louman, Mitchell Vernee, Danique de Bruijn, Babette van’t Riet, and
Hani Alers. 2021. Mobile Firewall applications: An analysis of usability and
effectiveness. In 2021 IEEE 5th International Conference on Cryptography, Security
and Privacy (CSP). IEEE Computer Society, Los Alamitos, CA, USA, 148–152.
https://doi.org/10.1109/CSP51677.2021.9357491

[66] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich. 2021.
The Android Platform Security Model. ACM Trans. Priv. Secur. 24, 3, Article 19
(Aug. 2021), 35 pages. https://doi.org/10.1145/3448609

[67] midnightchips. 2019. [Release] Harpy: the best way to control your network. Re-
trieved 10 December 2024 from https://www.reddit.com/r/jailbreak/comments/
aep7xo/release_harpy_the_best_way_to_control_your_network/.

[68] Monedata. 2024. Setup SDK. Retrieved 26 August 2024 from https:
//web.archive.org/web/20240826014841/https://jei6f891.docs.monedata.io/
android/setup-monedata-sdk.

[69] Robert Moskowitz, Daniel Karrenberg, Yakov Rekhter, Eliot Lear, and Geert Jan
de Groot. 1996. Address Allocation for Private Internets. RFC 1918. https:
//doi.org/10.17487/RFC1918

[70] Mozilla. 2023. Web APIs | MDN. Retrieved 26 August 2024 from https:
//developer.mozilla.org/en-US/docs/Web/API.

[71] Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi Gharakheili, Vijay Sivaraman,
and Roksana Boreli. 2014. An experimental study of security and privacy risks
with emerging household appliances. In 2014 IEEE Conference on Communications
and Network Security. 79–84. https://doi.org/10.1109/CNS.2014.6997469

[72] Quinn “The Eskimo!”. 2020. Local Network Privacy FAQ-1 | Apple Developer
Forums. Retrieved 20 August 2024 from https://developer.apple.com/forums/
thread/663848.

[73] Quinn “The Eskimo!”. 2020. Local Network Privacy FAQ-2 | Apple Developer
Forums. Retrieved 13 August 2024 from https://developer.apple.com/forums/
thread/663874.

[74] Quinn “The Eskimo!”. 2020. Local Network Privacy FAQ-7 | Apple Developer
Forums. Retrieved 13 August 2024 from https://developer.apple.com/forums/
thread/663813.

[75] Quinn “The Eskimo!”. 2023. A Peek Behind the NECP Curtain | Apple Developer
Forums. Retrieved 20 August 2024 from https://developer.apple.com/forums/
thread/725715.

[76] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian
Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson. 2015. Haystack: In situ
mobile traffic analysis in user space. arXiv (2015), 1–13. https://doi.org/10.48550/
arXiv.1510.01419

[77] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 2019. 50 Ways to Leak Your Data: An Exploration
of Apps’ Circumvention of the Android Permissions System. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
603–620. https://www.usenix.org/conference/usenixsecurity19/presentation/
reardon

[78] Titouan Rigoudy and Mike West. 2024. Private Network Access - Draft Com-
munity Group Repor. Retrieved 7 July 2024 from https://wicg.github.io/private-
network-access/.

[79] David Schmidt, Alexander Ponticello, Magdalena Steinböck, Katharina Kromb-
holz, and Martina Lindorfer. 2025. Analyzing the iOS Local Network Permission
from a Technical and User Perspective . In 2025 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 4229–4247.
https://doi.org/10.1109/SP61157.2025.00045

[80] Vijay Sivaraman, Hassan Habibi Gharakheili, Arun Vishwanath, Roksana Boreli,
and Olivier Mehani. 2015. Network-level security and privacy control for
smart-home IoT devices . In 2015 IEEE 11th International Conference on Wire-
less and Mobile Computing, Networking and Communications (WiMob). IEEE
Computer Society, Los Alamitos, CA, USA, 163–167. https://doi.org/10.1109/
WiMOB.2015.7347956

[81] Yihang Song and Urs Hengartner. 2015. PrivacyGuard: A VPN-based Platform
to Detect Information Leakage on Android Devices (SPSM ’15). Association for
Computing Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/
2808117.2808120

[82] George Stagg. 2017. Packages. Retrieved 10 Decem-
ber 2024 from https://github.com/georgestagg/repo/blob/
8110d42d11badcb57925a5554e7bb62429a51a2f/Packages.

