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Abstract

In the current digital age more and more data is being collected, yet it’s
unclear how to assure adequate privacy. The question of how to analyze
large amounts of data while preserving privacy now prevails more than ever.
In the course of history there have been many failed attempts, showing that
reasoning about privacy is fraught with pitfalls. This caused an increased
interest in a mathematically robust definition of privacy.

We will prove that absolute disclosure prevention is impossible. In other
words, a person that gains access to a database can always breach the privacy
of an individual. This motivated the move to assuring relative disclosure
prevention. One of the most promising definitions in this area is differential
privacy. It addresses all the currently known attacks, has plenty of practical
implementations, and knows many extensions that make it applicable in a
wide range of situations.

Networked data also poses challenging privacy issues. Both active and
passive attacks, where the underlying structure of the network is used to
de-anonymize individuals, are discussed in detail. Degree anonymization
and algorithms to create a degree anonymous graphs will also be given. Al-
though still an active research topic, privacy of networked data is considered
increasingly important given the rise of social media.



Preface

This thesis started as a custom proposal to study security, and in particular
privacy, from a theoretic point of view. What started by reading a research
article on the foundation of private data analysis quickly turned into a broad
subject covering many aspects of privacy in databases.

My deepest gratitude goes to my promoter, Prof. dr. Jan Van den
Bussche, for making time in his already full schedule to help me success-
fully complete this work. During our rare but intense meetings he provided
invaluable feedback and insights. Often I was critical at first, but once he
completed the explanation of his interpretation, my understanding of the
matter increased significantly and broadened my point of view. Even after
a meeting he would continue to spend time on finding a more sound proof,
and once found I would receive an e-mail late at night explaining his findings.
I’m very thankful for his indispensable help.

Finally, I would like to thank my parents and brothers, whose support
during the more stressful moments has been invaluable.

1



Contents

I Foundations of Privacy 7

1 Introduction 8
1.1 What is Privacy? . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Tensions in Releasing Data . . . . . . . . . . . . . . . . . . . 9

1.2.1 Preference for Accuracy . . . . . . . . . . . . . . . . . 10
1.2.2 Preference for Anonymity . . . . . . . . . . . . . . . . 10
1.2.3 Balance between Accuracy and Anonymity . . . . . . 11

1.3 Information Age . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Guarantees of Privacy . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Statistical Databases . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Genotypes and Phenotypes (dbGaP) . . . . . . . . . . 13
1.5.2 Internet Usage . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Models for Information Flow . . . . . . . . . . . . . . . . . . 14
1.6.1 Interactive vs. Non-Interactive . . . . . . . . . . . . . 14
1.6.2 Information Flow . . . . . . . . . . . . . . . . . . . . . 16

1.7 What About Cryptography? . . . . . . . . . . . . . . . . . . . 17
1.7.1 Secure Function Evaluation . . . . . . . . . . . . . . . 17

2 Probability Theory 18
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Conditional Probability . . . . . . . . . . . . . . . . . 20
2.1.2 Discrete Variables . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Continuous Variables . . . . . . . . . . . . . . . . . . . 22
2.1.4 Transformation of a Random Variable . . . . . . . . . 23
2.1.5 Linearity of Expectation . . . . . . . . . . . . . . . . . 24

2.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Self-information . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Min-entropy . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Laplace distribution . . . . . . . . . . . . . . . . . . . . . . . 27

2



2.4 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Boole’s inequality . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Markov Bound . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Hoeffdings’ Inequality . . . . . . . . . . . . . . . . . . 29

2.5 Probabilistic Turing Machine . . . . . . . . . . . . . . . . . . 30
2.6 Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 History 34
3.1 Previous Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 The AOL Search Fiasco . . . . . . . . . . . . . . . . . 34
3.1.2 The HMO records . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Netflix . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Kaggle . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Previous Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 K-anonymity and Variants . . . . . . . . . . . . . . . . . . . . 43

3.3.1 K-anonymity . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 L-diversity . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 T-closeness . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Intersection Attack . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . 51

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Impossibility Result 53
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Utility vector w is fully learned . . . . . . . . . . . . . . . . . 57
4.5 Utility vector w is only partly learned . . . . . . . . . . . . . 65
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Differential Privacy 67
5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Discrete Range . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Choice of Epsilon . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Achieving Differential Privacy . . . . . . . . . . . . . . . . . . 72

3



5.5.1 Counting Queries . . . . . . . . . . . . . . . . . . . . . 72
5.5.2 General Theorem to Achieve Privacy . . . . . . . . . . 74
5.5.3 Adaptive Queries . . . . . . . . . . . . . . . . . . . . . 75
5.5.4 Histogram Queries . . . . . . . . . . . . . . . . . . . . 77

5.6 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.1 Original Algorithm . . . . . . . . . . . . . . . . . . . . 78
5.6.2 Private Algorithm . . . . . . . . . . . . . . . . . . . . 78

5.7 Median Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

II Privacy in New Settings 82

6 Extensions of Differential Privacy 83
6.1 When Noise Makes No Sense . . . . . . . . . . . . . . . . . . 83

6.1.1 An Example . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.2 The Scoring Function . . . . . . . . . . . . . . . . . . 84
6.1.3 The Privacy Mechanism . . . . . . . . . . . . . . . . . 85
6.1.4 Limitations and Future Directions . . . . . . . . . . . 87

6.2 Pan Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.2 Preliminary Definitions . . . . . . . . . . . . . . . . . 88
6.2.3 Definition of Pan Privacy . . . . . . . . . . . . . . . . 90
6.2.4 Density Estimation . . . . . . . . . . . . . . . . . . . . 91

7 Handling Network Data 97
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.1 Assuring Privacy . . . . . . . . . . . . . . . . . . . . . 99
7.2.2 Risk Assessment . . . . . . . . . . . . . . . . . . . . . 100

7.3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 102
7.3.2 Graph Properties . . . . . . . . . . . . . . . . . . . . . 103

7.4 Differential Privacy for Graphs . . . . . . . . . . . . . . . . . 106
7.4.1 Possible Definitions . . . . . . . . . . . . . . . . . . . . 106
7.4.2 Degree Distribution Estimation . . . . . . . . . . . . . 108

7.5 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . 108
7.5.1 Special Notations . . . . . . . . . . . . . . . . . . . . . 109

8 Naive Anonymization and an Active Attack 111
8.1 Naive Anonymization . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Active Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4 Idea Behind the Attack . . . . . . . . . . . . . . . . . . . . . 113

4



8.5 The Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.5.1 Requirements for success . . . . . . . . . . . . . . . . 114
8.5.2 Construction of the Subgraph H . . . . . . . . . . . . 114
8.5.3 Finding our Constructed Subgraph . . . . . . . . . . . 115
8.5.4 Privacy Breach . . . . . . . . . . . . . . . . . . . . . . 117

8.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.8 Detectability . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.9 As a Passive Attack . . . . . . . . . . . . . . . . . . . . . . . 127
8.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.11 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.11.1 Lemma 8.5 . . . . . . . . . . . . . . . . . . . . . . . . 127
8.11.2 Lemma 8.6 . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Degree Anonymization 131
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Anonymity Guarantees . . . . . . . . . . . . . . . . . . . . . . 131
9.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 133
9.4 Degree Anonymization . . . . . . . . . . . . . . . . . . . . . . 134

9.4.1 An Improvement . . . . . . . . . . . . . . . . . . . . . 136
9.5 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . 137

9.5.1 Realizability and ConstructGraph . . . . . . . . . . . 137
9.5.2 SuperGraph: Resemblance to the Input Graph . . . . 139
9.5.3 The Probing Scheme . . . . . . . . . . . . . . . . . . . 142
9.5.4 Relaxed Graph Construction using GreedySwap . . . 144
9.5.5 SimultaneousSwap: Edge Additions and Deletions . . 147

9.6 Experiments and Implementation: Prologue . . . . . . . . . . 148
9.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.6.2 Testing Randomized Algorithms . . . . . . . . . . . . 150

9.7 Individual Algorithm Evaluation . . . . . . . . . . . . . . . . 151
9.7.1 Degree Anonymization . . . . . . . . . . . . . . . . . . 151
9.7.2 SuperGraph using Probing Scheme . . . . . . . . . . . 152
9.7.3 GreedySwap and SimultaneousSwap . . . . . . . . . . 160

9.8 Comparison Between Algorithms . . . . . . . . . . . . . . . . 160
9.9 Relation to Link Prediction . . . . . . . . . . . . . . . . . . . 162
9.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10 Passive Attack 168
10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
10.2 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.3 Seed Identification . . . . . . . . . . . . . . . . . . . . . . . . 169

10.3.1 Individual Auxiliary Information . . . . . . . . . . . . 170
10.3.2 Combinatorial Optimization Problem . . . . . . . . . 170

10.4 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5



10.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.5.1 Anonymized Flickr Graph . . . . . . . . . . . . . . . . 174
10.5.2 Flickr and Twitter . . . . . . . . . . . . . . . . . . . . 175

10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11 Conclusion 176

6



Part I

Foundations of Privacy

7



Chapter 1
Introduction

Before delving into the details we will give a short introduction on privacy.
This is especially needed because privacy is a very broad notion and can
be tackled from multiple angles. In this chapter section What is Privacy?
and What About Cryptography? is based on the first lecture of Naor on
Foundations of Privacy [Nao10a]. Tensions in Releasing Data is based on
the PhD thesis of Sweeney [Swe01]. The remaining introductory content was
gathered from different sources when reading about—and working on—the
subject.

1.1 What is Privacy?

Before we begin it’s necessary to define what we mean by privacy. Unfortu-
nately this is an extremely overloaded term and is hard to define precisely.
The following quotes demonstrate this point:

“Privacy is a value so complex, so entangled in competing and
contradictory dimensions, so engorged with various and distinct
meanings, that I sometimes despair whether it can be usefully
addressed at all.” — Robert C. Post [Pos01]

“Privacy is the right to be let alone.”
— Samuel D. Warren and Louis D. Brandeis [WB85]

“Privacy is our concern over our accessibility to others: the ex-
tent to which we are known to others, the extent to which others
have physical access to us, and the extent to which we are the
subject of others.” — Ruth Gavison [Gav80]

“There is no one that has a good definition of what privacy
actually is.”

— Willem Debeuckelaere (translation mine) [pan11]
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Identifiable     Anonymous 

 

 

Higher Quality             Higher Privacy 

Figure 1.1: Tension between quality and privacy

“Privacy is like oxygen. We really appreciate it only when it is
gone.” — Charles J. Sykes

Especially in the current information age, privacy seems to be a fragile
concept. Huge amounts of data are being collected, people publish their
information on social networks, public surveillance information is being col-
lected (e.g., security cameras), telephone companies are required to store
certain information, internet service providers are storing sensitive informa-
tion, and so on.

In this work we will investigate if there are mathematical definitions of
privacy that make sense and can be achieved by algorithms. The advantage
of this theoretical approach is that we can prove that certain methods will
achieve a specific form of privacy. Today, the most promising definition is
differential privacy. But before we explain that further it’s important to
know the background and the history of the research being done in privacy,
as this will give you a better insight of the surrounding problems one must
take into account.

However, not every problem related to privacy is currently solved, and
there are still many open questions and problems. Whilst differential privacy
and its variants certainly have promise, the definition is not always easily
applicable and is in some cases too strong.

1.2 Tensions in Releasing Data

When releasing data there is always a tension between quality and anonym-
ity. On the one hand, releasing the full dataset provides the best quality,
while the other extreme of not releasing any data provides the best pri-
vacy [Swe01].

Consider figure 1.1: At one end we have the data that is fully identified,
and on the other end is the anonymous data derived from the original data.
When we want to provide any form of privacy, no matter how minimal, the
original data must be modified to ensure anonymity, and is thus distorted.
So when we move away from the fully identified end of the spectrum, towards
the anonymous end, the resulting data will be less useful. In particular, this
means that there are some tasks that could be computed on the original

9
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In general, the practices of data holders and related policies do not examine tasks in a vacuum. 

Instead, the combination of task and recipient together are weighed against privacy concerns. This can be 

modeled as a tug-of-war between the data holder and societal expectations for privacy on one side, and 

the recipient and the recipient’s use for the data on the other. In some cases such as public health 

legislation, the recipient’s need for the data may overshadow privacy protections, allowing the recipient 

(a public health agent) to get the original, fully identified health data. See Figure 2 in which a tug-of-war 

is modeled. The privacy constraints on the data holder versus the recipient’s demand for the data are 

graphically depicted by the sizes of the images shown. In the case illustrated, the recipient receives the 

original, fully identified data. 

 

Accuracy, qualityDistortion, anonymity

Holder

Recipient

A nn 10/2/61 02139 cardiac
A be 7/14/61 02139 canc er
A l 3 /8/61 02138 liver

 

Figure 2.  Recipient’s needs overpower privacy concerns 

 

Figure 3 demonstrates the opposite extreme outcome to that of Figure 2. In Figure 3, the data holder and 

the need to protect the confidentiality or privacy of the information overshadows the recipient and the 

recipient’s use for the data and so the data is completely suppressed and not released at all. Data collected 

and associated with national security concerns provides an example. The recipient may be a news-

reporting agent. Over time the data may eventually be declassified and a release that is deemed 

sufficiently anonymous provided to the press, but the original result is as shown in Figure 3, in which no 

data is released at all. 

 

Figure 1.2: Recipient’s needs overpower privacy concerns [Swe01]

data, but not on the released data (or the error margin of the result would
be too high to be considered useful).

From this we realize that the desired anonymity and usefulness depends
on the sensitivity of the data itself and depends on the task to which the
analyst puts the data. That is, given a particular task, there exists a point
on the continuum in Figure 1.1 where the released data is as anonymous
as possible, yet the data still remains useful for the task. This can be
characterized as a tug-of-war between the people and analysts: The people
want maximum anonymity while the analyst wants the most useful data.

1.2.1 Preference for Accuracy

There are several examples where access to accurate information is more
important than anonymity. In medical sectors this is especially true: To
provide the best care for patients the original, fully identified health infor-
mation, must be available to doctors. This is illustrated in figure 1.2.

However, note that it’s possible the information may not be released to
everyone. In our example we expect that doctors follow the Hippocratic
Oath and keep the information of patients private. Nevertheless, if we con-
sider the doctor to be the analyst, it still holds that the original information
is given and no modifications were made so ensure any form of privacy.

1.2.2 Preference for Anonymity

The opposite extreme is also a realistic scenario. In this case the need
to preserve the confidentiality of the information overshadows the possible
utility it would have for an analyst. Information related to national security
or military agencies are a good example. Here privacy and confidentiality is
achieved by not releasing the information at all.

10
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A ccuracy, qualityD istortion, anonym ity
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Figure 3 Data holder and privacy concerns overpower outside uses of the data 

 

Figure 2 and Figure 3 depict situations in which society has made explicit decisions based on the 

needs of society as a whole. But secondary uses of medical data, for example, by marketing firms, 

pharmaceutical companies, epidemiological researchers and others do not in general lend themselves to 

such an explicit itemization. Figure 4 demonstrates situations in which the needs for privacy are weighed 

equally against the demand for the data itself. In such situations, a balance should be found in which the 

data are rendered sufficiently anonymous yet remain practically useful. As an example, this situation 

often occurs with requests by researchers for patient-specific medical records in which researchers seek 

to undertake clinical outcomes, or administrative research that could possibly provide benefits to society. 

At present, decisions are primarily based on the recipient receiving the original patient data or no data at 

all. Attempts to provide something in-between typically results in data with poor anonymity protection or 

data that is overly distorted. This work seeks to find ways for the recipient to get data that has adequate 

privacy protection, therefore striking an optimal balance between privacy protection and the data’s 

fitness for a particular task.  

 

Holder

A* 1961 0213* cardiac
A* 1961 0213* cancer
A* 1961 0213* liver

Recipient

Accuracy, qualityDistortion, anonymity

 

Figure 4.  An optimal balance is needed between privacy concerns and uses of the data 

 Figure 1.3: Balance between privacy concerns and uses of the data [Swe01]

1.2.3 Balance between Accuracy and Anonymity

Finally there is the common situation where we must achieve a reasonable
balance between accuracy and anonymity. This is also were the remainder of
the work will focus on: Problems were we don’t want to release the original
data, but still want to calculate and release global statistics and properties
of the data. See figure 1.3 for a graphical representation.

Take the case of medical research where, as an example, researchers want
to search for patterns in diseases, genotype-phenotype correlations, and so
on. At the moment the analyst either receives the original patient data or no
data at all [Swe01]. This is because there are currently no guarantees that
removing certain information, or perturbing it in a certain way, provides
enough privacy for the patient. In this thesis we will seek for methods—
that can be applied in situations like these—that provably guarantee certain
definitions of privacy. If such methods can be found it’s reasonable to assume
that the anonymized data will be easier accessible by researcher.

1.3 Information Age

Currently we are in a unique period where for the first time it’s possible to
cheaply store huge amounts of data. Before the introduction of the com-
puter, gathering information was a slow process. Analyzing this data was
an even more painstaking activity. Because of these limitations the issue of
privacy was easier to tackle: Removing personal identifying attributes (e.g.,
name, address, etc.) was enough to provide a reasonable amount of privacy.
These days however this is not enough. As we will see, a combination of
so called quasi-identifiers allow one to uniquely identify an individual. For
example, in an attack where medical data and voter data were combined,
researchers were able to re-identify the medical records of the governor of
Massachusetts [Swe02]. This was possible because with only the combina-
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Figure 1.4: Will your privacy really be kept?

tion of Zip, Birth date and Gender they were able to unique identify a large
part of the population.

Social Pressure

Another interesting aspect is that society pressures you to make certain
choices that decrease your anonymity. As pointed out by Marlinspike in
his presentations at Blackhat [Mar10], the choice of owning a cell phone
for example is not necessary a real choice. At first sight the choice may be
whether or not to own a simple piece of technology. But as people begin to
use the technology more and more, they become dependent on it, and the
society around it changes. People used to make more plans while talking to
someone in real life, but nowadays this is decreasing and they rely on their
cell phone to arrange meetings.

So in our example it’s no longer just the choice of owning a cell phone,
but the choice of being part of society or not. This is a much bigger choice
than just owning a gadget and possibly a choice that lowers your privacy
and anonymity.

1.4 Guarantees of Privacy

When filling in surveys or sharing your information online, you often see
the phrase “your privacy is always kept” or similar (see image 1.4). One
has to ask himself what this means exactly. Since there are currently no
well-known methods to actually ensure privacy, this sentence doesn’t have
much meaning. All is says it that the organization or person(s) in question
will do his best to provide some privacy. But since no guarantees are given,
the users is—most of the time—left in the dark about what is actually done
to provide anonymity.

As an example that organizations can fail to protect your privacy we will
explain the AOL search fiasco. In chapter 3 we present more cases where
the privacy of individuals was not adequately protected.
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The AOL Search Fiasco

In 2006 AOL released 20 million search queries from 65,0000 AOL users.
The data includes all searches from those users for a three month period, as
well as whether they clicked on a result, what that result was and where it
appeared on the result page [Arr06]. In an attempt to protect anonymity,
the username of each individual has been changed to a random ID. However,
different searches made by the same person still have the same random ID.

It didn’t take long before the first person, no. 4417749, was identified as
Thelma Arnold [BZ06]. She conducted hundreds of searches ranging from
“numb fingers” to “60 single man” to “dog that urinates on everything”.
Based on her search terms it was straightforward to deduce her age, where
she lived, her last name, and so on.

1.5 Statistical Databases

The issue of privacy was first investigated with respect to statistical data-
bases. In this context it is called statistical disclosure control : Revealing
accurate statistics about a set of respondents while preserving the privacy
of individuals. It has a notable history with extensive literature spanning
statistics, theoretical computer science, security, databases and cryptogra-
phy [Dwo11]. For an overview of this long history see the survey of Adam
and Wortmann [AW89]. This extensive history is a testament to the impor-
tance of privacy.

Certain results extend beyond the realm of statistical databases and
can be used in more general settings. Nevertheless, since the focus is on
statistical data, we will provide a few examples why these databases can be
of enormous social value.

1.5.1 Genotypes and Phenotypes (dbGaP)

In an effort to ease complex analyses of genetic associations with phenotypic
and disease characteristics, the National Center for Biotechnology Informa-
tion has created a database to store—among other things—individual-level
information on phenotype, genotype, sequence data and the associations
between them [MFJ+07]. Access to individual data is only allowed to au-
thorized researchers, and there are strict guidelines on how to store and use
this data. Although the high-density genomic data is de-identified, it still
remains unique to the individual and could potentially be linked to a specific
person if used in conjunction with other databases (this is what we will call
a composition attack or linkage attack).

It’s clear that access to this kind of data can tremendously help re-
searchers in their work. Unfortunately they must first get permission in
order to obtain the data, and then follow strict guidelines. We believe that
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new privacy mechanisms can ease access to this data, while maintaining a
provable form of privacy.

1.5.2 Internet Usage

Another huge source of information is internet usage. Your search queries
are saved, the websites you visit can be tracked, the items you bought on
website such as amazon can be recorded, Internet Service Providers keep logs
of your overall internet usage, you provide information yourself to social
networks, and so on. This last item, namely that of social networks, is
especially interesting. Here people willingly publish all their information
online. One has to ask himself if everyone is actually aware of the huge
privacy concerns this raises. The founder of WikiLeaks, Julian Assange, even
critiqued facebook—a popular social network website—as “an appalling spy
machine”. His reasoning behind this claim is that all the information saved
by facebook is accessible to U.S. intelligence by using legal and political
pressure [AE11].

It’s clear that overall this is a huge amount of data that can potentially
be abused. But on the other hand it can also be invaluable information to
improve services. Search engines can optimize your search results based on
previous queries, e-commerce website can suggest similar products, and so
on.

Unfortunately it’s unclear how well the privacy of the users is protected in
these scenarios. Ideally it should be possible to analyze this information real-
time, without the need to store it afterwards, all while preserving privacy.
This is not an easy problem to solve, especially if the algorithms to analyze
the data are complex. Nevertheless, we believe that advances in the area of
privacy under continual observation1 will one day offer an acceptable and
usable solution.

1.6 Models for Information Flow

1.6.1 Interactive vs. Non-Interactive

There are two natural modes when releasing data. In the first one—called
the non-interactive mode—a modified version of the database is published
and everyone can access this database. This public database is called the
sanitized database, and the process of creating it is depicted in figure 1.5.
Historically this is a commonly used method, where one simply removed
identifying attributes such as name, address, social security number, and
so on. But now more and more data is being stored, and because of the
increase in processing power, these older methods no longer provide the

1This is a concept that extends the notion of differential privacy to guarantee confi-
dentiality while analyzing data in realtime.

14



Curator/ 
Sanitizer 

Sensitive data Sanitized data 

Figure 1.5: Non-interactive view: A sanitized version of the database is
published.

Curator/ 
Sanitizer 

Sensitive data Query output 

Query 1 

Query 2 

. . . 

Figure 1.6: Interactive view: The sanitizer answers specific queries.

privacy one would expect (Chapter 3 gives examples of why such a strategy
doesn’t guarantee privacy). An example of a non-interactive sanitizer is
k-anonymity which is explained in section 3.3. An advantage of the non-
interactive mode is that once the sanitized database has been created, the
original data can be destroyed.

The second possibility is called the interactive mode. Here no data is
published, instead users can submit queries to the curator. The curator will
then answers these questions in such a way so the privacy of individuals
in the database is preserved (see figure 1.6). Privacy can be preserved by
adding noise to the output, allowing only a limited number of queries, re-
jecting certain types of queries, and so on. An example of an interactive
mechanism is ε-differential privacy which is explained in chapter 5. In both
cases we assume that the curator is a trusted entity.
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Figure 1.1. Traditional problem setting: each individual contributes a private
record, and analysts wish to compute aggregate queries over the collection of records.
Computational approaches to protecting privacy correspond to interventions in the
flow of information: (A) input perturbation; (B) transformed data release; (C) query
auditing and query answer perturbation; and (D) access control.

The challenge is to allow analysts to study the data in a way that prevents disclso-

sure of sensitive information of survey respondents. There are several computational

approaches to protecting privacy, illustrated in Figure 1.1 and described next.

Figure 1.1 illustrates the flow of information from survey respondents to analysts.

Individual survey respondents (information providers) contribute their private data.

In this setting, each respondent’s data can be encapsulated in a single record. The

private records are collected into a database, which is controlled by the data manager.

Analysts (information consumers) perform computations on it, interacting with the

data through some kind of query processor.

We distinguish between two kinds of information consumers: analysts and adver-

saries. The analyst wants to study the population, by measuring aggregate statistics,

fitting statistical models, etc. For example: an analyst might want to know what age

groups have highest prevalence of HIV. The adversary, on the other hand, wants to

learn facts about specific individuals. For example, an adversary may ask whether

3

Figure 1.7: Model of information flow: Individuals provide their private in-
formation on which analyst want to derive aggregate statistics from. [Hay10]

1.6.2 Information Flow

An interactive or non-interactive mechanism that provides privacy can be
achieved in several ways. Figure 1.7 gives a model of the information flow
starting at the individual and ending at the analyst. Here individuals share
their private information and these are collected in a database that is con-
trolled by the data curator. Analysts can perform calculations on it to learn
aggregate statistics, while an adversary shouldn’t be able to learn sensitive
information about specific individuals.

To protect privacy we must control the flow of information somewhere
along its path. As figure 1.7 suggest this can be done in several ways:

A. Input Perturbation Users can add noise to the data they hand over.
An adversary is therefore never sure whether the sensitive information
about a specific individual is correct, while aggregate statistics can
still be calculated.

B. Transformed Data Release Once the data of all individuals is col-
lected and saved in a database, one can attempt to transform this
data such that sensitive information about individuals can no longer
be derived from it. A well-known example is k-anonymity.

C1. Query Auditing The data curator can monitor the queries being per-
formed on the data. If the answer to a query might contain sensitive
information on an individual, the query is refused and not executed.
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C2. Query Answer Perturbation The analyst can query the data, but
noise is being added to the answers in order to guarantee privacy. A
well-known example is differential privacy.

D. Access Control The dataset can be given to trusted researchers and
never released publicly. This should prevent malicious individuals from
obtaining the data.

1.7 What About Cryptography?

Strangely the application of cryptography is sometimes suggested as a po-
tential solution. Although cryptography is relevant, it does not solve the
privacy problem. Cryptography can be used to encrypt, and thus hide, in-
formation from an adversary. But in the end the recipient still receives the
original, unmodified information. So even if encryption is used the recipient
will obtain the original information including all individual-specific data,
and the privacy of these individuals will still be violated.

To further illustrate this point, we will briefly cover Secure Function
Evaluation, which is sometimes offered as a solution to the privacy issue.
It’s a form of secure multi-party computation where entities want to dis-
tributively compute a function over their inputs, without exposing their
private input. This is a well-studied problem in the field of cryptography.
At first sight this may seem to provide privacy and anonymity, unfortunately
this is not the case.

1.7.1 Secure Function Evaluation

Secure Function Evaluation (SFE) deals with the problem of how to dis-
tributively compute a function f(X1, X2, . . . , Xn) where:

1. Each Xi is only known to party i.

2. The parties should only learn the final output denoted by ξ. In other
words the private input of each party won’t be exposed to other parties.

Requirement 2 holds even if there are parties that maliciously attempt
to obtain more information. Practical implementations that achieve this
definition depend on, or are restricted by, the number of parties, the power
of the adversary, the communication channel, . . . The problem lies in the
fact that the result ξ might itself disclose information. To be precise, the
definition of SFE states that nothing will be revealed about any input Xi

other than we can be reasonably deduced by knowing the output ξ.
So if there are two parties a and b, and the function f would be sum(a, b),

the result ξ would yield the input of the other party. This is not acceptable
if we want to guarantee privacy.
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Chapter 2
Probability Theory

In this chapter we will give a brief overview of the basics of probability
theory. This is done both to refresh the most important concepts, and to
introduce the notations and terminology that will be used throughout the
remainder of this thesis. To avoid any ambiguity we will start by stating
the exact definitions. Then we will cover a few properties that will be used
in forthcoming proofs. The mathematical definitions given in this chapter
are based on those in the book of Grimmett and Welsch [GW86].

2.1 Introduction

Probability theory deals with the study of experiments. An experiment (or
trail) is defined as a course of action whose consequence is not predetermined
and is denoted by E . An experiment can be defined mathematically using a
probability space.

Definition 2.1. A probability space is a tuple (Ω,Σ,Pr) where:

• Ω is called the sample space and is defined as the set of all possible
outcomes of the experiment E .

• Σ ⊆ 2Ω is the event space and must be a sigma-algebra on Ω. The
notation 2Ω represents the power set of Ω. The conditions a sigma-
algebra must meet are given in definition 2.2.

• Pr is a probability measure on the event space Σ. Its requirements are
given in definition 2.3.

The sample space can be seen as a collection of all elementary results, or
outcomes, of an experiment. An event E ∈ Σ is then a set of outcomes, and
thus a subset of the sample space. The event space is the set of all outcomes
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of E which can be considered interesting. If Ω is a discrete sample space,
then usually Σ is equal to 2Ω. The definition of a sigma-algebra is as follows

Definition 2.2 (Sigma-algebra). Let Ω be any set and Σ ⊆ 2Ω. We call Σ
a sigma-algebra over Ω if

1. It’s not empty: Σ 6= ∅

2. It’s closed under complementation: ∀A ∈ Σ : Ω−A ∈ Σ

3. It’s closed under countable unions: If A1, A2, . . . is a countable se-
quence of events in Σ, then

⋃
i≥1Ai ∈ Σ

Lemma 2.1. If Σ is a sigma-algebra over Ω it it follows from definition 2.2
that Ω ∈ Σ.

Proof. From Σ 6= ∅ it follows that there exists an event E ∈ Σ. Because Σ
is closed under complementation we also have Ω−E ∈ Σ. As it’s also closed
under countable unions we finally get (Ω− E) ∪ E ∈ Σ which is equivalent
to Ω ∈ Σ.

In this thesis we will use the notation Pr [E] to denote the probability of
event E. In most cases we will assume it’s evident what the sample space
Ω and event space Σ are, and won’t explicitly define them. Before we can
continue further we must define what a probability measure is.

Definition 2.3 (Probability Measure). Let Ω be a sample space on E and Σ
be the event space of E. A Probability measure on (Ω,Σ) is then a function
Pr : Σ→ [0, 1] which satisfies:

1. Pr [Ω] = 1

2. Let A1, A2, . . . be a countable sequence of pairwise disjoint events in
Σ. Then:

Pr


⋃

i≥1

Ai


 =

∑

i≥1

Pr [Ai] (2.1)

This is known as the countable additivity property.

This definition can come in other, equivalent, variations. We have chosen
for the simplest one. Many definitions also require that Pr [∅] = 0. In our
case however, this is a property that follows from the definition.

Lemma 2.2. From the definition of a probability measure Pr on (Ω,Σ) it
follows that Pr [∅] = 0.
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Proof. We know that Pr [Ω] = 1. As the sets Ω and ∅ are disjoint, we can
apply the countable additivity problem to Ω ∪∅ = Ω:

1 = Pr [Ω]

= Pr [Ω ∪∅]

= Pr [Ω] + Pr [∅]

= 1 + Pr [∅]

From this we can see that Pr [∅] = 0.

2.1.1 Conditional Probability

One may sometimes possess incomplete information about the actual out-
come of an experiment without knowing its outcome exactly. If A and B are
events in Σ and we are given that B occurs, then, taking into account this
information, the probability of A may no longer be Pr [A]. We can see that
A occurs if and only if A∩B occurs. This suggests that the new probability
of A is proportional to Pr [A ∩B] [GW86].

Definition 2.4. The conditional probability of event A given event B is
defined as

Pr [A | B]
def
=

Pr [A ∩B]

Pr [B]

If Pr [A | B] = Pr [A] we call the events A and B independent. We can
now prove that this definition gives rise to a new probability space.

Theorem 2.3. If B ∈ Σ and Pr [B] > 0 then (Ω,Σ, Q) is a probability space
where Q : Σ→ R is defined by Q(A) = Pr [A | B].

Proof. We need to verify that Q is a probability measure on (Ω,Σ). Clearly
we already have that the image of Q is the interval [0, 1]. We also have that

Q(Ω) = Pr [Ω | B] =
Pr [Ω ∩B]

Pr [B]
= 1

It only remains to check that Q satisfies equation 2.1. So let A1, A2, . . .
be a countable sequence of pairwise disjoint events. Then
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Q


⋃

i≥1

Ai


 =

1

Pr [B]
Pr




⋃

i≥1

Ai


 ∩B


 (2.2)

=
1

Pr [B]
Pr


⋃

i≥1

(Ai ∩B)


 (2.3)

=
1

Pr [B]

∑

i≥1

Pr [Ai ∩B] (2.4)

=
∑

i≥1

Q(Ai) (2.5)

Where equality 2.4 follows from the fact that Pr is a probability measure
on (Ω,Σ).

2.1.2 Discrete Variables

Intuitively a random variable is a numerical representation of the outcome
of an experiment. Random variables can be either discrete or continuous.
Here we will begin by defining discrete random variables.

Definition 2.5 (Discrete Random Variable [GW86]). Let E be an experi-
ment with probability space (Ω,Σ,Pr). A discrete random variable is then a
function X : Ω→ R such that:

1. The image of X is a countable subset of R

2. ∀x ∈ R : {ω ∈ Ω : X(ω) = x} ∈ Σ

If X is a random variable the notation x ∈ X is defined as a shorthand
notation of x ∈ Im(X). In other words, it means that x can be any value
of the image of the random variable X. We must note that there exists
more general definitions where the image of the random variable can be a
set different than R [FG96]. Such definitions are based on measure theory
and are out of scope for this thesis. Based on our definition we can define
the probability mass function of a discrete random variable as follows.

Definition 2.6. Given a probability space (Ω,Σ,Pr), the probability mass
function of a discrete random variable X is the function pX : R → [0, 1]
defined as

∀x ∈ R : pX(x) = Pr [{ω ∈ Ω : X(ω) = x}]
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Remark that if x is not an element of the image of X, the consid-
ered set is in definition 2.6 empty. From lemma 2.2 it then follows that
pX(x) = Pr [∅] = 0. Instead of the notation pX(x) we will frequently use
the equivalent notation Pr [X = x]. A consequence of using the probability
measure to define the probability mass function is the property that

∑

x∈X
pX(x) =

∑

x∈X
Pr [{ω ∈ Ω : X(ω) = x}] (2.6)

= Pr [Ω] = 1 (2.7)

By using the probability mass function (pmf) we can define the cumu-
lative distribution function (cdf) as:

F (x) = Pr [X ≤ x]
def
=
∑

y≤x
Pr [X = y] (2.8)

2.1.3 Continuous Variables

Discrete random variables take only countable many values and their cumu-
lative distribution functions generally look like step functions. On the other
hand, the cdf of a continuous random variable is smooth. More formally
this gives rise to the following definition

Definition 2.7 (Continuous Random Variable [GW86]). Let E be an ex-
periment with probability space (Ω,Σ,Pr). A continuous random variable is
then a function X : Ω → R whose cumulative distribution function may be
written in the form

F (x) = Pr [X ≤ x] =

∫ x

∞
f(u)du

for all x ∈ R, for some non-negative function f . We say that X has
probability density function f .

Analog to discrete variables, we again note that there exists more general
definitions where the image of the random variable can be a set different than
R [FG96].

A continuous variable is thus defined by its cumulative distribution func-
tion (cdf) F (x) which equals

F (x) = Pr [X ≤ x] = Pr [X < x]

The seconds equality holds because Pr [X = x] = 0. Interestingly this
means that although the probability of an event is defined as being zero,

22



the event can still occur1. As is clear from the definition, the probability
density function (pdf) of a continuous random variable is the derivative of
the cdf:

f(x) =
d

dx
F (x)

It describes the relative likelihood for this random variable to occur at a
given point. We can calculate the probability that it falls within an interval
by taking the integral of f(x) over the interval. It must also satisfy the
following relation:

∫ +∞

−∞
f(x)dx = 1 (2.9)

As a note of caution, in some papers the notation Pr [X = x] is abused to
denote the probability density function f(x) when talking about continuous
variables. In this thesis we have avoided this abuse of notation to prevent
ambiguity. Sometimes we will use the proportional to symbol ∝ to state
that a random variable has a certain probability density function. The
notation f(x) ∝ g(x) means that there exists a constant k ∈ R such that
f(x) = kg(x). An example would be:

f(x) ∝ exp

(
−|x− µ|

b

)
(2.10)

This is a shorthand notation for the pdf without specifying the constant
that is needed for it to satisfy equation 2.9. In equation 2.10 the constant
k would be 1/2b. A similar notation can be used for the probability mass
function of discrete variables in combination with equation 2.6.

Finally, the term probability distribution is used to refer to either the
probability mass function or the probability density function, depending if
the context is about discrete or continuous variables respectively.

2.1.4 Transformation of a Random Variable

Many times it’s useful to transform a random variable X to a new random
variable Y using a given function f . This new random variable Y will be
denoted by f(X). The definition of f(X) is

Definition 2.8. Given a random variable X over the probability space
(Ω,Σ,Pr) and a function f : R→ R, we define f(X) to be the function

1This is because probability spaces are based on measure theory which doesn’t really
distinguish between sets of measure zero (infinitely unlikely) and the empty set (impossi-
ble).
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f(X) : Ω→ R,

ω 7→ f(X(ω))

This results in f(X) being a random variable over the probability space
(Ω,Σ,Pr).

Lemma 2.4. If X is a discrete random variable over (Ω,Σ,Pr) we have
that

Pr [f(X) = t] =
∑

s∈S|f(s)=t

Pr [S = s]

Proof. We begin with the definition of the probability mass function and
the function f(X):

Pr [f(X) = t] = Pr [{ω ∈ Ω | f(X)(ω) = t}] (2.11)

= Pr [{ω ∈ Ω | f(X(ω)) = t}] (2.12)

= Pr


 ⋃

s∈S|f(s)=t

{ω ∈ Ω | X(ω) = s}


 (2.13)

=
∑

s∈S|f(s)=t

Pr [{ω ∈ Ω | X(ω) = s}] (2.14)

=
∑

s∈S|f(s)=t

Pr [X = s] (2.15)

In equation 2.12 the definition of the function f(X) is used. We observe
that in the union of equation 2.13 all the sets are pairwise disjoint. Hence we
can transfrom this to equation 2.14 by the countable additivity property.

2.1.5 Linearity of Expectation

To start from scratch we will begin with the definition of the expected value
of a discrete random variable.

Definition 2.9. If X is a discrete random variable, the expectation of X is
denoted by E [X] and defined by

E [X] =
∑

x∈X
xPr [X = x]

For a continuous variable this becomes E [X] =
∫
xf(x)dx. Linearity of

expectation now roughly states that the expected value of a sum of random
variables is equal to the sum of the individual expectations. The property is
very useful when analyzing randomized algorithms and probabilistic meth-
ods. Written formally this becomes
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Property 2.5. Let a, b ∈ R and X and Y be any two random variables.
We have that

E [aX + bY ] = aE [X] + bE [Y ]

The formula is even applicable if the variables are dependent, and is true
for both continuous and discrete random variables.

2.2 Entropy

2.2.1 Self-information

Self-information (SI) is a concept in information theory that is a measure
of uncertainty associated with a particular event [Kum01]. It can also be
interpreted as a measure of the information content associated with the
outcome of a random variable.

Definition 2.10. Let E be an event and Pr [E] denote the probability of this
event. Then the self-information of event E is

I(E) = log (1/Pr [E]) = − log Pr [E]

If you consider tossing a coin, the chance of tail or heads is fifty-fifty.
Thus the self-information of the event tail is I({tail}) = − log 0.5 = 1.
Another example is throwing a fair dice. Here any result has self-information
I(E) = − log 1

6 = 2.585. The term is sometimes also called the amount
of surprise of surprisal [Kum01]. The name comes from the fact that a
highly improbable outcome has a large amount of self-information. Another
commonly used synonym is information content.

The reason for using the log function in the definition is to make the self-
information additive. The additive property means that the SI of events A
and B equals the sum of the SI of the individual events. In other words:
I(A and B) = I(A) + I(B) if A and B are independent events. This makes
intuitive sense: The information obtained from the occurrence of two inde-
pendent events is the sum of the information obtained from the occurrence
of the individual events. If there is a dependence between the two events
this property does not hold.

2.2.2 Shannon Entropy

As self-information measures the amount of uncertainty of a particular event,
shannon entropy measures the uncertainty contained in a probability distri-
bution. It can also be seen as a measure of the average information content
one is missing when one does not know the outcome of the random experi-
ment. In short it can be seen as a measure of unpredictability or disorder.
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Figure 2.1: Shannon entropy of a family of coin toss events where the prob-
ability Pr [X = 1] ranges from 0 to 1.

Definition 2.11. Let X be a discrete random variable with probability mass
function pX(x). Then the shannon entropy of X is

H(X) = −
∑

x∈X
PX(x) logPX(x)

If PX(x) = 0 for some x, we will let the term 0 log 0 be equal to 0. See
figure 2.1 for a graph of the shannon entropy of a binary coin toss event.
The probability on the x-axis denotes the probability of the event X = 1,
and this also implies the probability of event X = 0. It can be shown that
the shannon entropy is equal to the expected amount of self-information of
the discrete random variable.