[83] Startup Bubble News. 2024. Is Data Monetisation the Future of Mobile App Indus-
try Revenue Streams? Retrieved 1 July 2024 from https://startupbubble.news/is-
data-monetisation-the-future-of-mobile-app-industry-revenue-streams/.

[84] Milan Stute, Alexander Heinrich, Jannik Lorenz, and Matthias Hollick. 2021. Dis-
rupting Continuity of Apple’s Wireless Ecosystem Security: New Tracking, DoS,
and MitM Attacks on iOS and macOS Through Bluetooth Low Energy, AWDL,
and Wi-Fi. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 3917–3934. https://www.usenix.org/conference/usenixsecurity21/
presentation/stute

[85] The European Parliament and the Council of the European Union. 2022. Regula-
tion (EU) 2022/1925 of the European Parliament and of the Council of 14 Septem-
ber 2022 on Contestable and Fair Markets in the Digital Sector and Amending
Directives (EU) 2019/1937 and (EU) 2020/1828 (Digital Markets Act) (Text with
EEA Relevance). Retrieved 3 July 2024 from http://data.europa.eu/eli/reg/2022/
1925/oj/eng.

[86] The WebKit Open Source Project. 2024. WebKit/WebKit. Retrieved 5 November
2024 from https://github.com/WebKit/WebKit.

[87] Ole Trøan and Brian E. Carpenter. 2015. Deprecating the Anycast Prefix for 6to4
Relay Routers. RFC 7526. https://doi.org/10.17487/RFC7526

[88] Umlaut. 2023. Optimize your customer experience with network insights
from umlaut. Retrieved 1 July 2024 from https://www.snowflake.com/wp-
content/uploads/2023/02/optimize-your-customer-experience-with-network-
insights-from-umlaut.pdf.

[89] David Ventura. 2024. cam-reverse. Retrieved 27 February 2025 from https:
//github.com/DavidVentura/cam-reverse.

[90] Bill Woodcock and Bill Manning. 2000. Multicast Domain Name Service. Internet-
Draft draft-manning-dnsext-mdns-00. Internet Engineering Task Force. https:
//datatracker.ietf .org/doc/draft-manning-dnsext-mdns/00/ Work in Progress.

[91] Daoyuan Wu, Debin Gao, Rocky KC Chang, En He, Eric KT Cheng, and Robert H
Deng. 2019. Understanding open ports in Android applications: Discovery, di-
agnosis, and security assessment. In Network and Distributed Systems Security
(NDSS) Symposium. https://doi.org/10.14722/ndss.2019.23171