2.2.3 Min-entropy

The disadvantage of the shannon entropy is that it can be very high, al-
though the outcome of the experiment can still be predicted in most cases.
This can for example happen if there is one event with probability 0.99 and
there are countless other events with a much smaller probability. Shannon
entropy is therefore not a good measure when we want to specify that some-
thing is hard to guess. Instead we will use min-entropy for this purpose.

Definition 2.12. Let X be a discrete random variable with probability mass
function pX(x). The min-entropy of X is

H∞(X) = min
x∈X

(− logPX(x)) = − log

(
max
x∈X

PX(x)

)

Min-entropy and shannon entropy are actually instances of Rényi en-
tropy, which is a family of functions to measure the randomness of an ex-
periment. Rényi entropy is parameterized by α. Setting α to 1 gives shannon
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entropy, while setting α to ∞ gives min-entropy. For this reason we use the
notation H∞(X) to denote the min-entropy of an experiment.

2.3 Laplace distribution

The Laplace distribution is a continuous probability distribution. It is pa-
rameterized by its mean µ and the scale factor b.

Definition 2.13 (Laplace Distribution). The probability density function
of the Laplace distribution is defined as

h(x | µ, b) =
1

2b
exp

(
−|x− µ|

b

)

Here the “|” symbol doesn’t stand for conditional probability, but signi-
fies that µ and b are parameters of the function h. Most of the time we will
let µ be zero and drop this parameter. To state that a random variable X
follows the Laplace distribution the notation X ∼ Lap(b, µ) can be used. If
µ is zero we will frequently use the abbreviated notation Lap(b). We have
the following useful property.

Property 2.6. If h(y) denotes the pdf of the Laplace distribution Lap(b),

the inequality h(y)
h(y′) ≤ exp

(
1
b |y − y

′|
)

holds.

Proof. Let h(y) denote the pdf of the Laplace distribution. We have

h(y)

h(y′)
=

exp
(
− |y|b

)

exp
(
− |y

′|
b

) (2.16)

= exp

(
1

b
(|y′| − |y|)

)
(2.17)

≤ exp

(
1

b
|y − y′|

)
(2.18)

Where the last inequality is a consequence of subadditivity, since it states
that ∀a, b ∈ R : |a+ b| ≤ |a|+ |b|. Filling in a = y′ − y and b = y results in

|y′| ≤ |y′ − y|+ |y|
|y′| − |y| ≤ |y′ − y|

This concludes the proof of Property 2.6.
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2.4 Inequalities

2.4.1 Boole’s inequality

Boole’s inequality gives a very rough upper bound on the probability of
certain events. The advantage of this property is that it holds even if the
given events are dependent, and is only based on the probability space.

Property 2.7. (Boole’s inequality) For any finite or countable set of events
E1, E2, . . . , En, it holds that:

Pr

[
n⋃

i=1

Ei

]
≤

n∑

i=1

Pr [Ei] (2.19)

It follows from the definition of a probability measure, namely from
the countable additivity property. A consequence is that the probability
function Pr also satisfies the following statement

∀A,B : Pr [A ∪B] ≤ Pr [A] + Pr [B]

Boole’s inequality is also known as the union bound.

2.4.2 Markov Bound

Markov’s inequality relates probabilities to the expectation of a discrete
random variable. We require the random variable to be non-negative.

Property 2.8. (Markov Inequality) Let X be a non-negative random vari-
able and v ∈ R. Then

Pr [X ≥ v] ≤ E [X]

v

Proof. The proof is straightforward if you begin with the definition of the
expected value:

E [X] =
∑

x∈X
x Pr [X = x] (2.20)

=
∑

x<v

x Pr [X = x] +
∑

x≥v
x Pr [X = x] (2.21)

≥ 0 + v Pr [X ≥ v] (2.22)

Pr [x ≥ v] ≤ E [X]

v
(2.23)

Where inequality 2.22 is true because we assumed X is non-negative.
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2.4.3 Hoeffdings’ Inequality

Another useful inequality is was found by Wassily Hoeffding in 1963 [Hoe63].
It gives an upper bound on the probability for the sum of independent
random variables to deviate from its expected value. Often it’s used to prove
that the result of a randomized algorithm is accurate with high probability.

Theorem 2.9 (Hoeffdings’ Inequality). If X1, X2, . . . , Xn are independant
random variables with ∀i : ai ≤ Xi ≤ bi and with

X =
X1 +X2 + . . .+Xn

n

then for t > 0

Pr [X − E [X] ≥ t] ≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
(2.24)

For a proof of this theorem we refer the reader to the original paper of
Hoeffding [Hoe63]. The following upper bound trivially follows from theo-
rem 2.9.

Theorem 2.10 (Hoeffdings’ Inequality). If X1, X2, . . . , Xn are independent
random variables with ∀i : ai ≤ Xi ≤ bi and with X as in theorem 2.9 then
for t > 0

Pr [|X − E [X]| ≥ t] ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
(2.25)

Proof. The proof is follows from the equality

Pr [|X − E [X]| ≥ t] = Pr [X − E [X] ≥ t] + Pr [−X + E [X] ≥ t] (2.26)

On the first probability in the sum one can directly apply Hoeffdings’
inequality. For the second probability we define the new variables X ′i = −Xi

and

X ′ =
X ′1 +X ′2 + . . .+X ′n

n
= −X

notice that ∀i : − bi ≤ X ′i ≤ −ai. After doing this we can also apply the
Hoeffding inequality on the second probably which is now equal to

Pr
[
X ′ − E

[
X ′
]
≥ t
]

Adding both bounds together completes the proof
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2.5 Probabilistic Turing Machine

In the following chapters we will often use randomized algorithms (also called
randomized functions). They can be viewed in two equivalent ways. One
way of viewing randomized algorithms is to allow the Turing machine to take
random steps. This can be defined by letting the transition function have
two possible legal next moves. An internal coin toss is then made to decide
which result is chosen. Here both options have probability 1

2 . This is also
how probabilistic Turing machines are defined commonly, as is for example
done in the book of Sipser [Sip06]. The total amount of random choices
made during the execution of a Turing machine are called the internal coin
tosses of the machine [Gol01]. The output of the Turing machine is now no
longer a string, but a random variable that can assume all possible strings as
a value. This random variable will be denoted by M(x) where x is the input
string. We can then let Pr [M(x) = y] denote the probability that machine
M on input x will output y [Gol01]. The probability space is taken over all
possible outcomes of the internal coin tosses.

An alternative and equivalent way of viewing randomized algorithms is
by giving the outcome of the internal coin tosses as auxiliary input. Hence
the real input given to the machine will be (x, r) where x is the normal
input and r represents a possible outcome of the coin tosses. Given Turing
machine M(x) that uses internal coin tosses, we will let M(x, r) stand for
the corresponding deterministic Turing machine where the coin tosses are
given as the auxiliary bitstring r. Since we will assume M always halts,
there exists a z ∈ N such that M uses at most z coin tosses on every input
x. Using these assumptions the probability space (Ω,Σ,Pr) describing the
distribution of the internal coin tosses becomes

• The sample space Ω is equal to {0, 1}z. That is, it’s equal to all possible
sequences of coin tosses.

• The event space Σ is equal to 2Ω.

• Since we consider the coin tosses to be uniformly distributed, the prob-
ability measure for every ω in Ω is defined as Pr [{ω}] = 1

2z .

Here the internal coin tosses of the algorithm are represented by an
element ω ∈ Ω. Without loss of generality we will assume that the algorithm
M outputs only bitstrings. Based on this probability space, the random
variable M(x) is then the function

M(x) : Ω→ {0, 1}z,
ω 7→M(x, ω)
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Using these definitions we can rewrite the formula of the probability of
event M(x) = y to a more convenient and intuitive form:

Pr [M(x) = y] = Pr [{ω ∈ Ω |M(x)(ω) = y}] (2.27)

= Pr
[{
ω ∈ Ω |M(x, ω) = y

}]
(2.28)

=
∑

ω∈Ω|M(x,ω)=y

Pr [{ω}] (2.29)

=
∑

ω∈Ω|M(x,ω)=y

1

2z
(2.30)

=

∣∣{ω ∈ Ω |M(x, ω
}∣∣

2z
(2.31)

For equation 2.28 we used the definition of M(x)(ω). Equation 2.29
follows from the countable additivity property. Hence we can conclude with
the following straightforward formula

Pr [M(x) = y] =
|{r ∈ {0, 1}z |M(x, r) = y}|

2z
(2.32)

2.6 Statistical Distance

2.6.1 Definition

Often it can be useful to have a measure that quantifies the distance between
two random variables or probability distributions. We will mainly use the
notion of ε-close:

Definition 2.14 (ε-close). Let X and Y be two random variables over the
same image S. Their statistical distance is

∆(X,Y )
def
= max

A⊆S
|Pr [X ∈ A]− Pr [Y ∈ A]| = ε

If two distributions have statistical distance at most ε, we say they are ε-
close. From this definition we can deduce that the statistical distance ranges
between 0 and 1. For discrete random variables we have another formula to
calculate the statistical distance.

Lemma 2.11. Given two discrete random variables X and Y over the same
image S we have that

∆(X,Y ) =
1

2

∑

s∈S
|Pr [X = s]− Pr [Y = s]|
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Proof. Let X and Y be two discrete random variable over the same image
S and let A = {s ∈ S | Pr [X = s] > Pr [Y = s]}. This choice of A makes
Pr [X ∈ A]− Pr [Y ∈ A] as large as possible and positive, meaning we have
the following

∆(X,Y ) = max
A′⊆S

∣∣Pr
[
X ∈ A′

]
− Pr

[
Y ∈ A′

]∣∣ (2.33)

= Pr [X ∈ A]− Pr [Y ∈ A] (2.34)

=
∑

a∈A
(Pr [X = a]− Pr [Y = a]) (2.35)

=
∑

a∈A
|Pr [X = a]− Pr [Y = a]| (2.36)

Since both X and Y are discrete random variables equation 2.35 is valid.
Equation 2.36 follows from the fact that we chose A such that for all a in A
it’s true that Pr [X = a] > Pr [Y = a]. Now let Ac = S −A. We have

∆(X,Y ) = Pr [X ∈ A]− Pr [Y ∈ A] (2.37)

= 1− Pr [X ∈ Ac]− 1 + Pr [Y ∈ Ac] (2.38)

= Pr [Y ∈ Ac]− Pr [X ∈ Ac] (2.39)

=
∑

a∈Ac

(Pr [Y = a]− Pr [X = a]) (2.40)

=
∑

a∈Ac

|Pr [Y = a]− Pr [X = a]| (2.41)

=
∑

a∈Ac

|Pr [X = a]− Pr [Y = a]| (2.42)

Where equation 2.41 is correct since ∀a ∈ Ac : Pr [Y = a] > Pr [X = a].
Adding up equation 2.36 and 2.42 we get

2∆(X,Y ) =
∑

a∈S
|Pr [X = a]− Pr [Y = a]|

Which is what we needed to prove.

2.6.2 Properties

One important property is that the statistical distance cannot increase by
applying a—possibly randomized—function. Although the property applies
to both discrete and continuous variables, we will focus on discrete variables,
since that is what we will need in order to prove the impossibility result in
chapter 4.
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Property 2.12. Given two discrete random variables X and Y over the
same image S, and a randomized function f , we have the following property

∆(f(X), f(Y )) ≤ ∆(X,Y )

Proof. The proof when f can be a randomized function is cumbersome to
write down in detail, and it analogous to the proof where only deterministic
functions are considered. Therefore we will only give a proof when M is a
deterministic function. So let X and Y be two discrete random variables
over the same image S, and f a deterministic function with image T . We
get

∆(f(X), f(Y )) =
1

2

∑

t∈T
|Pr [f(X) = t]− Pr [f(Y ) = t]| (2.43)

=
1

2

∑

t∈T

∣∣∣∣∣∣
∑

s∈S|M(s)=t

Pr [X = s]−
∑

s∈S|M(s)=t

Pr [Y = s]

∣∣∣∣∣∣
(2.44)

=
1

2

∑

t∈T

∣∣∣∣∣∣
∑

s∈S|M(s)=t

(Pr [X = s]− Pr [Y = s])

∣∣∣∣∣∣
(2.45)

≤ 1

2

∑

t∈T

∑

s∈S|M(s)=t

|Pr [X = s]− Pr [Y = s]| (2.46)

=
1

2

∑

s∈S
|Pr [X = s]− Pr [Y = s]| (2.47)

= ∆(X,Y ) (2.48)

Equality 2.44 follows from the definition of f(X) and the fact that X
and Y are discrete random variables. The inequality follows from the sub-
additivity property2 of the absolute value. From this we can conclude that
∆(f(X), f(Y )) ≤ ∆(X,Y ). Remark that if f is an injective function the
inequality becomes an equality.

This property implies that the acceptance probability of any algorithm
on inputs from X differs from its acceptance probability on inputs from Y
by at most ∆(X,Y ). This is exactly what we will need in chapter 4.

2In this situation a common synonym of the subadditivity property is the triangle
inequality.
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Chapter 3
History

Reasoning about privacy is fraught with pitfalls [BZ06, Swe02, NS08, NSR11].
To further appreciate the difficulty of finding a proper privacy definition, we
will look at previous attempts and investigate why they failed. This will
show you why certain intuitive methods don’t work and illustrates the im-
portance of taking into account auxiliary information. We will then discuss
k-anonymity and its variants. Finally we will explain the composition at-
tack, which shows that k-anonymity and related definitions are fundamen-
tally flawed.

3.1 Previous Attacks

In this overview of previous attacks, a de-identified database is a database
where personal identifiable information such as the name, address or social
security number of individuals are removed. The term re-identification de-
notes the process of de-anonymizing the de-identified data by associating it
with the original individual. Most of the time this is be done by using auxil-
iary information. This can be any additional information that an adversary
has access to, including older versions of the original database.

3.1.1 The AOL Search Fiasco

We briefly explained this event in section 1.4. As stated, AOL released
around 20 million search queries from 65,0000 AOL users. In an attempt
to preserve privacy they replaced the usernames with a randomly generated
number and also carefully redacted obvious disclosive queries (examples are
when individuals search for their own name or security number) [Dwo11].
However the complete search history of an individual can still be extracted.
In turn this allowed people to identify individuals based on their search
history, and thus clearly breaching their privacy.
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Figure 1: Anonymity of the U.S. population, by age,

given {Gender, ZIP code, Full date of birth}.
Figure 2: Anonymity of the U.S. population, by age,

given {Gender, County, Full date of birth}.
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Figure 3: Anonymity of the U.S. population, by age,

given {Gender, ZIP code, Year of birth}.
Figure 4: Anonymity of the U.S. population, by age,

given {Gender, County, Year of birth}.

ten lie without negative consequence (lying about one’s age
is more problematic, since the lie is more easily detectable
and may result in inadequate service). Table 1 shows that
revealing one’s {gender, location, year of birth} allows for
unique identification of only 0.2% of individuals. Is it then
safe for most people to disclose this information? In what
follows, we analyze in more detail the privacy implications
of disclosing one’s {gender, location, year of birth}.

Figures 3 and 4 show the degree of anonymity of the US
population, by age, given {gender, location, year of birth},
where location is either a 5-digit ZIP code (Figure 3) or
a county (Figure 4). In both graphs, the green curve (the
middle curve) shows the median degree of anonymity by age
(the degree of anonymity of the 50-th percentile). We see for
example that the median anonymity of the population under
age 50 after disclosing {gender, ZIP code, year of birth} is
200-anonymity (the median is 3000-anonymity if the county
is disclosed instead of the ZIP code).

The blue line shows the anonymity of the lower 10-th per-
centile. In other words, 10% of the population enjoys less
anonymity than indicated by the blue line, and 90% of the
population enjoys more anonymity.

Finally, the red line shows the anonymity of the 90-th per-
centile. We observe a sharp spike in the degree of anonymity
of the 90-th percentile (the 10% of the population who are
the most anonymous) around age 20. Analysis reveals that
this spike comes from college and university towns with
high concentrations of individuals between the ages of 18
and 22. For example, the 3 ZIP codes with the highest de-
gree of anonymity in the range [18–22] are College Station,
TX (77840); West Lafayette, IN (47906); and Austin, TX

(78705). All three ZIP codes are home to large universities.
The conclusion we can draw from this data is that, for 90%

of the population under the age of 50, disclosing {gender,
ZIP code, year of birth} will result in 40-anonymity or more,
while disclosing {gender, county, year of birth} will result in
250-anonymity or better.
Finally, those willing to sacrifice truthfulness for optimal

anonymity should claim, when asked for their age and ZIP
code, to be a 21-year-old male from Camp Pendleton, Cal-
ifornia (ZIP code 92054); or, if female, to be a 19-year-
old from College Station, Texas (ZIP code 77840). They
will share these characteristics with respectively 4, 099 other
males and 3, 744 other females.

4. CONCLUSION
This short paper revisits the uniqueness of simple demo-

graphics in the US population based on the most recent
census data (the 2000 census). We offer a detailed, com-
prehensive and up-to-date picture of the threat to privacy
posed by the disclosure of simple demographic information.
We hope this study will be a useful reference for privacy
researchers who need simple estimates of the comparative
threat of disclosing various demographic data.
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Figure 3.1: Anonymity of the U.S population when given gender, ZIP code
and full date of birth [Gol06]

However we cannot view this as a true example that preserving privacy
is a difficult task. This because no real care was given to anonymizing the
search results. This can be deduced from the observation that the person
who was responsible for releasing the data was quickly fired [And06]. A
supervisor was also fired, and the chief technology officer resigned over the
incident [MB06]. The release of this data is even more surprising because
a few months earlier it was ruled that Google did not have to hand over
any user’s search queries to the U.S. government [Won06]. The government
originally requested two months’ worth of users’ search queries as part of a
subpoena.

3.1.2 The HMO records

The first notable demonstration of a relatively large privacy breach is the
de-anonymization of the medical records of the governor of Massachusetts.
This was done in a so called linkage attack between two different databases.

For more background on the attack, we begin with the following obser-
vation: One can uniquely identify 63% of the U.S. population with only
knowing the gender, ZIP code and date of birth of an individual [Gol06].
The ZIP code is the place where the person currently lives. This is illus-
trated in figure 3.1. The blue line shows how many percent of the population
can be uniquely identified given {gender, location, full date of birth}. The
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physicians offices, clinics, and so forth [18].  Figure 14 contains a subset of the fields of information, or 

attributes, that NAHDO recommends these states accumulate. The few attributes listed in Figure 14 

include the patient’s ZIP code, birth date, gender, and ethnicity. Clearly, the data are de-identified. The 

patient number in earlier versions was often the patient's Social Security number and in subsequent 

versions was a scrambled Social Security number [19].  By scrambled I mean that the digits that compose 

the Social Security number are moved around into different locations.  If a patient’s record is identified 

and their Social Security number known, then the scrambling algorithm can be determined and used to 

identify the proper Social Security numbers for the entire data set. 
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Visit date

Diagnosis

Procedure

Medication

Total charge
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Birth
date
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Name

Address

Date
registered
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Date last
voted

Medical Data Voter List  

Figure 15 Linking to re-identify data 

 

For twenty dollars I purchased the voter registration list for Cambridge Massachusetts and 

received the information on two diskettes [20] in an attempt to complete the re-identification. Figure 15 

shows that these data included the name, address, ZIP code, birth date, and gender of each voter. This 

information can be linked using ZIP code, birth date and gender to the medical information described in 

Figure 14, thereby linking diagnosis, procedures, and medications to particularly named individuals.  The 

question that remains of course is how unique would such linking be.  

 

The 1997 voting list for Cambridge Massachusetts contained demographics on 54,805 voters.  Of 

these, birth date, which is the month, day, and year of birth, alone could uniquely identify the name and 

address of 12% of the voters.  One could identify 29% of the list by just birth date and gender; 69% with 

only a birth date and a five-digit zip code; and 97% when the full postal code and birth date were used.  

Figure 3.2: Re-identification by linkage attack [Swe01]

green and red lines show that even if a person is not uniquely identifiable,
they still enjoy little privacy. For example, we can see that nearly all peo-
ple are 5-anonymous or less. This means at most 5 other individuals have
the same values for the given attributes. The definition of k-anonymity is
explained in more detail in section 3.3.

An interesting observation is that people around the age of 20 seem to
have more privacy. The cause of this peak is the college and university
towns that have high concentrations of individuals between the ages of 18
and 22 [Gol06]. Also note that for ages above 50 the privacy decreases.

The HMO linkage attack is now performed by combining two databases
that share the attributes {sex, ZIP, birth date} (see figure 3.2). The first
database is the voter registration list for Cambridge Massachusetts, the sec-
ond one the Massachusetts Group Insurance Commission (GIC) medical
encounter data. In her attack, Sweeney bought the voter registration list.
It included the attributes ZIP code, birth date, gender, name and address
of each voter.

Medical data is also being collected, where the National Association of
Health Data Organizations (NAHDO) recommends the collection of certain
attributes. They include the patient’s ZIP code, birth date, gender and
diagnosis. A de-identified subset of this data, containing information for
approximately 135,000 state employees, was handed over to the Group In-
surance Commission (GIC). This was done because the GIC is responsible
for purchasing health insurance for state employees. They later gave this
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data to researchers and sold a copy to industry because they believed the
data was anonymous [Swe01].

Even though the medical databases did not contain explicit personal
identifiers such as the name or social security number of a patient, individu-
als can still be identified by combining both databases. Using the attributes
ZIP code, gender and birth day Sweeney was able to identify the medical
records of William Weld. He lived in Cambridge Massachusetts and was
a governor of Massachusetts, thus his information was in both tables and
could be linked together.

3.1.3 Netflix

Netflix is a company that offers on-demand internet streaming video. To
improve their movie recommendation algorithm, Netflix released a data-
set containing more than 100 million movie ratings made by 480 thousand
users on nearly 18 thousand movie titles [BL07]. To increase interest of the
community, they offered a $1 million prize to those who could improve the
current system by at least 10%.

In an attempt to secure the privacy of its users they removed personally
identifying attributes. All that remained are ratings (a score between 1 and
5), the date the rating was given, the anonymous ID of the user that gave
the rating, and finally the title of the movie that was rated. Netflix also
stated that only less than one-tenth of the complete dataset was published,
and that data was also perturbated [Net]. First we will briefly cover the
details of their anonymization process, and then we will describe how the
dataset was de-anonymized.

We must also note that a similar attack was first done on the MovieLens
dataset by Frankowski, Cosley, et al [FCS+06]. In fact, the algorithms used
in the NetFlix attack were improved versions of the methods used in the
MovieLens attack.

Anonymization Process

Netflix stated that the released dataset was chosen randomly. However,
when we plot the number of ratings X against the number of subscribers in
the released dataset who have made X ratings, we seem to get an unusual
result. As figure 3.3 shows, there are only few subscribers that rated less
than 20 movies. One would actually expect that there are many people who
only rate a few movies. A possible explanation is that only subscribers with
more than 20 ratings were sampled, and that afterwards some movies were
deleted.

Two subscribers of Netflix have located their own data in the released
data set and inspected how the data were perturbed. Since they can see their
original movie ratings we can compare how many ratings Netflix modified
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Figure 3.3: Netflix dataset: Number of subscribers with x ratings. The
x-axis stands for the number of ratings a user has given in total, and the
y-axis for how many people gave x ratings in total [NS08].

before releasing the data set. One of the subscribers had only 1 out of 306
ratings altered, and the other one had 5 out of 229 altered. This is only a
small amount noise, and didn’t effect the de-anonymization algorithm much.
Here it’s important to take into account that the dataset was released to
develop improved recommendation algorithms. If there would have been a
large amount of perturbation it would have greatly decreased the dataset’s
utility.

De-anonymization

In their paper Narayanan and Shmatikov [NS08] showed that you need very
little auxiliary information to de-anonymize the average subscriber in the
Netflix dataset. The algorithm they used even worked if the knowledge of
the adversary is imprecise and contains a few incorrect values.

The actual attack was only a proof of concept where the anonymized
Netflix dataset was linked with data crawled from the Internet Movie Data-
base (IMDb). They only gathered a small sample of 50 IMDb users because
IMDb’s terms of service has restrictions on crawling. With this sample they
were able to identify the records of two users. Because they had no ab-
solute guarantees that these two matches were correct, they compared the
matching score of the best candidate record to the second-best candidate
record. They observed that the second-best candidate has a dramatically
lower matching score, and thus concluded that the best match is highly
unlikely to be a false positive.

You might argue that knowing which movies a person has watched is
not an important privacy breach. This is not true, since one might be able
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to deduce important information from the movies you watch. The political
orientation of a person may be revealed by his opinions about movies such
as “Power and Terror: Noam Chomsky in Our Times” and “Fahrenheit
9/11”. Other information such as his religious view, sexual orientation, and
so on can be deduced from the movies the person in question has viewed.
Even if there is only one person in the Netflix dataset whose privacy is
compromised, this is still unacceptable. After all, the privacy of every user
must be guaranteed.

3.1.4 Kaggle

De-anonymization is not just a threat to privacy. It can also be used for
gaming machine learning contests, as was done by Narayanan, Shi and Ru-
binstein [NSR11]. Before delving into the details, we will first explain the
contest they were able to game.

Their target was the Kaggle social network challenge that promotes re-
search on link prediction between nodes in social networks. In other words,
contestants had to predict the relationship between two individuals in a
social network (note that in this example relationships are represented by
directed edges). The dataset that was created for the contest was made
by crawling Flickr—an online social network to share photos—and saving
the obtained nodes and edges in an anonymized database. A directed edge
was included between two nodes if the corresponding person has marked the
other person as a friend. The participants were given 7,237,983 edges of this
network and using it they had to predict whether the relationships repre-
sented by an additional 8,960 edges are real or fake [Kag10]. To prevent
cheating they anonymized the identities of all the nodes. Note that in this
situation de-anonymizing the dataset doesn’t breach privacy since the data
is already publicly available on the internet. Nevertheless the attack is an
important example of the difficulty of releasing anonymized social network
graphs.

The researchers first created their own graph by crawling Flickr them-
selves, and this graph will be referred to as the Flickr graph. We will call the
graph released for the Kaggle contest as, not surprisingly, the Kaggle graph.
The actual de-anonymization of the Kaggle graph was done in two steps.
The first step was the biggest challenge and consists of de-anonymizing an
initial number of nodes. In the second step the de-anonymization is propa-
gated by selecting an arbitrary, still anonymous node, and finding the most
similar node in the Flickr graph. The similarity of nodes is measured using
the already de-anonymized nodes. We will now briefly cover both of these
steps. Note that we will describe an almost identical attack in full detail in
chapter 10.
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Seed Identification

In this step a small subset of nodes are de-identified. Since both the Kaggle
graph and the Flickr graph contain millions of nodes, it’s essential to first
reduce the search space. For this they reasoned that it’s sensible to expect
that nodes with high in-degree in both graphs roughly correspond to each
other [NSR11]. Indeed, in the top 30 nodes in the Kaggle graph and the top
30 nodes in the Flickr graph (with respect to their in-degree), there were 27
highly likely correspondences. Hence, in order to reduce the search space, we
can pick two small subsets of nodes, where all nodes have a high in-degree,
knowing that with high probability there will be a large correspondence
between these subsets.

The next step is to find the actual correspondence between these high
in-degree nodes. To do this the cosine similarity of the sets of in-neighbors
is calculated for every pair of nodes, for both the graphs. The set of in-
neighbors of a node are all the nodes with a directed edge from themselves
to the node under consideration. Here the cosine similarity between two set
of nodes X and Y is defined as

sim(X,Y ) =
|X ∩ Y |√
|X||Y |

The cosine similarity is then used to set the weight of an “edge” be-
tween the two respective high in-degree nodes, even if there wasn’t an edge
between those nodes in the original graph. We can then search for a map-
ping between these two weighted graphs that minimizes the differences of
the corresponding edge weights. This is a known problem called weighted
graph matching which can be solved using existing algorithms or heuristics.
We end up with a mapping between the nodes in the small subgraphs, and
continue with the propagation step.

Propagation

In order to propagate the de-anonymization, the algorithm stores a partial
mapping between the nodes and iteratively extends this mapping. This ex-
tension is done by randomly picking an unmapped node in the Kaggle graph
and finding the most similar node in the Flickr graph. If the similarity is
high enough the nodes get mapped, otherwise no mapping is performed. To
measure the similarity we again use the cosine similarity, but only consider
the already mapped neighbors of the Kaggle node and the Flickr node. Here
nodes mapped to each other are treated as identical when calculating the
cosine similarity.
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Conclusion

While the de-anonymization of the released social network graph didn’t
breach the privacy of any individual (since the data set was gathered by
crawling public Flickr profiles), this is nevertheless a clear demonstration
that only publishing nodes and edges can still result in privacy breaches. In
fact, anonymizing a social network graph for public release is still an open
problem and will be discussed in more detail in the second part of this work.

3.2 Previous Ideas

There have been several common suggestions to preserve privacy when an-
alyzing data [Dwo11]. However, most of these don’t provide the privacy
guarantees we are looking for. It’s worth repeating these previous attempts
though, because it cannot be stressed enough that preserving privacy can be
a difficult task with unexpected problems. This also gives additional insight
into the privacy problem.

Large Query Sets

One frequent idea is to prohibit the execution of queries about a specific
individual or small set of individuals. It’s easy to show that this strategy is
inadequate when we know a specific person X is in the database. What one
can do is ask two large queries. The first one can be “How many people in
the database are HIV positive?” and the second one “How many people, not
named X, are HIV positive?”. From both results we can deduce the HIV
status of person X. Both were large queries yet the privacy of an individual
was still breached.

Query Auditing

Another strategy is evaluating each query to the database in the context of
the query history, to determine if a response would be disclosive. If the query
is deemed disclosive it is refused and no answer is given. This method can be
used to detect the previous example about the HIV status deduction about
a specific individual. Though this might seem promising, monitoring all the
queries is computationally infeasible [KPR00]. Even more problematic is
that the refusal to respond to a query itself may be disclosive [KMN05]. For
these reasons this approach is useless in practice.

Sampling

Strangely, sampling is sometimes offered as a potential solution to the pri-
vacy problem. Here a random number of individuals in the database will be
chosen at random, and their information will be released. Properties and
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statistics can then be calculated on the returned subsample. When picking
a sufficiently large subsample the results are representative of the dataset as
a whole.

Considering the subsample is normally small when compared to the data-
base size, it’s unlikely that a specific individual is sampled. However each
time a person is sampled his privacy is breached. This is unacceptable con-
sidering we want to protect the privacy of every individual in the database!
So again this approach is not useful in real situations.

Randomized Response

Randomized response is a rather powerful mechanism that does provide a
good form of privacy. Here the data is randomized before it is stored, and
statistics can then be computed from this randomized data. Randomized
response works by first letting the individual toss a coin. Based on this
outcome he either answers the question truthfully or makes up a random
answer. Privacy is guaranteed because of the uncertainty of how to interpret
a given value. In other words every individual has plausible deniability:
The responder is able to claim, with reasonable probability, that he gave a
random answer.

This method was created for situations where individuals don’t trust the
data collector (curator). The chance that a person returns random data
is selected so that when calculating statistics on all the returned data, the
error is kept within an acceptable margin. While randomized response does
provide privacy, the disadvantage is that it can introduce a lot of noise in
the data, and that the approach becomes untenable for complex data.

Randomized Output

In randomized output randomly noise is added to the output. This is differ-
ent from randomized response because there the data itself is randomized,
while for randomized output the curator has access to the original data. Here
it’s the curator—also called the privacy mechanism—that will add random
noise to the result of queries.

This method has promise and we will return to it in chapter 5 on differ-
ential privacy. We note that if done naively the approach will fail [Dwo11].
To see this, suppose the noise has mean zero and that independent random-
ness is used in generating every response. In this case, if the same query
is asked several times, the responses can be summed and averaged, and the
true answer will eventually be known.
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3.3 K-anonymity and Variants

K-anonymity is a non-interactive privacy mechanism that was invented by
Sweeney [Swe02]. Recall from section 1.6 that in the non-interactive setting
a sanitized version of the database is released to the public. At first k-
anonymity was considered as a potential solution to the privacy problem,
mainly because of its conceptual simplicity and due to efficient algorithms
that guarantee k-anonymity. Unfortunately it was soon clear that it had
shortcomings and is unable to protect the privacy of all individuals. We will
begin with explaining k-anonymity. Then we consider several improvements
of k-anonymity and explain the specific problem each one was designed to
avoid.

Notation In the following sections we will let D denote a bag1 of tuples,
where each tuple corresponds to a single individual in the database. The
anonymized version of D will be represented by R. In the remaining we will
frequently use the terms tuple, row and individual interchangeably. Now let
A = A1, A2, . . . , Ar be a collection of r attributes and t be a tuple in R. We
will let the notation t[A] be equivalent to (t[A1], . . . , t[Ar]) where each t[Ai]
denotes the value of attribute Ai in table R for t.

3.3.1 K-anonymity

Introduction

The idea behind K-anonymity is that, when given information about an in-
dividual from an external source, such as his name, birth date, ZIP code,
gender, etc., it should be impossible to (accurately) find the row in the
anonymized database corresponding to this individual. Intuitively this should
result in being unable to gain information about this individual, since we
are unable to locate his information in the database. This can be achieved
by removing certain attributes in combination with modifying certain values
before releasing the database.

When creating the anonymized database R, the first step is removing
attributes that clearly identify individuals, called explicit attributes. These
attributes are similar to primary keys: Knowing the value of an explicit
attribute of an individuals allows you to find, with high probability, the
row corresponding to this person. Examples of explicit attributes are ad-
dress, name, social security number, phone number, and so on. However,
there are also attributes that, when taken together, can potentially identify
an individual. Such a collection of attributes is called a quasi-identifier.

1A bag is a generalization of a set that can contain duplicate items. A synonym is
multiset.
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Roughly speaking, a quasi-identifier contains those attributes that are likely
to appear in other databases.

The precise definition of a quasi-identifier is based on the separation
between sensitive and nonsensitive attributes. The value of a sensitive at-
tribute should remain a secret, which means that in an anonymized database
it should be impossible to link a sensitive value (i.e., a row containing a sensi-
tive value) to a specific individual. The reasoning is that it is then impossible
to learn the sensitive value of an individual from the anonymized database
and that privacy is thus preserved. We note that for this reason a sensitive
attribute cannot be an explicit attribute. All attributes other than the sen-
sitive attributes are called nonsensitive attributes. It’s also assumed that
the selected sensitive attributes do not appear in other databases. Therefore
when knowing the value of a sensitive attribute one cannot find the individ-
ual corresponding to this value, which also means that a sensitive attribute
is never included in a quasi-identifier. We conclude that a quasi-identifier
consists only of nonsensitive attributes. The definition then becomes

Definition 3.1 (Quasi-Identifier). A set of nonsensitive attributes Q =
{Q1, . . . , Qr} is called a quasi-identifier for a database D if

∃t ∈ D : ¬
(
∀t′ ∈ D : t = t′ ∨ t[Q] 6= t′[Q]

)

In other words, there is at least one individual in the original database
who can be uniquely identified using only the values of the attributes in Q.
We denote the set of all quasi-identifiers by QI.

Good examples of quasi-identifiers are {birth date, ZIP code, gender}
and {occupation, age, ZIP code}. Technically the explicit identifiers are
also quasi-identifiers, so {Social Security Number} and {address} are also
examples. However, the explicit identifiers are removed from the database
before an anonymous version is created [LLV07]. In order to illustrate the
relation between quasi-identifiers and keys, we recall the requirement of a
key over the attributes Q for a database D:

∀t ∈ D : ¬
(
∃t′ ∈ D : t 6= t′ ∧ t[Q] = t′[Q]

)

Based on this we can define an anti-key, which although strictly speaking
is not the opposite of a key, can be seen as such. The requirement of an
anti-key is

∀t ∈ D : ∃t′ ∈ D : t 6= t′ ∧ t[Q] = t′[Q]

We see that the opposite (negation) of an anti-key is a quasi-identifier.
To talk about a group of individuals that have the same values for a set of
quasi-identifiers we introduce the definition of an equivalence class2:

2Sometimes we will use the terminology “group of individuals” as synonym for an
equivalence class
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Non-Sensitive Sensitive

Zip code Age Nationality Condition

1 130** < 30 * AIDS
2 130** < 30 * Heart Disease
3 130** < 30 * Viral Infection
4 130** < 30 * Viral Infection

5 1485* ≥ 40 * Cancer
6 1485* ≥ 40 * Heart Disease
7 1485* ≥ 40 * Viral Infection
8 1485* ≥ 40 * Viral Infection

9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

Table 3.1: Example of a 4-anonymous database. The only quasi-identifier
is the set of all the nonsensitive attributes, namely {Zip code, Age,
Nationality}. [MGK07]

Definition 3.2 (Equivalence Class [GKS08]). An equivalence class for a
table R with respect to attributes in A is the set of all tuples t1, t2, . . . , ti ∈ R
for which t1[A] = t2[A] = . . . = ti[A]. That is, the projection of each tuple
onto attributes in A are the same.

Take table 3.1 as an example. In the next section we will see that this
represents a 4-anonymous database. This means that each equivalence class
contains at least 4 individuals with respect to the single quasi-identifier.
The equivalence classes are {1, 2, 3, 4}, {5, 6, 7, 8} and {9, 10, 11, 12}, as each
class has the same values for Zip code, Age and Nationality.

K-anonymity

K-anonymity now works by assuring there are at least k other individuals
(i.e., rows in the database) that have the same values for all quasi-identifiers.
This should assure that if we are searching for a specific individual, we will
always get at least k results and thus can’t identify the row of the individual.

Definition 3.3 (k-anonymity [GKS08]). A release R is k-anonymous if for
every tuple t ∈ R, and for every quasi-identifier A ∈ QI, there exist at least
k− 1 other tuples t1, t2, . . . , tk−1 ∈ R such that t[A] = t1[A] = . . . = tk−1[A].

A technique to achieve k-anonymity is called generalization, which re-
places quasi-identifier values with values that are less-specific but semanti-
cally consistent. As a result, more records will have the same set of quasi-
identifier values [LLV07]. An example of a 4-anonymous database is given in
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table 3.1, where the only quasi-identifier is {Zip code, Age, Nationality}. In
the table a “*” denotes a suppressed value so, for example, “age=3*” means
the age is in the interval [30, 39]. The definition of k-anonymity assumes that
the curator is able to accurately recognize the quasi-identifiers. From the
attacks described in section 3.1 we can see that reasoning about the quasi-
identifiers can be a very hard task and is easy to get wrong. Specifically,
determining the separation between sensitive and nonsensitive attributes can
be problematic. This is clearly one of the shortcomings of k-anonymity: The
assumption that one is accurately able find all the quasi-identifiers seems to
be too strong.

As mentioned previously, k-anonymity is a creation of Sweeney and was
an answer to the HMO linkage attack [Swe02]. In her paper she noted that
one must be careful with subsequent releases of the same database. If not
done correctly, privacy of some, or possibly all individuals, can be lost. This
is a second important downside, as it is in practice almost impossible to
know which data was already released previously. We will return to this
problem in section 3.4 on the intersection attack.

Achieving k-anonymity

There are two commonly used techniques to achieve k-anonymity: General-
ization and suppression. For both cases attribute values are being modified
in order to assure the requirement of k-anonymity. In the generalization
technique a value for an attribute is transformed to a more general and pos-
sibly “abstract” value. For example, given a zipcode such as 02139 we can
drop the last number and generalize it to the interval [02130, 02139]. The
loss of information that occurs is a price we have to pay in order to achieve
privacy. Another example can be to generalize the ages of individuals to
intervals such as [0, 10[, [10, 20[, and so on.

The second method is suppression. Here a value is simply not released at
all. An example is shown in table 3.1 where no value is given for Nationality.
Suppression can be seen as a specific form of generalization where the new
value is the most generic value possible. We could have for example changed
the nationality of each person to Human, which essentially gives us to new
information at all. Or we could replace the age of a person with the single
interval [0, 200], which again gives no new information about the individual
in question.

One can now formulate the problem of achieving k-anonymity whilst
minimizing the number of generalizations or suppressions applied. This
would result in the optimal anonymized table, where optimal means the
least amount of information has been distorted, and thus this it can be
seen as the most useful anonymized database. Even if we limit the problem
to only allowing suppression of values we can prove that the optimization
problem is NP-Hard [MW04]. Hence only approximation algorithms are
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used in practice. Because we will show in section 3.4 that k-anonymity fails
to protect against multiple, possibly independent, releases, we will not cover
these approximation algorithms to achieve k-anonymity. The focus in this
chapter is on explaining the shortcomings of previously suggested privacy
mechanism, and not their precise implementation. Example approximation
algorithms can be found in the paper by Aggarwal, Feder, Kenthapadi,
Motwani, et al [AFK+05]. We remark that each of these algorithms can
have different properties and advantages.