15

https://doi.org/10.17487/RFC4193
https://doi.org/10.2478/popets-2021-0045
https://doi.org/10.17487/RFC6666
https://doi.org/10.1145/3397333
https://doi.org/10.1145/3397333
https://doi.org/10.17487/RFC3068
https://doi.org/10.17487/RFC3879
https://doi.org/10.17487/RFC3849
https://securelist.com/roaming-mantis-dns-changer-in-malicious-mobile-app/108464/
https://securelist.com/roaming-mantis-dns-changer-in-malicious-mobile-app/108464/
https://datatracker.ietf.org/doc/draft-ietf-6man-sids/06/
https://datatracker.ietf.org/doc/draft-ietf-6man-sids/06/
https://doi.org/10.1145/2787394.2787396
https://doi.org/10.1145/2787394.2787396
https://doi.org/10.1145/2787394.2787396
https://doi.org/10.14722/ndss.2014.23049
https://doi.org/10.1109/CSP51677.2021.9357491
https://doi.org/10.1145/3448609
https://www.reddit.com/r/jailbreak/comments/aep7xo/release_harpy_the_best_way_to_control_your_network/
https://www.reddit.com/r/jailbreak/comments/aep7xo/release_harpy_the_best_way_to_control_your_network/
https://web.archive.org/web/20240826014841/https://jei6f891.docs.monedata.io/android/setup-monedata-sdk
https://web.archive.org/web/20240826014841/https://jei6f891.docs.monedata.io/android/setup-monedata-sdk
https://web.archive.org/web/20240826014841/https://jei6f891.docs.monedata.io/android/setup-monedata-sdk
https://doi.org/10.17487/RFC1918
https://doi.org/10.17487/RFC1918
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://doi.org/10.1109/CNS.2014.6997469
https://developer.apple.com/forums/thread/663848
https://developer.apple.com/forums/thread/663848
https://developer.apple.com/forums/thread/663874
https://developer.apple.com/forums/thread/663874
https://developer.apple.com/forums/thread/663813
https://developer.apple.com/forums/thread/663813
https://developer.apple.com/forums/thread/725715
https://developer.apple.com/forums/thread/725715
https://doi.org/10.48550/arXiv.1510.01419
https://doi.org/10.48550/arXiv.1510.01419
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://wicg.github.io/private-network-access/
https://wicg.github.io/private-network-access/
https://doi.org/10.1109/SP61157.2025.00045
https://doi.org/10.1109/WiMOB.2015.7347956
https://doi.org/10.1109/WiMOB.2015.7347956
https://doi.org/10.1145/2808117.2808120
https://doi.org/10.1145/2808117.2808120
https://github.com/georgestagg/repo/blob/8110d42d11badcb57925a5554e7bb62429a51a2f/Packages
https://github.com/georgestagg/repo/blob/8110d42d11badcb57925a5554e7bb62429a51a2f/Packages
https://startupbubble.news/is-data-monetisation-the-future-of-mobile-app-industry-revenue-streams/
https://startupbubble.news/is-data-monetisation-the-future-of-mobile-app-industry-revenue-streams/
https://www.usenix.org/conference/usenixsecurity21/presentation/stute
https://www.usenix.org/conference/usenixsecurity21/presentation/stute
http://data.europa.eu/eli/reg/2022/1925/oj/eng
http://data.europa.eu/eli/reg/2022/1925/oj/eng
https://github.com/WebKit/WebKit
https://doi.org/10.17487/RFC7526
https://www.snowflake.com/wp-content/uploads/2023/02/optimize-your-customer-experience-with-network-insights-from-umlaut.pdf
https://www.snowflake.com/wp-content/uploads/2023/02/optimize-your-customer-experience-with-network-insights-from-umlaut.pdf
https://www.snowflake.com/wp-content/uploads/2023/02/optimize-your-customer-experience-with-network-insights-from-umlaut.pdf
https://github.com/DavidVentura/cam-reverse
https://github.com/DavidVentura/cam-reverse
https://datatracker.ietf.org/doc/draft-manning-dnsext-mdns/00/
https://datatracker.ietf.org/doc/draft-manning-dnsext-mdns/00/
https://doi.org/10.14722/ndss.2019.23171


Proceedings on Privacy Enhancing Technologies YYYY(X) Beitis, Robben et al.

A Appendix

Figure 6: Notification shown to the user when an app tries to
access the LAN for the first time. By pressing block or allow,
the user can configure whether LAN traffic should be allowed
or blocked for that specific app.

Table 3: Evaluated Test-Cases for LAN access on iOS without
user granted permission.

Test-Case Exploitable OS version

Developer APIs

NSURLSession
(HTTP Request) ✗ 17.5.1

NWBrowser
(mDNS service discovery) ✗ 17.5.1

WKWebView
(WebView for web browsing) ✓ 17.5.1

Low-level socket connection ✗ 17.5.1
SSDP ✗ 17.5.1

Apple Watch

NSURLSession
(HTTP Request) ✓ 10.5

NWBrowser
(mDNS service discovery) ✓ 10.0

Low-level socket connection ∼1 10.5
SSDP ∼1 10.5

App Extensions

Action Extension ✗ 17.5.1
App Intents Extension ✗ 17.5.1
Device Discovery Extension ✓ 17.5.1
Keyboard Extension ✗ 17.5.1
Matter ✗ 17.5.1
Safari Web Extension ✓ 17.5.1

1Depends on if the app is performing audio streaming. Low-level networking is only
allowed for audio streaming.