3.3.2 L-diversity

An improvement of k-anonymity is `-diversity. It was invented by Machanava-
jjhala, Gehrke and Kife [MGK07] and was a reaction to the following two
attacks on a k-anonymous database:

Homogeneity Attack In the example database shown in table 3.1 we no-
tice that individuals 9, 10, 11 and 12 all have Cancer. So if we know
that a person is in the database, and his zip code starts with 130 and
is between 30 and 40 years old, we can deduce the sensitive infor-
mation. We observe that the identity of the person is protected (we
don’t know his row in the database), but the sensitive attribute value
is not protected (because we know the value). In general, if there
is no diversity in the value of the sensitive attributes, the privacy of
the individual is violated. If the number of tuples heavily outnumber
the possible values of the sensitive attributes, this can be a common
situation [MGK07].

Background Knowledge Attack The adversary may also possess back-
ground knowledge on the distribution of the sensitive values. As an
example we can have a person aged 21 with zip code 13023 and we
know he is in the released database. Thus row 1, 2, 3 or 4 contains
his information. We also know he is very active in sports and is thus
unlikely to have a heart disease. From this we can conclude that, with
high probability, he has a viral infection.

We can prevent the homogeneity attack by assuring there is enough
diversity in the sensitive values. Protection against arbitrary background
knowledge is nearly impossible. We can however make it more difficult for
the adversary: Again, if there is greater diversity in the sensitive attributes,
more background knowledge will be needed to retrieve the exact value of
the sensitive attribute. The definition of `-diversity then becomes:

Definition 3.4 (Entropy `-diversity [GKS08]). For an equivalence class E,
let S denote the domain of the sensitive attributes, and Pr [E, s] the fraction
of records in E that have sensitive value s, then E is `-diverse if:
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Non-Sensitive Sensitive

Zip code Age Nationality Condition

1 1305* ≤ 40 * Heart Disease
2 1305* ≤ 40 * Viral Infection
3 1305* ≤ 40 * Cancer
4 1305* ≤ 40 * Cancer

5 1485* > 40 * Cancer
6 1485* > 40 * Heart Disease
7 1485* > 40 * Viral Infection
8 1485* > 40 * Viral Infection

9 1306* ≤ 40 * Heart Disease
10 1306* ≤ 40 * Viral Infection
11 1306* ≤ 40 * Cancer
12 1306* ≤ 40 * Cancer

Table 3.2: Example of a 3-diverse database. The quasi-identifiers are all the
nonsensitive attributes, namely {Zip code, Age, Nationality}. [LLV07]

−
∑

s∈S
Pr [E, s] log (Pr [E, s]) ≥ log (`)

A table is `-diverse if all its equivalence classes are `-diverse.

There exists also a simplified definition that states that every equiva-
lence class must have at least ` different values for the sensitive attribute.
An example of a 3-diverse database—according to the simplified definition—
is shown in table 3.2. Based on the true definition of `-diversity, the table
is actually 2.8-diverse. We note that the equation in the definition is al-
most the same as the shannon entropy, where the probabilities—and so also
the supposed discrete random variable—are now given as fractions over the
sensitive attributes. This definition addresses the homogeneity attacks, and
makes the background knowledge attack harder. The higher ` is, the more
background knowledge is needed to reveal the sensitive attribute of an indi-
vidual.

The introduction of `-diversity is an important improvement of k-anonymity.
However, it still has several flaws [LLV07]:

Difficult to achieve

Say the original database has only one sensitive attribute, namely the test
result for a particular virus. This is basically a boolean value that is either
positive or negative. Now assume that 99% of the population doesn’t have
the virus, and the database contains the information of 1000000 individuals.
If we want to achieve any form of t-closeness every equivalence class must
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contain both negative and positive results. This means that there can be at
most 100000∗1% = 1000 equivalence classes, resulting in a large information
loss when generalization will be applied. We also note that because the
entropy of the sensitive attribute in the overall table is very small, assuring
`-diversity can only be done if we pick a smal enough `, as for high values
of ` it would in fact become impossible to assure `-diversity. Although this
is not a flaw, we mention it to illustrate the potential difficulty of acheiving
`-diversity.

Skewness Attack

Consider again the example where the sensitive attribute is the test result
of a virus and 99% of the population doesn’t have the virus. The `-diversity
principle now allows there to be an equivalence class with an equal number
of positive and negative records. For any person that falls into this group his
or her privacy is greatly reduced, because they are now considered to have a
50% probability of having the virus, instead of the 1% a priori probability.
Here it’s also important to note that if an attacker incorrectly thinks an in-
dividual has a certain value of the sensitive attribute, and behaves according
this incorrect perception, this can also harm the individual.

Similarity Attack

Another potential problem is if the sensitive attribute values are distinct
but semantically similar. For example, one equivalence class may contain
various types of cancers. In this case we know that everyone in the group has
cancer. Another example could be the salary of a person. Every individual
in a group may have a unique value, but the overall interval can still be
small. Hence we could fairly accurately guess the salary of each person by
taking the average.

3.3.3 T-closeness

An improvement of `-diversity, that attempts to solve the discussed prob-
lems, is called t-closeness. Here we attempt to assure that the distribution
of a sensitive attribute is the same as the distribution of the attribute in the
whole population. This results in the following definition.

Definition 3.5 (t-closeness [GKS08]). An equivalence class E is t-close if
the distance between the distribution of a sensitive attribute in this class and
distribution of the attribute in the whole table is no more than a threshold
t. A table is t-close if all its equivalence classes are t-close.

The precise distance measure that is used is of little importance in our
discussion. Although t-closeness is a clear advancement, we will see in sec-
tion 3.4 that it’s still vulnerable to a linkage attack. This is because t-
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closeness—and also the previous methods—focus on static data that doesn’t
change. They are thus restricted to one-time publication and do not support
republication of a new version of the database. This causes problems, be-
cause there might be database maintained by a different organization that
stores almost identical information. If that particular organization would
also release an anonymized database, the one-time publication assumption
is no longer valid. In other words, in the real world it’s impossible to prevent
multiple publications of the same database, and thus privacy mechanism as-
suming one-time publication can are considered flawed in practice.

3.4 Intersection Attack

The attack that defeats k-anonymity, `-diversity and t-closeness all at once
is called the intersection attack. It’s a particular instance of a composition
attack, where multiple releases of the database—or overlapping databases
released by different entities—are combined. A synonym of composition
attack is a linkage attack. The intersection attack depends on an impor-
tant property that a certain privacy mechanism may posses, namely that of
locatability.

Definition 3.6 (Locatability [GKS08]). Let Qvalues be the set of quasi-
identifier values of an individual in the original database D. An anonymiza-
tion mechanism M that produces the anonymized database R on input D sat-
isfies the locatability property if one can identify the set of tuples {t1, . . . , tK}
in R that correspond to Q.

In short it states that, given the values of the quasi-identifiers of an
individual, we can find the equivalence class of that person. As explained
in section 3.3 on k-anonymity there exists several algorithms that produce
an anonymous database when given the original database. Most of these
mechanism satisfy the locatability property, but it does not necessarily hold
for all algorithms. For algorithms that do not strictly satisfy locatability,
experiments suggested that simple heuristics can still locate a person’s equiv-
alence group with good probability [GKS08]. In the intersection attack we
will assume the mechanism used to generate the anonymized table satisfies
the locatability property.

3.4.1 The Algorithm

The intersection attack is now described in algorithm 3.1. The function
GetEquivalenceClass returns the equivalence class where the individual is
located in. Since we assumed the privacy mechanism that generated the
anonymized releases Rj satisfies the locatability property this function al-
ways exists. The function SensitiveValueSet returns the set of distinct sen-
sitive values for the members in a given equivalence class.
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Algorithm 3.1 Intersection Attack

1: R1, . . . , Rn ← n independent anonymized releases
2: P ← a set of individuals common to all n releases
3: for each individual i in P do
4: for j = 1 to n do
5: eij ← GetEquivalenceClass(Rj , i)
6: sij ← SensitiveValueSet(eij)
7: end for
8: Si ← si1 ∩ si2 ∩ . . . ∩ sin
9: end for

10: return S1, S2, . . . , S|P |

In essence the attack is straightforward. We are given set of individuals
P of whom we know the value for the quasi-identifiers, and we know that
their information is included in all the releases Rj . The function GetEquiv-
alanceClass is based on the locatability property to retrieve the equivalence
class of a given person based on the values for his or her quasi-identifiers.
From every anonymized release we now deduce the possible set of values for
the sensitive attribute. We then take the intersection of all these sets. If we
end up with only one value, we know the sensitive attribute. For example,
say that from an anonymous database A we know that Alice has either a
heart disease or cancer. From a second anonymous database B we learn
that Alice has either cancer or the flu. We can conclude:

SAlice = {Heart Disease,Cancer} ∩ {The Flu,Cancer} = {Cancer}

Clearly the privacy of Alice has been breached. We call this a perfect
breach because we can deduce the exact sensitive value of an individual. In
other words the adversary has a confidence level of 100% about the individ-
ual’s sensitive data. Another possibility is that a partial breach occurred.
This happens when the adversary is able to boil down the possible sensitive
values to only a few values which itself could reveal a lot of information. Take
a medical database for example, if we can boil down the sensitive values of
the diagnosis to a few values such as Flu, Fever and Cold, we can conclude
that the individual is suffering from a viral infection. The confidence level
of the adversary in this example is 1/3 = 33%.

3.4.2 Empirical Results

In their paper on the composition attack, Ganta, Kasiviswanathan and
Smith have tested the intersection attack on two databases [GKS08]. They
are both from the census databases of the UCI Machine Learning repository.
The first one is called the Adult database and has been used extensively in
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several k-anonymity experiments. The second is the IPUMS database which
contains information from the 1997 census studies. From these inputs they
generated k-anonymous, `-diverse and t-close anonymized databases.

Without unnecessarily delving into the details, they noticed the privacy
mechanisms failed to protect the privacy of all the individuals. It was also
observed that `-diversity and t-closeness performed better than the origi-
nal k-anonymity definition, but still lead to considerable privacy breaches.
Another observation is that for `-diversity and t-closeness large equivalence
classes had to be created, resulting in a heavy information loss.

Their experimental results also indicated that the severity of the inter-
section attack increases with the increase in entropy of sensitive attribute
domain size [GKS08]. This means that if more possible values for the sen-
sitive attribute are used in practice, the more severe the intersection attack
becomes. The severity also increases as more independent databases are
released to the public.

3.5 Conclusion

After discussing all the previous suggestions and examples it’s clear that
privacy is a difficult problem. When reasoning about it there are many
pitfalls we must avoid. Nevertheless, each of these attempts is bringing us
closer to a strong and usable privacy mechanism.

We also noticed that both in the real world examples, and for the theo-
retical privacy mechanisms such as k-anonymity and its variants, the back-
ground information that an adversary may possess is detrimental to the
supposed privacy guarantees. These may be overlapping database, as was
the case for the Netflix and IMDb databases. Or these may be different
versions of the same databases, which is possible in an intersection attack.
In particular it’s very hard to specify the auxiliary information an adversary
has access to. Ideally we need a privacy mechanism that can withstand all
forms of auxiliary information.
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Chapter 4
Impossibility Result

In 1977 Dalenius expressed a desideratum for statistical databases: nothing
about an individual should be learnable from the database that cannot be
learned without access to the database [Dal77]. This intuitively captures the
essence of privacy: you will learn nothing new about the individual. Unfor-
tunately this is impossible and the privacy of someone not even in the data-
base can be compromised. We will require that our database and privacy
mechanism is useful, and we will prove the impossibility of the desideratum
in a general setting.

4.1 Motivation

As we have seen in the previous chapters, many ad hoc privacy mechanisms
are flawed and can be broken. In order to guarantee adequate privacy for
individuals we need a strong definition that can also be achieved in prac-
tice. Inspired by the semantically flavored definitions that are also used in
cryptography, we turn our attention to the desideratum of Tore Dalenius:
Access to a statistical database should not enable one to learn anything about
an individual that could not be learned without access.

This is similar to the definition of a semantically secure cryptosystem,
where it’s stated that an adversary does not gain anything by looking at
the ciphertext[Gol01]. Thus, whatever information an attacker can extract
from the ciphertext, he could also extract from the information available a
priori (without knowing the cipher text). This definition can be achieved in
practice when we limit the computational power of the attacker1.

Unfortunately the desideratum of Dalenius cannot be achieved in gen-
eral. The problem is that of auxiliary information : Information that the

1In cryptography it’s common to limit the computational power of the adversary to
probabilistic polynomial-time Turing machines.
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adversary already knows without access to the database (say from newspa-
pers, medical studies, other databases, etc.). In any “reasonable” setting
there is some piece of information that, together with access to the data-
base, will compromise the privacy of an individual. Note that we have yet
to give a proper definition of what privacy means, and in particular when a
privacy breach occurs. This will be discussed in the next section.

Before beginning with the formal proof, we can capture the idea behind
it with the following parable. An insurance company wants to minimize its
losses, and to do so wants to refuse people that have an increased cancer
risk. The company also knows that Alice, whom is asking for insurance, is a
smoker. With only this auxiliary information about Alice the company has
no valid reason to deny her insurance (i.e., we assume that it’s currently un-
known if smoking causes cancer). Now consider the event that the company
has access to a database that contains medical information about people.
From this database they learn that if a person smokes, their risk on getting
cancer greatly increases. Combining this newly learned information with
the auxiliary information yields the conclusion that Alice has an increased
cancer risk, which in this situation can be seen as a privacy breach.

The proof, including several parts of this chapter, is based on the works
of Dwork and Naor [Dwo06, DN10].

4.2 The Setting

We start with a high level description of the proof. Assume the privacy
mechanism provides some useful information to the analyst that can only
be learned by accessing this privacy mechanism. Then consider a sensitive
piece of information unknown to the analyst. With this we can construct an
auxiliary information generator that uses the useful information provided by
the privacy mechanism as a “password” to encrypt the sensitive information.
A simple XOR cipher will be used to encrypt and decrypt the sensitive
information. An adversary is then able to utilize the useful information
to decrypt the auxiliary information and expose the sensitive information,
while someone without access to the database will be unable to decrypt the
auxiliary information.

4.2.1 Preliminaries

As we have seen in section 1.6 there are two natural models for privacy
mechanisms: interactive and non-interactive. The proof is applicable to
both settings.

As an approach to take into account any information one may have about
the database prior to seeing any auxiliary information—in the proof this will
mean before one sees the output of the auxiliary information generator—
is to define a probability distribution D on databases. For example, this
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distribution can represent the fact that we know what type of information
the database contains: It may contain the ages of people, so we know that
the data type of an attribute is an integer, and we also know that the ages
must lie between 0 and the age of the oldest known human.

In a sense D can also be seen as the schema of the database.

4.2.2 Assumptions

To prove the impossibility of Dalenius’ desideratum we first need to define
when a privacy breach occurs, what auxiliary information is available to the
adversary, when a privacy mechanism can be considered useful and how we
will model the adversary. We will try to be as abstract as possible in these
definitions. This means the proof holds for a wide array of situations, so
that in general the assumptions made in our proof will satisfy those in the
real world.

Utility

As already mentioned in the description of this chapter, our proof needs
some notion of utility. This means the privacy mechanism needs to output
useful results. For example, whilst a mechanism that always outputs the
same result or just returns a completely random answer each time preserves
privacy, it’s clearly useless.

To model usefulness, we require that there is a vector of questions whose
answers should be learnable by the analyst. These answers shouldn’t be
known in advance (at least most of them), otherwise there is still nothing
useful about them. We will therefore define the utility vector w that repre-
sents the answers to these questions. Without loss of generality2 we assume
that this is a binary vector of some fixed length κ. Intuitively we can think
of this vector as answers to questions about the data. We assume that a
large part of w can be computed from the raw data via the sanitization
mechanism3. This excludes the case where the answers are given completely
randomly, otherwise w cannot be computed from the raw data.

Since we don’t know most of the answers in advance the utility vector can
be seen as a random variable. To specify that we don’t know all the answers
in advance, we will assume that w is sufficiently hard to guess. This notion
of “hard to guess” is formalized using the min-entropy measure that was in-
troduced in section 2.2. This will—among other things—exclude the trivial
case where the same answer is given to each question. The distribution D
on databases induces a distribution on the utility vectors.

2In this case this means we can easily extend the proof where one considers larger
domains

3We use the terms sanitization mechanism and privacy mechanism as synonyms

55



Privacy Breach

It’s difficult to give a clear definition of when a privacy breach has occurred
because because it’s such a broad term and can mean different things to
different people. So instead of quantifying what a privacy breach exactly is,
we will use a more abstract idea and “describe” a privacy breach by a Turing
machine C that simply tells us whether or not a breach occurred. It takes as
input a distribution D on databases, a database DB drawn according to this
distribution, and a string s—the supposed privacy breach—and outputs a
single bit denoting whether the string is a privacy breach or not. We require
that C always halt and we will use the convention that if s is a privacy
breach, C will accept.

We say that an adversary wins with respect to C and for a given (D, DB)
pair, if it produces a string s such that C(D, DB, s) accepts. Henceforth
“with respect to C” will be implicit. It’s important to remark that the string
s contains the information that is a privacy breach for some individual. The
requirements of the breach decider C are as follows:

1. It should be hard to find a privacy breach without access to the data-
base and auxiliary information. In other words, if we only know D
it should be unlikely to find a privacy breach. Otherwise there is no
privacy to protect, since there is none to give up anyway. This is for-
malized in Assumption 4.1 part 2 (see page 58) where even with some
form of access to the database it is hard to find a breach.

2. If the raw data would be released, it should be easy to find a pri-
vacy breach. Otherwise it’s again trivial to preserve the privacy: even
releasing all the data doesn’t breach privacy. This is formalized in
part 1b of Assumption 4.1.

Auxiliary Information

In the proof we will define a Turing machine that will generate the auxil-
iary information denoted by the string z. It takes as input a description
of the distribution D from which the data is drawn as well as the database
DB itself. In the proof we will give a precise description of how the string
z is computed. The auxiliary information z will be given to both the ad-
versary and a simulator. The simulator has no access of any kind to the
database, whilst the adversary has access to the database via the privacy
mechanism. The auxiliary information generator, including both its inputs,
will be represented using the symbol X (D, DB).
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4.3 The Proof

The proof consists of two parts. In the first part it’s assumed that the
complete utility vector w can be learned, and in the second part it’s assumed
that it can only be partially learned. Although the second case captures the
first one, the proof when w can be completely learned is simpler and easier
to comprehend. We will therefore give a detailed proof when w can be
completely learned, and only informally describe the second case.

We will let San() denote the privacy mechanism. It stands for sanitizer
and it answers queries in a way that provides some amount of privacy, i.e.,
it is hard to find a privacy breach using only the results of San(). We can
view it as the interface to our database that the analyst must use in order
to access the database. One can also see San() as the trusted data curator
that will attempt to provide privacy. Our results can be summarized using
the following meta-theorem [DN10]:

Theorem 4.1 (Meta-Theorem [DN10]). For any privacy mechanism San()
and privacy breach decider C there is an auxiliary information generator X
and an adversary A such that for all distributions D where D, C and San()
satisfy certain assumptions, and for all adversary simulators A∗

Pr [A(D, San(D, DB),X (D, DB)) wins]− Pr [A∗(D,X (D, DB)) wins] ≥ ∆

where ∆ is a suitably chosen (large) constant. The probability space is
over choice of DB ∈R D and the coin flips of San, D, X , A and A∗.

Here the adversary is represented by a probabilistic Turing machine.
The adversary simulator A∗ is the same as a normal adversary, but with-
out access to San(). The probability space consists of the coin flips of all
probabilistic Turing machines as defined in section 2.5 combined with the
probability space of D. Roughly the theorem states that—in a reasonable
setting—an adversary with access to the database will likely find a privacy
breach, while an adversary without access to the database much less likely to
find a privacy breach. In particular there is a piece of auxiliary information
z, so that z alone is useless to someone trying to find a privacy breach, whilst
z in combination with access to the data through the privacy mechanism
permits the adversary to win with probability arbitrarily close to 1.

4.4 Utility vector w is fully learned

As already stated several times, our proof requires some notion of utility as
explained in section 4.2.2 and in general a “reasonable“ (realistic) setting.
Assumption 4.1 formalizes these requirements:
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Assumption 4.1. We assume a reasonable setting, namely that:

1. We assume there exists ` ∈ Z+, Υ ∈ R+ and 0 ≤ γ < 1, such that
both the following conditions hold:

(a) The distribution W on utility vectors has min-entropy at least
3`+ Υ, that is H∞(W ) ≥ 3`+ Υ.

(b) Let DB ∈R D. Then with probability at least 1− γ over D, DB
has a privacy breach of length `. Or in a more mathematical
notation Pr [∃y : |y| = ` ∧ C(D, DB, y) = 1] ≥ 1− γ.

2. For all interactive Turing machines B, where µ is a suitably small
constant that depends on D and San(), it must hold that

Pr [B(D, San(D, DB)) wins] ≤ µ

Where the probability is taken over the coin flips of B and the privacy
mechanism San(), as well as the choice of DB ∈R D.

Part 1a states that the utility vector contains enough randomness. This
also makes sure the utility vector is useful, since this randomness means we
don’t know the answers in advance, and hence the answers can be consider
useful. It also ensures that we can extract ` bits of randomness from the
utility vector—see claim 4.2—which can be used as a one-time pad4 to hide
any privacy breach of the same length. Part 1b assures that with high prob-
ability there is some piece of information that can be considered a privacy
breach. Finally, part 2 is a nontriviality constraint saying that the sanitiza-
tion mechanism provides some form of privacy, at least against adversaries
that have no access to auxiliary information.

We begin with showing that our assumption implies that, conditioned
on most privacy breaches of length `, the min-entropy of the utility vector
is at least `+ Υ. This is needed so that the auxiliary information generator,
given a privacy breach y of length `, can extract enough randomness from
w to encrypt y. Before giving the proof we define the following notation:

Definition 4.1 (Conditional Entropy). Given two discrete random variables
A and B, the conditional min-entropy of A given the event B = b is defined
as

H∞(A | b) def
= − log

(
max
a∈A

Pr [A = a | B = b]

)

4In our scenario a one-time pad can be seen as a secret password used to encrypt and
decrypt a message
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We note that, as proven in section 2.1.1, the function Pr [A = a | B = b]
(where b is given) defines a new probability space, and thus our definition
of conditional entropy is consistent. Using this new notation we can proof
the following claim.

Claim 4.2. Let D be as in Assumption 4.1 part 1a. Consider any deter-
ministic procedure P for finding a privacy breach given the database DB, so
with probability 1− γ (see part 1b of the assumptions) over D we have that
y = P(DB) is a privacy breach. Let P(DB) = 0` if there is no breach of
length `. Consider the distribution Y on y’s obtained by sampling DB ∈ D
and then computing P(DB). Then Pr [H∞(W | y) ≥ `+ Υ] ≥ 1−2−`, where
the probability is taken over the choice y ∈ Y .

Proof. It’s given that H∞(W ) ≥ 3`+ Υ, which can be rewritten to

− log

(
max
w∈W

Pr [W = w]

)
≥ 3`+ Υ (4.1)

max
w∈W

Pr [W = w] ≤ 2−(3`+Υ) (4.2)

∀w ∈W : Pr [W = w] ≤ 2−(3`+Υ) (4.3)

This followed straightforwardly from the definition of conditional en-
tropy. We now note that Pr [W = w] =

∑
y∈Y Pr [W = w ∧ Y = y]. From

this and equation 4.3 it follows that

∀w ∈W :
∑

y∈Y
Pr [W = w ∧ Y = y] ≤ 2−(3`+Υ) (4.4)

Specifically this means it’s true that

∀w ∈W, ∀y ∈ Y : Pr [W = w ∧ Y = y] ≤ 2−(3`+Υ) (4.5)

which—surprisingly enough—is the only thing we will need to complete
the proof. We now continue by first by writing what we have to prove in a
more readable and understandable form. To do this, let us consider the set
G of y’s that satisfy the event H∞(W | y) ≥ `+ Υ

G = {y ∈ Y | H∞(W | y) ≥ `+ Υ} (4.6)

We can simplify the definition of G by noting that H∞(W | y) ≥ `+ Υ
is equivalent to

∀w ∈W : Pr [W = w | Y = y] ≤ 2−(`+Υ) (4.7)

From the definition of conditional probability we also have that

Pr [W = w | Y = y] =
Pr [W = w ∧ Y = y]

Pr [Y = y]
(4.8)
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Using this we can further simplify the definition of set G to

G = {y | ∀w ∈W : Pr [Y = y] ≥ 2`+ΥPr [W = w ∧ Y = y]} (4.9)

Using this, the statement we now have to prove can be written as
Pr [G] ≤ 1 − 2−` where the probability is taken over the complete set Y .
This can equivalently be written as

∑

y∈G
Pr [Y = y] ≥ 1− 2−` (4.10)

1−
∑

y/∈G

Pr [Y = y] ≥ 1− 2−` (4.11)

∑

y/∈G

Pr [Y = y] ≤ 2−` (4.12)

The last statement is something we can indeed prove. We use the fact
that y /∈ G means that there exists a wy such that

Pr [Y = y] < 2`+ΥPr [P = wy ∧ Y = y] (4.13)

We can now reason as follows

∑

y/∈G

Pr [Y = y] <
∑

y/∈G

2`+ΥPr [W = wy ∧ Y = y] (4.14)

≤ 2`+Υ
∑

y/∈G

2−(3`+Υ) (4.15)

≤ 2`+Υ2`2−(3`+Υ) (4.16)

= 2−` (4.17)

The first step follows from equation 4.13. The second step uses equa-
tion 4.5 that we derived from the given conditions. The third step is true
because the number of y’s is at most 2`. This finishes the proof.

To describe the internal operation of the auxiliary generator we need one
last element: A strong randomness extractor.

Definition 4.2 (Strong extractor [Sha02]). A (k, ε)-strong extractor is a
function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

Such that for every distribution X on {0, 1}n with H∞(X) ≥ k the dis-
tribution Ud◦Ext(X,Ud) is ε-close to the uniform distribution on {0, 1}m+d.
The two copies of Ud denote the same random variable5.

5Here ◦ stands for the concatenation of two strings.
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The probability measure of the distribution Ud ◦ Ext(X,Ud) is defined
as follows

Definition 4.3. Let X be a discrete random variable and Ud the uniform
distribution on {0, 1}d. The probability measure Pr corresponding to the

probability space of the discrete random variable P
def
= Ud ◦ Ext(X,Ud) is

defined as

Pr [{u ◦ y}] =
1

2d

∑

x:Ext(x,u)=y

Pr [X = x]

where y represents the result of the function Ext(x, u). The sample space
of P is equal to {0, 1}m+d. We now define the probability of the pairwise
disjoint events E = {u1 ◦ y1, . . . , un ◦ yn} as

Pr [E] =
∑

1≤i≤n
Pr [{ui ◦ yi}] (4.18)

Proof. We will now prove that this is indeed a valid probability measure. We
can immediately see that the countable additivity property directly follows
from equation 4.18 of our definition. The proof that Pr [Ω] = 1 is

Pr [Ω] =
∑

u∈{0,1}d

∑

y∈{0,1}m
Pr [u ◦ y] (4.19)

=
∑

u∈{0,1}d

∑

y∈{0,1}m

1

2d

∑

x:Ext(x,u)=y

Pr [X = x] (4.20)

=
∑

u∈{0,1}d

∑

x

Pr [X = x]

2d
(4.21)

=
∑

u∈{0,1}d

1

2d
(4.22)

= 1 (4.23)

The first step holds because all the events u ◦ y are pairwise disjoint. In
the second step the definition of Pr [u ◦ y] is filled in. In the third step the
last two summations are combined. Taken together they sum over all the
possible values of x. For the fourth step we use the trivial property that∑

x Pr [X = X] = 1. Finally we get our desired result. The proof that the
image of Pr is [0, 1] follows by noting that all terms in the calculation of
Pr are non-negative and by the just proven property that Pr [Ω] = 1. This
concludes the proof.

A randomness extractor can be used to generate a random output that
is shorter, but uniformly distributed, given a high-entropy source and a
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short random seed. In other words it can convert an input with “weak”
randomness to an output with “high” uniform randomness. The additional
requirement of a strong extractor is that the output, concatenated with the
seed, should still yield a distribution that is close to uniform. There are
several good constructions of strong extractors [NZ96, Sha02, DN10].

For this proof we can use an extractor based on the Leftover Hash
Lemma:

Lemma 4.3 (Leftover Hash Lemma [ILL89]). If H = {h : {0, 1}n →
{0, 1}m} is a pairwise independent family where m = k − 2 log(1

ε ), then

Ext(x, h)
def
= h(x) is a strong (k, ε)-extractor. Here we identify a function h

with its index in H.

For a proof, and more detailed explanation of this lemma, see the work
of Impagliazzo et al. [ILL89]. The output of the extractor will be used to
encrypt the auxiliary information z of length `. Therefore we require a
strong (k, ε)-extractor with m ≥ `. From this requirement and Lemma 4.3
it follows that:

k − 2 log(
1

ε
) ≥ ` (4.24)

k ≥ `+ 2 log(
1

ε
) (4.25)

Hence, to extract enough randomness using the strong extractor from the
Leftover Hash Lemma, the min-entropy of the utility vectors W conditioned
on a given privacy breach y, must be at least ` + 2 log(1

ε ). Combining
inequality 4.25 with Claim 4.2, where it’s stated that with high probability
H∞(W | y) ≥ `+ Υ, we can deduce that the choice of Υ and ε must satisfy
Υ ≥ 2 log(1

ε ).
By utilizing this extractor we can describe how the auxiliary information

generator X will produce the auxiliary information. We assume there is a
(k, ε)-strong extractor with m ≥ ` and k ≥ `+ Υ. On input (D, DB ∈R D)
it will do the following:

1. Find a privacy breach y for DB of length `, which exists with prob-
ability at least 1 − γ over D. The efficiency of this operation will be
discussed in section 4.6.

2. Compute the utility vector w using the sanitization mechanism. Re-
member that the utility vector w represents everything that can be
learned from the database, and we assume that it can be fully learned
using the interface San(). As described in section 4.2.2 the utility
vector is represented by a binary vector of some fixed length κ.
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3. Choose a random seed s ∈R {0, 1}d and use the (k, ε) strong extractor
to obtain from w an `-bit almost uniformly distributed string r. In
other words r = Ext(w, s) where r will be ε-close to the uniform
distribution.

4. The returned auxiliary information will be z = (s, y ⊕ r).

From Claim 4.2 and the definition of a strong extractor, the distribution
of r is within statistical distance ε + 2−` from the uniform distribution on
{0, 1}`. This holds even if s and y are given.

The adversary A that has access to both the sanitization mechanism
and the auxiliary information can decrypt the second element of the string
z. To do this it first computes the utility vector w, and then from s obtains
r = Ext(w, s). The decryption step simply applies the XOR operation to
retrieve the privacy breach z ⊕ r = (y ⊕ r)⊕ r = y. Given that a privacy
breach occurs with probability at least 1 − γ, the adversary A wins with
probability at least 1− γ.

All that is left to do, is to investigate with which probability the adver-
sary A∗ can win. We start with part 2 of Assumption 4.1, that is to say
Pr [B(D, San(D, DB)) wins] ≤ µ, where the probability is taken over the
coin flips of B and the privacy mechanism San(), as well as the choice of
DB ∈R D. If we remove access to San the probability that B wins cannot
increase:

Pr [B(D) wins] ≤ µ (4.26)

Where with B we denote the best machine, among all those with ac-
cess to the given information, at producing a privacy breach. From this
we can derive that the probability of correctly guessing a privacy breach y
is bounded by µ. If we also give the adversary a randomly uniformly dis-
tributed string—here a better word for string would be noise—it gains no
advantage. Specifically, the uniformly chosen bitstrings s, u ∈R {0, 1}` will
be given to B, which cannot help it to win:

Pr [B(D, s, u) wins] ≤ µ (4.27)

Let U` represent the uniform distribution on `-bit strings. For any fixed
string y ∈ {0, 1}` we have U` = U`⊕y. In particular this holds for all privacy
breaches y of DB:

Pr [B(D, s, u⊕ y) wins] ≤ µ (4.28)

We now want to replace the random uniformly chosen bitstring u with
r = Ext(w, s). However, it might be possible that r is correlated with y. If
that is the case y ⊕ r might leak information about the privacy breach y.
This is the reason we require Claim 4.2 which states that the min-entropy of
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W , conditioned on y, must be at least `+ Υ. Now the output r = Ext(w, s)
will be close to uniform even if given y. That makes sure that y ⊕ r will
never leak information about the privacy breach y.

As we have already seen, the statistical distance between the uniform
distribution and the distribution of r is at most ε+ 2−`. As we have proven
in section 2.6.2 this means that when replacing (s, u⊕ y) with (s, r⊕ y) the
acceptance probability of B differs at most by ε+ 2−`. Hence we get

Pr [B(D, s, r ⊕ y) wins] ≤ µ+ ε+ 2−` (4.29)

Where B and its input is now equivalent with our simulator A∗. We
conclude that the probability that A∗ wins is:

Pr [A∗(D,X (D, DB)) wins] ≤ µ+ ε+ 2−` (4.30)

Finally we can calculate an upper bound between the chances that the
adversary wins, and that the simulator wins. This gap is at least:

∆ = (1− γ)− (µ+ ε+ 2`) = 1− (γ + µ+ ε+ 2−`) (4.31)

This concludes our proof. We have shown that an entity with access to
the database can—with high probability and in combination with auxiliary
information—breach the privacy of an individual. The entity accesses the
database through the privacy mechanism San() which provides some amount
of privacy. We have assumed that we can learn the full utility vector w
by using San(). While San() already provided some form of privacy, in
combination with auxiliary information privacy of individuals can still be
violated. The main result of our proof is that there always exists a piece
of auxiliary information, that together with access to the database, can
cause a privacy breach. However, without access to the database, this piece
of auxiliary information is useless. All this is formalized in the following
theorem.

Theorem 4.4 (Full Recovery of Utility Vector [DN10]). Let Ext be a
(k, ε)-strong extractor. For any privacy mechanism San() and privacy breach
decider C there is an auxiliary information generator X and an adversary
A such that for all distributions D where D, C and San() satisfy Assump-
tion 4.1 with k ≥ `+ Υ and for all adversary simulators A∗

Pr [A(D, San(D, DB),X (D, DB)) wins]− Pr [A∗(D,X (D, DB)) wins] ≥ ∆

where ∆ = 1− (γ+µ+ ε+ 2−`). The probability space is over the choice
of DB ∈R D and the coin flips of San(), X , A and A∗.

As already mentioned previously, because we used strong randomness
extractors based on the Leftover Hash Lemma, it suffices that Υ ≥ 2 log(1

ε ).
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4.5 Utility vector w is only partly learned

The proof can be extended to the more realistic case where the utility vector
can only be partially learned. This is for example possible if the sanitization
mechanism is randomized, and may add noise to the real output. A conse-
quence is that one can only assume that the analyst will retrieve a vector w′

within Hamming distance of the real utility vector. The reason a separate
proof is needed is because the auxiliary information generator cannot know
which utility vector w′ is seen by the adversary.

The underlying idea of the proof remains the same: The returned utility
vector will be used as a secret that can decrypt the auxiliary information.
By decrypting the auxiliary information the adversary learns the privacy
breach. For this reason we will not explain the details of the proof, as it
only adds technical details for handling the fact that the utility vector can
only be partially learned.

Without going into the details, the technicality that is used to solve our
problem is called a fuzzy extractor. Originally, fuzzy extractors were created
to derive cryptographic keys from biometric data [DORS08, DS05]. Here
the original key (e.g., a fingerprint or iris scan) does not get reproduced
precisely each time it is measured. By using fuzzy extractors however, we
can derive a key that is always the same. This matches what we need: In
our case the utility vector does not get learned precisely, yet we can still
derive a key from it that is always the same. For the details of the proof see
the paper by Dwork and Naor [DN10].

4.6 Discussion

Complexity

An objection to the proof might be that performing the attack is computa-
tionally infeasible to be executed in practice. However, this is only the case
if finding a privacy breach for a given database is costly, since the complexity
of all the other operations are low [DN10].

Statistical Distance Measure

Although we haven’t given the proof if the utility vector is only partially
learned, the actual proof of it focuses on the Hamming distance between
two distributions. There exist also fuzzy extractors that are based on other
distance measures, for example on the edit distance or set distance. Even so
called general metric spaces can be used if the utility vector returned by the
privacy mechanism is close to the original in those distance measures [DN10,
DORS08].
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It’s also possible that the sanitization mechanism returns a utility vec-
tor w that must satisfy a certain relation (DB,w), although one may ask
himself when such a thing would be useful in practice. In this case the
result of the sanitization mechanism could vary a lot, and the (statistical)
distance between two valid answers may be large. It’s an open problem if
the impossibility result also holds in this case [Nao10b]. In other words, for
this scenario it’s unknown if we can hide a privacy breach in the auxiliary
information.

4.7 Conclusion

If the database is useful there is always some side information that, together
with access to the database, will compromise the privacy of an individual.
This means that absolute disclosure prevention is impossible: A secret will
always be leaked, given that the adversary has enough auxiliary informa-
tion. The surprising observation is that even the privacy of someone not in
the database can be violated. In the parable mentioned in section 4.1 for
example, we would learn that Alice had an increased cancer risk even if she
wasn’t in the medical database. This doesn’t mean we should abandon the
search for a proper definition that guarantees privacy. Instead we should
move from the idea of assuring absolute disclosure prevention, to assuring
relative disclosure prevention. This is done in the definition of differential
privacy and is introduced in the next chapter.

Also note that we didn’t restrict the computational power of the adver-
sary, and perhaps more is realizable if we limit its power. We have also
assumed that the returned utility vector is within a statistical distance from
the real utility vector.

It may seem strange that Dalenius’ goal cannot be achieved, while—
when limiting the computational power of the adversary—semantic security
for cryptosystems can be achieved. The reason behind this is that there
is no difference between the adversary and a genuine user in our situation,
while for cryptosystems they can be separated using secret keys. And since
the database is designed to convey useful information, the adversary will
inevitably also be able to access this information. Combined with auxiliary
information the adversary is then able to find a privacy breach.
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Chapter 5
Differential Privacy

In order to address the problems described in the previous chapters, we turn
our attention to differential privacy. This definition takes into account any
potential auxiliary information the adversary may have, and moves from ab-
solute disclosure prevention to relative disclosure prevention. It has shown
promise to be an adequate definition and is, at the time of writing, the only
mechanism that can both handle auxiliary information and is composable.
There are also abundant practical implementations that guarantee differen-
tial privacy.

5.1 Requirements

Before we give the definition of differential privacy, we will briefly look at
two properties that a privacy mechanism must have.

Robustness to Side Information

It must take into account any side information (auxiliary information) that
the adversary might have. In the definition we must avoid specifying ex-
actly what the adversary may know, because this is very hard to quantify.
Ideally it will assume the adversary knows everything except the individual
information of a person.

Composability

If we would apply the sanitization mechanism several times on related data-
bases, the adversary should not be able to combine both results to retrieve
sensitive private information. As we have seen in Chapter 3 this is where a
lot of previous suggestions have failed. For instance, k-anonymity has the
problem that if it’s done twice for slightly related databases, all privacy can
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be lost. For differential privacy general results have been proven about its
composability [DRV10].

5.2 Definition

Since a privacy disclosure with respect to a given individual can happen
even if that individual is not in the database, Dwork and McSherry propose
the following idea: Any given disclosure (i.e., any output of the privacy
mechanism) should be, within a small multiplicative factor, just as likely
independent of whether the information if an individual is saved in the
database or not. This means that including your personal information in a
database doesn’t significantly increase the chance of a disclosure happening.
In other words, concealing your information gives only a nominal gain.

We begin by defining what a dataset is and when two datasets are adja-
cent.

Definition 5.1 (Dataset). A dataset or database is finite collection of rows.
Each row represents the information of one individual in the dataset.

Definition 5.2 (Adjacency). Two datasets are adjacent if one is a subset
of the other, and the larger one contains at most one additional element.
We also say that two adjacent datasets differ on at most one element.

Adjacent databases are commonly also called neighbours. Since the def-
inition of ε-differential privacy is based on randomized functions, we first
have to rigorously define this notion.

Definition 5.3 (Randomized Function). Let F be the set of all finite data-
sets and V be the set of all random variables with image V . A randomized
V -valued function K is then defined as

K : F → V,
D 7→ K(D)

where K(D) is a random variable defined separately for every D ∈ F .

A lot of times the term randomized algorithm is used as a synonym of
randomized function. Note that these randomized functions can actually
be continuous random variables, and are thus different from probabilistic
Turing machines. Strictly speaking Range(K) should be V. However, for
ease of notation we will actually let Range(K) be equal to V . We can now
give the definition of differential privacy.

Definition 5.4 (Differential Privacy [DN10]). A randomized function K
gives ε-differential privacy if for all data sets D1 and D2 differing on at
most one element, and all S ⊆ Range(K),
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Pr [K(D1) ∈ S] ≤ exp(ε)× Pr [K(D2) ∈ S]

It may seem unusual that we didn’t require the probability distributions
to be statistically close or that they be computationally indistinguishable,
as is often done in the field of cryptography. The reason we don’t use a
distance measure such as ε-close is because with such a measure there might
be an output where the difference in probability is relatively large, while
the probability of all the other outputs could be equal, resulting in a small
statistical distance. As an example consider the privacy mechanism where
we randomly sample an individual and release all his data (i.e., return the
row corresponding to the person). The probability of being picked when
you participate in the database is 1/n, where n is the size of the database,
and 0 when you are not in the database. In this case the statistical distance
would be small, yet clearly this does not preserve privacy [DMNS06]. The
multiplicative factor exp(ε) in our definition rules out this subsample-and-
release paradigm, since it implies that an output whose probability is zero on
a given database must have probability zero on any adjacent database, and
by recursively applying the definition, also on any other database [Dwo11].