Table 4: Non-global routable subnets monitored by LAN-
Shield.

Address Range Description Type

10.0.0.0/8 Private-Use Local
172.16.0.0/12 Private-Use Local
192.168.0.0/16 Private-Use Local
0.0.0.0/8 “This network” Private
169.254.0.0/16 Link-Local Local
192.0.0.0/24 IETF Protocol Assignments Private
192.0.2.0/24 Documentation Private
192.88.99.0/24 6to4 Relay Anycast (Deprecated) Private
198.18.0.0/15 Benchmarking Private
198.51.100.0/24 Documentation Private
203.0.113.0/24 Documentation Private
224.0.0.0/4 Multicast Private
255.255.255.255/32 Broadcast Private
240.0.0.0/4 Multicast Private

100::/64 Discard-Only Address Block Private
2001:2::/32 Benchmarking Private
2001:db8::/32 Documentation Private
5f00::/16 Segment Routing SIDs Private
fc00::/7 Unique-Local Local
fe80::/10 Link-Local Unicast Local
fec0::/10 Site-local addresses Local
ff00::/8 Multicast Private
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(a) The user can activate LAN-
Shield by enabling the slider.

(b) Overview of LAN traffic de-
tected by LANShield. By click-
ing on an entry, the user can
view details for a specific app.

Figure 7: Screenshots of the LANShield app.

(a) The user must tap the cir-
cled button to initiate the dis-
covery, which will execute the
malicious extension.

(b) Device picker shown to the
user. The extension executes
as long as the picker is visible.

Figure 8: Screenshots of the sample app for a DeviceDiscoveryExtension (DDE).
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Figure 9: Battery Consumption comparison

Table 5: A summary of the results of the manual analyses and the impact of privacy policies on LAN behaviour as discussed
in 5.2. Where two values are shown separated by a slash (/), the former value represents the number of applications that
unexpectedly accessed the LAN and the latter the number of applications that were expected to access the LAN.

Random Most Downloaded Multicast Umlaut IPv6 Totals

Total number of apps 100 100 100 100 13 413
Available apps 99 99 94 96 11 399

General LAN access patterns

LAN access detected 5 4 43 67 5 124
Unexpected LAN access 4 2 24 57 2 89
Full network scan 0 / 0 1 / 0 0 / 2 22 / 4 1 / 3 24 / 9
Background LAN access 1 / 0 1 / 0 4 / 1 10 / 1 0 / 0 16 / 2

Impact of Privacy Policies on LAN Behaviour

LAN access before accepting any privacy policy 4 / 0 1 / 0 22 / 10 53 / 8 2 / 0 82 / 18
LAN access detected, and privacy policy prompt shown 0 / 1 0 / 0 5 / 4 36 / 6 1 / 1 42 / 12
LAN access only after accepting privacy policy 0 / 0 0 / 0 0 / 3 1 / 0 0 / 0 1 / 3
LAN access behaviour changed upon declining privacy pol-
icy 0 / 0 0 / 0 2 / 1 9 / 0 0 / 0 11 / 1

App unusable without accepting privacy policy 0 / 1 0 / 0 2 / 2 17 / 4 0 / 0 19 / 7

Impact of Runtime Permission on LAN Behaviour

Runtime permissions requested 2 / 0 1 / 2 11 / 7 45 / 7 1 / 3 60 / 19
LAN access only after granting permissions 0 / 0 0 / 1 0 / 4 2 / 0 0 / 0 2 / 5
LAN access behaviour changed upon denying runtime per-
missions 2 / 0 0 / 0 12 / 4 16 / 0 0 / 2 30 / 6
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Table 6: Comparison of LAN access and sweep scanning detection using automated and human-guided testing.

Category LAN Access LAN Scanning

Automated Human Only A Only H Automated Human Only A Only H

Random 1 5 0 4 1 0 1 0
Most downloaded 4 4 3 3 1 1 0 0
Multicast 38 43 6 11 5 2 4 1
Umlaut 70 67 12 9 30 26 18 14
IPv6 1 5 0 4 0 4 0 4

Total 114 124 21 31 37 33 23 19
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