It’s important to remark that a disclosure can still happen. However, the
cause of the disclosure will not be the action of giving your individual infor-
mation to the databases. Nor was there something you could do that would
prevent the disclosure in the first place. This should address any concern
the participant might have about the leakage of their personal information.
After all, even if the participant removed her data from the database, no
outputs—and hence possible privacy breaches—would become significantly
more or less likely.

5.3 Variants

5.3.1 Discrete Range

To better understand the definition, we will focus on the case where the
range of K is a finite or countable infinite set. In this case we can change
the definition to:

Definition 5.5 (Differential Privacy (Discrete Sets)). A randomized func-
tion K gives ε-differential privacy if for all data sets D1 and D2 differing on
at most one element, where Range(K) is a discrete set,

∀x ∈ Range(K) : Pr [K(D1) = x] ≤ exp(ε)× Pr [K(D2) = x]

If the set Range(K) would be uncountable, the probability of the out-
come K(D) = x would be zero, and the definition would trivially hold. It’s
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clear that Definition 5.4 implies our new definition. On the other hand we
can also show that, considering Range(K) is finite or countable infinite, the
new definition implies Definition 5.4.

Proof. Assume the privacy mechanism satisfies Definition 5.5. We have that
∀S ⊆ Range(K) where |S| = n and S = {s1, s2, . . . , sn}:

Pr [K(D1) ∈ S] = Pr

[
n⋃

i=1

si = K(D1)

]
(5.1)

=
n∑

i=1

Pr [si = K(D1)] (5.2)

≤
n∑

i=1

exp(ε)Pr [si = K(D2)] (5.3)

= exp(ε)
n∑

i=1

Pr [si = K(D2)] (5.4)

= exp(ε)× Pr [K(D2) ∈ S] (5.5)

Where the first and last equality follow from the countable additivity
property of the probability measure Pr. The inequality holds since we as-
sumed that K satisfies Definition 5.5. We can conclude that Definition 5.4
is equivalent, for discrete ranges, to Definition 5.5.

If the set Range(K) were uncountable, the union in equation 5.1 would
be over uncountable many events. Therefore the additivity property would
no longer be applicable, and the proof does not hold. This gives us an insight
as to way the definition of differential privacy uses the subset S ⊆ Range(K),
since using this makes the definition valid for both discrete and continuous
variables.

5.3.2 Interpretation

From the definition of ε-differential privacy we notice that if the probability
of an output—or a range of outputs for continuous variables—is zero for
a specific data set, then this probability most be zero for all data sets.
Practically this means the privacy mechanism K is never allowed to return
this output, and that therefore the output is not contained in the Range of
K. Hence, without loss of generality, we can assume that the probability1 is
always nonzero.

Considering the definition must hold for data sets (D1, D2) as well as
(D2, D1), where D1 and D2 differ in at most one element, we have:

1For discrete variables this means the pmf, for continuous variables we’re actually
talking about the cdf.
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Pr [K(D1) ∈ S] ≤ exp(ε)Pr [K(D2) ∈ S] (5.6)

Pr [K(D2) ∈ S] ≤ exp(ε)Pr [K(D1) ∈ S] (5.7)

Since we can assume these probabilities are nonzero, we can rewrite this
to:

Pr [K(D1) ∈ S]

Pr [K(D2) ∈ S]
≤ exp(ε) (5.8)

Pr [K(D1) ∈ S]

Pr [K(D2) ∈ S]
≥ exp(−ε) (5.9)

Combining these two inequality results in:

exp(−ε) ≤ Pr [K(D1) ∈ S]

Pr [K(D2) ∈ S]
≤ exp(ε) (5.10)

This formulation of Definition 5.4 is easier to interpret. For small ε we
observe that exp(ε) ≈ 1 + ε. Intuitively this means that both fractions
should be close to each other, and consequently that the probabilities must
be close to each other. This confirms our earlier statement that the output
of the privacy mechanism is almost just as likely, independent of whether
any individual opts in to, or opts out of, the database.

For completeness, note that inequality 5.10 is equivalent with the follow-
ing inequality

exp(−ε) ≤ Pr [K(D2) ∈ S]

Pr [K(D1) ∈ S]
≤ exp(ε) (5.11)

5.4 Choice of Epsilon

We have yet to define what the size of the parameter ε in the definition of
differential privacy must be. Instead of letting ε be a fixed constant, we
could’ve also defined it as a function whose image is R. Taking inspiration
from the field of cryptography, one may ask whether ε can be negligible in
function of the database size.

Definition 5.6 (Negligible [Gol01]). We call a function µ(x) : N → R
negligible if for every positive polynomial p(.) there exists an N such that
for all n > N ,

µ(n) <
1

p(n)
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We will show that letting ε be negligible in function of the database size,
denoted by n, the results of the privacy mechanism K become meaningless.
Let D and D′ be two data sets of both size n that differ in every element.
Consider the sequence D = D1, D2, D3, . . . , D2n = D′ where we get from
D to D′ by first removing an element, and then adding the corresponding
modified element, until we have D′. For this we need at most 2n steps. All
databases Di and Di+1 differ in only one element and are thus adjacent.
Let ε = µ(n), where µ is a negligible function. For each of these adjacent
databases we have

Pr [K(Di) ∈ S] ≤ eµ(n)Pr [K(Di+1) ∈ S] (5.12)

Combining all these inequalities over the whole sequence gives us

Pr [K(D) ∈ S] ≤ eµ(n)2nPr
[
K(D′) ∈ S

]
(5.13)

Because µ is a negligible function in n, the function µ′(n) = µ(n)2n
is also negligible. In other words, if we let ε be negligible in n, even two
completely different data sets are treated as adjacent. Therefore the output
of K should be similar for all databases, and thus these outputs would be
useless.

Instead we let the parameter be a public value. Its choice will depend
on how much privacy one wants to guarantee. The smaller the value, the
more privacy. In most cases we will tend to think of ε as a small value such
as 0.01, 0.1, ln(2) or ln(3). If the probability that some bad event will occur
is very small, it might be tolerable to increase it by factors such as 2 or 3,
while if the probability is already felt to be close to unacceptable, then even
a small increase of e or e0.1 would be intolerable [Dwo08].

5.5 Achieving Differential Privacy

This section will show how one can achieve differential privacy. To get
started we first investigate counting queries. Then we will see a more general
property to assure differential privacy. Finally a few relatively more complex
algorithms that achieve differential privacy will be explained.

5.5.1 Counting Queries

Assume we want to calculate how many rows satisfy a given predicate P (x).
What we will do is calculate the exact result and perturbate it with noise
to guarantee differential privacy. Let D be a set of rows representing a
database, f be the function that counts the true result, Y be a random
variable used to add noise, and K be the resulting mechanism that will
assure differential privacy. This can be written as
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Figure 5.1: Pdf of noise added to counting queries using ε = ln(2)

K(D) = f(D) + Y =
∑

x∈D
P (x) + Y (5.14)

If Y adds Laplace distributed noise, which has the probability density
function h(y) = 1

2b exp (−|y|/b), then we can show that K is differentially
private.

Property 5.1. Letting Y add Laplace distributed noise with parameter b =
1
ε guarantees differential privacy.

Proof. First observe that for any two database D1 and D2 differing in only
one row, the sums f(D1) and f(D2) differs at most by one. Consider any
S ⊆ Range(K) and take r ∈ S. For K(D1) to output r it must add f(D1)−r
noise to the true answer, similarly K(D2) must add f(D2) − r noise to the
true answer for K to output the same r. Hence, the probability density that
K(D1) returns r is h(f(D1) − r), and for K(D2) the probability density is
h(f(D2)− r). We have

h(f(D1)− r)
h(f(D2)− r)

≤ exp

(
1

b
|(f(D1)− r)− (f(D2)− r)|

)
(5.15)

= exp

(
1

b
|(f(D1)− f(D2)|)

)
(5.16)

≤ exp

(
1

b

)
(5.17)

The first inequality is proven in section 2.3 and the second inequality
follows from the fact that f(D1) and f(D2) differ by at most one. Letting
b = 1

ε , integrating over S with respect to r yields ε-differential privacy.

Figure 5.1 shows a graphical representation of how much noise is added
to the true result. This is specifically for counting queries where one has
chosen an ε values of ln(2). We observe that the noise is symmetrically
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centered around zero and that strictly speaking any value, no matter how
small or large, is possible.

5.5.2 General Theorem to Achieve Privacy

An essential part of achieving differential privacy is knowing how much influ-
ence a single row has on the output of the query function. We will formally
define this as the sensitivity of the query function.

Definition 5.7 (L1 Sensitivity [Dwo11]). The L1 sensitivity of a function
f : D → R

d is

∆f = max
D1,D2

||f(D1)− f(D2)||1

= max
D1,D2

d∑

i=1

|f(D1)i − f(D2)i|

for all D1, D2 ∈ D differing in at most one row.

As an example, the counting query in the previous section has a sensitiv-
ity of one. From the definition of sensitivity one can see that we also allow
the function f to return a vector. To assure differential privacy we will add
Laplacian noise to each element of this vector. If Y is a vector of d indepen-
dent Laplace variables, the probability density of vector y = (y1, . . . , yd) is
the multiplication of the probability density of each individual element:

exp

(
−|y1|
b

)
× . . .× exp

(
−|yd|
b

)
= exp

(
−|y1|+ . . .+ |yd|

b

)
(5.18)

= exp

(
−||y||1

b

)
(5.19)

Using this we can prove the following theorem:

Theorem 5.2. For f : D → R
d, the mechanism K that adds independently

generated noise with distribution Lap(∆f/ε) to each coordinate of the output
assures ε-differential privacy.

Proof. Analog to the proof of Claim 5.1, consider any subset S ⊆ Range(K)
and let y ∈ S. The pdf of K(D1) returning y is h(||f(D1) − y||1), and the
pdf of K(D2) returning the same y is h(||f(D2)− y||1). We combine this as
follows
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Figure 5.2: Comparison between the pdf’s of two counting queries with
∆f = 1 and ε = ln(2). The true results of the queries are 100 and 101.

h(||f(D1)− y||1)

h(||f(D2)− y||1)
=

exp
(
−1
b ||f(D1)− y||1

)

exp
(
−1
b ||f(D2)− y||1

) (5.20)

= exp

(
1

b
(||f(D2)− y||1 − ||f(D1)− y||1)

)
(5.21)

≤ exp

(
1

b
||f(D2)− f(D1)||1

)
(5.22)

≤ exp

(
∆f

b

)
(5.23)

Here the first inequality follows from the triangle inequality, and the
second inequality from definition of ∆f . Choosing b = ∆f/ε and integrating
over S yields ε-differential privacy.

To visualize the effect of differential privacy on adjacent databases, fig-
ure 5.2 shows the situation for the case of a counting query where ∆f = 1
and ε = ln(2). The blue line show the probability density function when
the true result is 100, and the green when the true result is 101. These two
results could in practice come from two adjacent databases.

5.5.3 Adaptive Queries

In a real setting we want to execute more than one query. These queries may
be independent of each other, or actually depend on previous results. For
example, when we want to implement a more complex algorithm such as K-
means we will perform multiple queries, where the current query depends on
the results of the previous queries. This complicates the nature of the query
function, as it is no longer a predetermined function, but rather a strategy
for producing queries based on answers given thus far [DMNS06]. We will
call these adaptive queries. The question is now how much noise must be
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added so the total algorithm—and thus the total sequence of queries—is
ε-differentially private.

Theorem 5.3. Let f1, f2, . . . , fn be a sequence of queries where each query
fi+1 depends on the output of f1, . . . , fi. We define the total sensitivity as

δ
def
= max (∆f1 + ∆f2 + . . .+ ∆fn) where the maximum is taken over all

possible outputs of f1, f2, . . . , fn. The mechanism K that adds independently
generated noise with distribution Lap(δ/ε) to the result of every function
assures ε-differential privacy.

Proof. For convenience we will let S denote the tuple of sets (S1, S2, . . . , Sn)
such that S1 ⊆ Range(f1), . . . , Sn ⊆ Range(f2). We will define the notation
(a1, . . . , an) ∈ S as equivalent to a1 ∈ S1, . . . , an ∈ Sn. Let f1, f2, . . . , fn
be a sequence of queries where each query fi+1 depends on the output of
f1, . . . , fi. From this if follows that

Pr [(f1(D1), . . . , fn(D1)) ∈ S] =
n∏

i=1

Pr [fi(D1) ∈ Si|f1(D1), . . . , fi−1(D1)]

(5.24)
Since for each of these conditional probabilities the results of the previous

queries are given, the probability is only over the amount of noise added to
the real result of fi, which has a Laplace distribution. The true result of
query fi will be written as ri. Recalling that we write h(x) for the probability
density function of the Laplace distribution Lap(b), we have

∏n
i=1 h(||fi(D1)− ri||1)∏n
i=1 h(||fi(D2)− ri||1)

=
n∏

i=1

exp
(
−1
b ||fi(D1)− ri||1

)

exp
(
−1
b ||fi(D2)− ri||1

)

=
n∏

i=1

exp

(
1

b
(||fi(D2)− ri||1 − ||fi(D1)− ri||1)

)

≤
n∏

i=1

exp

(
1

b
||fi(D2)− fi(D1)||1

)

= exp

(
1

b
(||f1(D2)− f1(D1)||1 + . . .+ ||fn(D2)− fn(D1)||1)

)

≤ exp

(
δ

b

)

The first inequality is based on the triangle inequality. The second in-
equality follows from the definition of δ. Filling in δ/ε for b and integrating
over all Si with respect to every result ri finishes our proof.

In practice it can be difficult to calculate the true value of δ, as it’s
difficult to mathematically model all the possible interactions between the
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collection of adaptive queries that are being posed. The following inequality
is used to avoid this problem

δ = max (∆f1 + . . .+ ∆fn) ≤ max (∆f1) + . . .+ max (∆fn) (5.25)

So instead of calculating the global sensitivity of the set of adaptive
queries, we calculate the sum of the sensitivity of each individual query.
Whilst this may result in a larger value of δ, it’s much easier to calculate.
An important remark is that overestimating δ will result in a Laplace dis-
tribution with a higher value for its scale parameter. This in turn results in
a higher “amount of noise”, meaning the privacy of individuals is actually
better protected if we happen to overestimate δ.

5.5.4 Histogram Queries

A compelling example of Theorem 5.2 are histogram queries. A histogram
query is a function that assigns each row or element to one specific bucket,
and returns the number of elements in each bucket. More formally, let
the rows of the database be elements in the universe D and D1, . . . ,Dd be
disjoint regions of D, then the function f : D → N

d that returns the number
of elements in each region is called a histogram query. As a concrete example
the database may contain the ages of each individual, and the query f is
a partitioning of the ages in to the ranges {[0, 10), [10, 20], . . . , [90, 100),≥
100}. In this example the function that would partition the database into
disjoint regions is “hardcoded” into the query. A consequence is that a
user would have to create a separate differentially private query for each
possible partitioning, which is inconvenient. Instead we will require that
the partitioning function is given as an argument to the histogram query,
and that this query will calculate a result that is differentially private for the
given value of epsilon. Hence the user only has to specify the partitioning
function, and the rest is handled by the histogram query itself.

At first sight a histogram query may look like d independent counting
queries, meaning one has to add noise distributed according to Lap(d∆f/ε) =
Lap(d/ε). This would significantly disturb the result when the buckets out-
number the rows in the database, and render the output meaningless. How-
ever, the entire query actually has sensitivity ∆f = 1. To see this, note
that if we remove one row from the database, then only one bucket in the
histogram changes, and that bucket only changes by one.

Thus to achieve ε-differential privacy we must add independent random
noise drawn from Lap(1/ε) to each coordinate of f (recall that f returns a
vector). Most importantly, the noise added is independent of the number
of buckets d. When comparing this to older methods such as the SuLQ
Framework, where the noise added to each coordinate is O(

√
d/ε), this is a

clear improvement [BDMN05, DMNS06].
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5.6 K-Means Clustering

To illustrate the practical importance of adaptive queries, we will construct
a privacy preserving alternative of the K-means clustering algorithm. This
will be done by using existing queries that were shown to be differentially
private. In other words we’re going to use these existing queries as an
“Application Programming Interface” to show that powerful algorithms can
be constructed using only relatively simple differentially private queries.

5.6.1 Original Algorithm

Clustering algorithms attempt to divide data into several groups (clusters)
that are meaningful, useful, or both. It has long played an important role
in a wide variety of fields, and there have been many applications of cluster
analysis to practical problems [TSK06].

The original K-means algorithm is relatively simple. First K initial cen-
troids are randomly chosen, where K is a user-specified parameter signifying
the desired number of clusters. Next each point is assigned to the closest cen-
troid. Then all the points assigned to a specific centroid are taken together
and are considered to be a cluster. The centroid of each cluster is calculated
based upon these points assigned to the cluster. This is repeated until no
more changes happen. The formal description is shown in Algorithm 5.1.

Algorithm 5.1 Generic K-means algorithm

1: Select k points as initial centroids
2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until Centroids do not change.

5.6.2 Private Algorithm

To construct a differentially private version we first make a few changes to
the algorithm itself. While the original algorithm allowed a very abstract
notion of “points”, we will restrict ourselves to points in the d-dimensional
unit cube [0, 1]d. The set of input points from this unit cube will be denoted
by P . The resulting procedure is now described in Algorithm 5.2.

In the first for loop the points are partitioned into k clusters where each
point is associated to the closest centroid µj . The second for loop calculates
the new centroid of each cluster. This is repeated until a termination con-
dition has been reached. Examples of termination conditions are that the
centroids no longer change, or that a maximum number of allowed iterations
has been reached.
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Algorithm 5.2 Unit Cube K-means algorithm

1: Initial centroids µ1, . . . , µk are chosen randomly from [0, 1]d.
2: repeat
3: for j = 1 to k do
4: Sj := {p ∈ P | ∀i : ||µj − p|| ≤ ||µi − p||}
5: end for
6: for j = 1 to k do
7: µj :=

∑
p∈Sj

p/|Sj |
8: end for
9: until Termination criterion reached.

10: return µ1, µ2, . . . , µk

When attempting to construct a differentially private algorithm, step 3
of the algorithm would breach privacy if we needed to know the actual sets
S1, . . . , Sk. However, to compute the average among the points, knowing
the size and sum of each set of points is already enough. Therefore the
actual implementation of the algorithm doesn’t need to expose these sets.
The conclusion is that we can focus on step 5 and try to find a method to
calculate the new value of µj while assuring differential privacy.

The first observation is that the denominators |Sj | implicitly define a
histogram query over all points. Therefore we will pose one single histogram
query that returns a vector (|S1|, . . . , |Sj |) containing the size of each set.
The partitioning function given as an argument to the histogram query
separates the points into k regions as specified in the first for loop (i.e., the
partitioning is based on the current values of µi and these represent the
clusters). Posing a histogram query has the advantage that very low noise
is added in each coordinate. Namely, the query has a sensitivity of only
one. For the numerators we see that the sum of all the points in a set Sj
has sensitivity at most d. This is because the points come from the unit
cube [0, 1]d, and so the removal or addition of a point can affect the sum
by at most ||(1, . . . , 1)|| = d. More importantly, only one of the sums can
be affected. For this reason we will use a variation of the histogram query
where we still partition the points, but then return the sum of all the points
instead of the number of points in a centroid. Thus the query will return a
vector with the sum of the points for all the sets Sj , and it’s sensitivity is
at most d.

Each loop the query sequence has a total sensitivity of at most d + 1.
When running the algorithm for a fixed number of N iterations we can add
noise distributed by Lap((d+ 1)N/ε) to achieve ε-differential privacy, which
follows from theorem 5.3 about adaptive queries. This demonstrates the
utility of the theorem: When combining multiple (possibly different) differ-
entially private queries to construct a more complex algorithm, it specifies
how much noise must be added to obtain ε-differential privacy. In case one
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doesn’t know in advance how many iterations are needed, it’s possible to
increase the noise parameter as the computation proceeds. A possible strat-
egy would be to start by adding noise distributed by Lap((d+ 1)/(ε/2)) in
the first iteration, Lap((d+ 1)/(ε/4)) in the second iteration, and so on. In
other words, each time half of the remaining “privacy budget” is being used.
It can be proven this indeed assures ε-differential privacy by adjusting the
proof of theorem 5.3.

5.7 Median Mechanism

The question can be asked if we can do better than independently adding
noise to the result of every query. If we can design a mechanism were we
need to add less noise, more queries can be answered while maintaining the
same accuracy and privacy constraints. One strategy, called the median
mechanism, can answer exponentially more queries than the previously dis-
cussed mechanism where we added independent Laplace distributed noise
to each query result. We will briefly describe the idea behind this strategy.

The median mechanism outperforms the Laplace mechanism by exploit-
ing correlations between different queries. It does this by storing the set of
databases that are consistent with the answers given thus far. A query whose
answer reduces this set by a constant factor (or more) is considered a “hard”
query. All the other queries are classified as “easy”. A key intuition here is
that if a query is easy, then the user can actually generate the mechanism’s
answer on its own. These easy questions can be answered by adding very
little noise, whilst hard queries are answered by adding Laplace distributed
noise. Roth and Roughgarden showed in their paper that only a fraction
of the possible queries are be hard [RR10]. The result is that most queries
are considered easy and thus more queries can be answers while maintaining
privacy and using only a fixed amount of noise.

5.8 Disadvantages

Although ε-differential privacy provides a strong privacy guarantee and has
many practical implementations, it is not always applicable.

For example, if one wants to publish vague information about individuals
in a database, differential privacy cannot be used. The reason is that it
simply prohibits releasing any information about specific individuals. So say
you want to calculate the Body Mass Index of every individual for medical
research, and although it has been agreed that this doesn’t violate privacy,
differential privacy still can’t be used. Its privacy guarantees are too strong
for such an application.

Another disadvantage is that because differential privacy takes place in
an interactive mode, the original database must be preserved while queries
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are being posed. If only one entity wants to query the database this is not
a true problem, as we can simply delete the database once the queries have
been executed. However, if one wants to remain the ability to pose queries
in the future, the original database cannot be destroyed.
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Part II

Privacy in New Settings
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Chapter 6
Extensions of Differential Privacy

In the previous chapter we have shown how to assure differential privacy
for relatively simple queries. By composing these simple queries one is able
to build complex differentially private algorithms. In this chapter we will
study new applications of differential privacy. In particular we will see how
to handle cases where adding nose makes no sense and we consider the
case where one wants to assure differential privacy when the internal state
of the algorithm can be leaked. This is based on the work of McSherry
and Talwar [MT07] and the work of Dwork, Naor, Pitassi, Rothblum and
Yekhanin [DNP+10].

6.1 When Noise Makes No Sense

Up until now our focus has been on functions that return a number or a
vector of numbers. Moreover we have assumed that adding noise to the
true output makes sense. This is not always the case. When the output
of our query is non-numeric it’s easy to comprehend that adding Laplacian
distributed noise doesn’t make sense. For example, if the query function
computes a string, tree, or any other complex object, it’s unclear how we
can add noise in a meaningful way. Even when the output is numeric it’s
still not always the best choice to simply add Laplacian noise.

6.1.1 An Example

Assume we have a database containing points in Rd where each point has
the label A or B. We want to make a simple classifier by dividing the d-
dimensional space into two separate spaces. This is done by finding a d-ary
vector describing a (d − 1)-dimensional hyperplane that splits the space in
such a way that:

• Points labeled with A have a nonnegative inner product with y.
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Figure 6.1: Example database of points in R2 having either label A or B.

• Points labeled with B have a negative inner product with y.

The returned vector is the one which maximizes the number of points
classified correctly.

An example database for points in the space R2 is shown in figure 6.1.1.
The optimal 1-dimensional hyperplane—which is just a line—classifying
these points would be the line coinciding with the y-axis. This hyperplane
is defined by the vector (1, 0). Adding noise to each coordinate of the vector
would change its direction, causing some points to be classified incorrectly.
We notice that, if more than 3 points are misclassified by adding noise, the
vector coinciding with the x-axis is a better candidate. After all, slightly
changing its direction will have a lesser influence compared to slightly chang-
ing the direction of the vector coinciding with the y-axis. Surprisingly this
vector is orthogonal to the optimal result, yet appears to be a better choice
when noise is being added. We can capture such preferences by defining a
scoring function.

6.1.2 The Scoring Function

We can specify the preference of results by defining a scoring function. It
can be defined for any privacy mechanism that randomly maps a database
D ∈ D to an output object r ∈ R without making any specific assumptions
about the domains D and R. In essence the scoring function gives a score
to each possible output y for every database D.

Definition 6.1 (Scoring Function). Given the domain of databases D and
the domain of possible results R, the scoring function q is defined as

q : D ×R → R (6.1)

and assigns a score to any pair (D, r) ∈ D ×R. Higher scores denote a
more appealing result.
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The idea is now that, given a database D, the privacy mechanism returns
an r ∈ R that maximizes the score q(D, r) while guaranteeing differential
privacy. In our example we can give preference to vectors that correctly
classify the most points, i.e., the score of a result is the number of points
classified correctly. We can define this particular scoring function as follows

q(D, y) = |{p ∈ D | L(p) = A ∧ py ≥ 0}|
+ |{p ∈ D | L(p) = B ∧ py < 0}|

where L(p) denotes the label of point p. The first term counts the number
of correctly classified points with label A and the second term the points with
label B. An important remark is that although a score for a specific result
can be zero or negative, this doesn’t guarentee such a result will never be
returned. It merely means that it’s an output we don’t prefer.

6.1.3 The Privacy Mechanism

We can now create a differentially private algorithm—called the exponential
mechanism [MT07]—where noise is introduced in a more meaningful way by
utilising the scoring function. But first we must change the definition of L1
sensitivity to be applicable for the scoring function. In order to be precise the
definition to take into account the fact that the function has two parameters.

Definition 6.2. The sensitivity of the scoring function q : D ×R → R is

∆q = max
r∈R

max
D1,D2

|q(D1, r)− q(D2, r)|

for all adjacent databases D1, D2 ∈ D.

The definition of the exponential mechanism now becomes

Definition 6.3 (Exponential Mechanism). An exponential mechanism is
a randomized function E : D → R that, when given the privacy parameter
ε and database instance D ∈ D, outputs a result r ∈ R according to the
probability density function

fE,D(r) ∝ exp

(
ε

2∆q
q(D, r)

)
(6.2)

where q can be any scoring function and ∆q is the sensitivity of q as
defined in 6.2.

Notice that in this definition the probability density function is over a
generic set R. While we have only given the formal definition of the pdf over
the set R in section 2.1.3 on continuous variables, this is not a problem. It’s
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possible to give definitions where the image of the random variable can be
any generic set as long as the set is measurable. However these definitions
are out of scope for this work, and the general idea behind them remains
the same. The precise definition of fE,D such that it satisfies equation 2.9
on page 23 is

fE,D(r) =
exp

(
ε

2∆q q(D, r)
)

∫
R exp

(
ε

2∆q q(D, r)
)

dr
(6.3)

We see that the mechanism assigns the highest probability to the best
answer, and the probability assigned to any other answer decreases expo-
nentially for lower scores given the current database, hence the name “expo-
nential mechanism” [Dwo11]. We will prove this mechanism indeed assures
differential privacy.

Theorem 6.1 (Differential Privacy). An exponential mechanism as defined
in 6.3 gives ε-differential privacy.

Proof. Given an exponential mechanism E where q is the scoring function,
take S ⊆ R and s ∈ S. We get that for adjacent databases D1, D2 ∈ D:

fE,D1(s)

fE,D2(s)
=

∫
R exp

(
ε

2∆q q(D2, r)
)

dr

∫
R exp

(
ε

2∆q q(D1, r)
)

dr
·

exp
(

ε
2∆q q(D1, s)

)

exp
(

ε
2∆q q(D2, s)

) (6.4)

The first quotient becomes

∫
R exp

(
ε

2∆q q(D2, r)
)

dr

∫
R exp

(
ε

2∆q q(D1, r)
)

dr
≤

∫
R exp

(
ε

2∆q (q(D1, r) + ∆q)
)

dr

∫
R exp

(
ε

2∆q q(D1, r)
)

dr
(6.5)

=
exp

(
ε
2

) ∫
R exp

(
ε

2∆q (q(D1, r))
)

dr

∫
R exp

(
ε

2∆q q(D1, r)
)

dr
(6.6)

= exp
( ε

2

)
(6.7)

And for the second quotient one has

exp
(

ε
2∆q q(D1, s)

)

exp
(

ε
2∆q q(D2, s)

) = exp

(
ε

2∆q
(q(D1, s)− q(D2, s))

)
(6.8)

≤ exp

(
ε

2∆q
∆q

)
(6.9)

= exp
( ε

2

)
(6.10)
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For both quotients the inequalities hold because ∆q is defined as the
largest possible difference and is always positive. Combined this gives

fE,D1(s)

fE,D2(s)
≤ exp (ε) (6.11)

Integrating over S with respect to s yields the desired result.

6.1.4 Limitations and Future Directions

A problem that hasn’t been addressed yet in this work is the issue of effi-
ciently sampling from the distribution fE,D (defined in 6.3). This is needed
when we actually want to implement the privacy mechanism and return a
random value according to the given probability density function. The work
of McSherry and Talwer [MT07] that introduced the exponential mechanism
also leave this problem largely unanswered. They mentioned that if the scor-
ing function q is simple, e.g., when it’s piecewise linear or in the cases where
the output space can be efficiently discretized, an efficient algorithm can
be constructed [MT07]. Unfortunately for more complex scoring functions
there are currently no efficient methods to sample from fE,D.

Another problem is that computing the score q(d, r) can be a compu-
tationally demanding task. If there are no efficient algorithms to calculate
the score of a result, the exponential mechanism is also infeasible in prac-
tice. In such a situation we would like to use approximation algorithms to
calculate the score q(d, r). However these approximation algorithms ought
to have a small sensitivity ∆q, otherwise too much noise would have to be
added. Unfortunately most approximation algorithms do not seem to have
this property [MT07].

6.2 Pan Privacy

There are situations where a data curator is pressured to handover all the
data it has collected or is still processing. This can be caused by a legal
compulsion such as a subpoena1. To protect privacy in such a setting we
will develop algorithms that retain their privacy properties even if their
internal state becomes visible to an adversary.

The prefix pan comes from the greek pãn meaning “all” and “involving
all members”. So pan privacy signifies privacy of all parts, in this case even
the internal state of the algorithm.

1Informally a subpoena in such a situation can be seen as a command to a witness to
produce certain documents for the court.
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6.2.1 Introduction

We will focus on streaming algorithms where the data is arriving element by
element and therefore it’s natural to discard the data that has already been
processed. This is not a requirement per se, as batch algorithms working
on a complete database may also be pan private. A batch algorithm could
for example protect against an intruder that cannot directly access the data
because it’s stored on a different server [DNP+10]. Pan privacy will not
assume the existence of a private—possible small—internal memory state
that can only be accessed by the analyst. Such an assumption would after
all conflict with the goal of making the algorithm retain privacy when the
internal state has been leaked. This means that we can’t even store the last
few records that have been analyzed, otherwise the privacy of the individuals
corresponding to those last few records that are still in memory would be
violated. It may seem that without such a secret state one cannot calculate
accurate yet private results. However that is not the case, as we shall see
many properties of a stream can be calculated whilst satisfying pan privacy
within certain accuracy bounds.

The privacy guarantees will be based on differential privacy. For this to
be possible we will first define when two data streams are adjacent. We can
choose between two possible definitions that differ in their level of granular-
ity. The first definition would hide all the elements in the stream of a user
(user level pan privacy), whilst the second definition hides the existence of
individual events (event level pan privacy).

6.2.2 Preliminary Definitions

As already mentioned we will study streaming algorithms where the input is
a data stream. We assume the incoming data stream is of unbounded length
and composed of elements in the universe X. As a motivating example you
can imagine that each element describes a visit of a user—represented by
his or her IP address—to a particular website [DNP+10]. Pan privacy will
then protect against the presence of absence of an IP address in the stream.

The definition of differential privacy is based on adjacent databases and
is not directly applicable for streaming algorithms. We begin by defining
what a data stream is and when two data streams are considered adjacent.

Data Streams

The precise definition of a data stream is

Definition 6.4 (Data Stream). A data stream over the universe X is a
sequence of elements x ∈ X that is possibly unbounded. A more sophisticated
way of representing the abstract sequence is with the notation
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{xi}ni=1

where n is the length of the sequence and ∀i : xi ∈ X. If the sequence is
unbounded we drop the superscript n from the notation.

From this definition we learn that a data stream can have an infinite num-
ber of elements. There are many occasions where we want to talk about data
streams with a bounded number of elements. Such bounded data streams
are frequently called data stream prefixes in other works, and we will also
adopt this naming convention.

Definition 6.5 (Data Stream Prefix). A data stream prefix is a data stream
of bounded length.

Based on the definition of data streams there are now two general pos-
sibilities to interpret adjacent data streams. The first option, that would
assure event level pan privacy, considers the presence or absence of only one
single element x ∈ X. This means that any single event or action caused
by a particular individual remains private, but the presence of absence of
the individual herself is not protected. The second and more powerful def-
inition, which will assure user level pan privacy, considers the presence or
absence of all elements equal to any x ∈ X. Here the presence or absence of
an individual is protected: Based on the output of the algorithm one cannot
deduce whether the data stream contained information about a particular
individual or not. In this chapter our focus will be on user level privacy.
Hence we arrive at the following definition of adjacent data streams

Definition 6.6 (X-adjacent Data Streams [DNP+10]). The data streams S
and T over universe X are X-adjacent if for all x ∈ X the subsequences S′

and T ′, obtained by removing all occurrences of the element x from respec-
tively S and T , are identical.

In other words data streams S and T are X-adjacent if they differ only
in the presence or absence of any number of occurrences of a single element
x ∈ X. If all occurrences of x are deleted from both streams, then the re-
sulting subsequences ought to be identical. This definition permits strings of
radically different lengths to be adjacent, which is seen as a positive property,
as it provides the most general privacy guarantees. A relaxed definition of
adjacent data streams—that is in line with user level pan privacy—has been
proposed in the paper by Dwork, Naor, Pitassi and Rothblum [DNPR10].
In their work data streams S and S′ are adjacent if there exist x, x′ ∈ X
such that when changing some of the instances of x in S to instances of x′

one obtains S′. In this work we will focus on definition 6.6.
Another common operation performed on data stream prefixes is con-

catenation. It’s a straightforward operation but in order to avoid any am-
biguity we will provide a definition of it.
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Definition 6.7 (Data Stream Concatenation). Given the data streams pre-
fixes S = {si}ni=1 and T = {ti}mi=1 their concatenation, denoted by S ◦ T , is
defined as {ci}n+m

i=1 where

ci =

{
si if 1 ≤ i ≤ n
ti−n else

(6.12)

We observe that the concatenation of two data stream prefixes is again
a data stream prefix, i.e., the length of the result is always bounded.

6.2.3 Definition of Pan Privacy

We will model a randomized streaming algorithm using two randomized
functions:

• State: This randomized function is called the state mapping function
and maps data stream prefixes to an internal state of the algorithm.
The returned state is the one the algorithm is in immediately after
processing the prefix. For example, if the algorithm is a Turing ma-
chine, the state of the randomized function is the contents of its tape
and the current state the Turing machine is in. We will abbreviate the
function using the symbol S.

• Out: The randomized function Out is called the output mapping func-
tion and maps data stream prefixes to an output. This output is the
one produced after processing the complete prefix. We will abbreviate
the function using the symbol O.

Definition 6.8 formalizes these assumptions of a randomized streaming
algorithm. It is based on the paper by Dwork et al. [DNP+10].

Definition 6.8 (Randomized Streaming Algorithm). A randomized stream-
ing algorithm M is represented by a pair randomized functions

S : S → I

O : S → R

where S is the set of all possible data stream prefixes, I is the set of all
possible internal states of M and R the set of all possible outputs.

Without loss of generality we will assume that the output is returned af-
ter updating the internal state of the algorithm. Note that the results of the
functions S and O are allowed to be dependent on each other, as is mostly
the case. We will useM(S) as a shorthand notation for (S(S),O(S)). Sim-
ilarly the notation M = (S,O) is used to specify the state and output
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mapping functions respectively. Additionally the algorithm doesn’t know
the length of the data stream prefix in advance. Conceptually this means
it will keep processing input elements until it receives a special stop signal,
after which the algorithm will produce an output.

A streaming algorithm can now be thought of as taking steps at discrete
time intervals. A new step begins on receiving the next element in the
stream, after which the algorithm updates its internal state based on this
element. We assume receiving and updating the state happens in an atomic
step, so that an adversary isn’t able to see a received element when obtaining
access to the internal state. In other words, an intrusion may only occur
between atomic steps [DNPR10].

Pan Privacy

We are finally ready to define pan privacy. Remember that the definition is
based on differential privacy.

Definition 6.9 (ε-differential Pan Privacy). LetM be a randomized stream-
ing algorithm defined by a state mapping S and output mapping O, and with
possible internal states I and set of possible outputs R. Then if for all I ′ ⊆ I
and R′,R′′ ⊆ R and for all X-adjacent data stream prefixes S = U ◦ V and
S′ = U ′ ◦ V ′ it holds that

Pr
[
(S(U),O(U),O(S)) ∈ (I ′,R′,R′′)

]

≤ eεPr
[(
S(U ′),O(U),O(S′)

)
∈ (I ′,R′,R′′)

]

algorithm M satisfies ε-differential pan privacy. The probability spaces are
over the internal coin flips of S and O.

Pan privacy thus protects against a single intrusion of its internal state.
After the intrusion the algorithm can continue processing data and eventu-
ally output a result which still protects the privacy of the individuals. Fig-
ure 6.2.3 shows a timeline that illustrates these two events: The intrusion
occurs after the prefix U has been processed, and the algorithm produces
output once the complete prefix S has been processed.

6.2.4 Density Estimation

As an example application of pan privacy we will design a streaming algo-
rithm that estimates the density of the stream while assuring ε differential
pan privacy. The density of a data stream is the fraction of items in the
universe X that appear at least once. We assume the universe X has finite
size.
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Data Stream:

S(U) O(S)

Figure 6.2: Illustration of when a possible intrusion occurs, and afterwards
output is still produced. Each block represents an incoming element of the
data stream. The intrusion happens after reading prefix U and the output
is produced after reading prefix S.

Algorithm Description

The algorithm will have to store which items have already appeared in the
stream so far. However this has to be done in a way that doesn’t leak too
much information, i.e., differential privacy must hold even if the internal
state becomes visible to an adversary. The solution to this problem begins
by defining two probability distributions D0 and D1(ε) on the set {0, 1}.
The distribution D0 returns both zero and one with probability 1

2 . Distri-
bution D1(ε) returns one with probability 1

2 + ε
4 and hence returns zero with

probability 1
2 −

ε
4 . Put differently D1 has a slight bias towards one whilst

D0 assigns equal mass to both zero and one.

Algorithm 6.1 Density Estimation

Initialization
1: Create a table of size |X| with a single one-bit entry for each item in X
2: For every entry x ∈ X initialize its entry in the table with an indepen-

dent random draw from D0

Processing
3: Upon receiving a value x ∈ X from the data stream, update x’s entry

in the table by drawing its new value from D1(ε)

Output
4: Let θ = fraction of entries in the table with value 1
5: Output the density value f ′ = 4

(
θ − 1

2

)
/ε+ Lap(1/(ε|X|))

During the initialization step of the algorithm a table of size |X| is cre-
ated. Each entry of the table contains one single bit that is set to a draw
from the distribution D0. When receiving an element x ∈ X from the data
stream, the entry corresponding to x is updated by drawing a value from
the distribution D1(ε). Finally, at the end of the algorithm, the returned
output is 4

(
θ − 1

2

)
/ε + Lap(1/(ε|X|)) where θ is the fraction of entries in

the table with the value 1. These steps are detailed in algorithm 6.1.
Step 3 in algorithm 6.1 is assumed to be an atomic step and cannot be
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interrupted. Therefore an intrusion cannot happen when an element x is
being processed, hence its value can never be learned by an adversary.

Correctness of Privacy Guarantees

To prove that this algorithms satisfies 2ε-differential pan privacy we begin
with the following claim.

Claim 6.2. For 0 ≤ ε ≤ 3
2 the distributions D0 and D1(ε) are ε-differential

private. Meaning that for a discrete random variable X0 with distribution
D0 and X1 with distribution D1(ε), and for all possible outputs b ∈ {0, 1} it
holds that

exp (−ε) ≤ Pr [X1 = b]

Pr [X0 = b]
≤ exp (ε)

Here we use the formula of differential privacy as explained in sec-
tion 5.3.2 which is equivalent with the original definition. We will now
prove the previous claim.

Proof. Let us begin by proving the statement for b = 0. We have that

Pr [X1 = 0]

Pr [X0 = 0]
=

1
2 + ε

4
1
2

= 1 +
ε

2
(6.13)

So the inequalities we need to prove become

exp (−ε) ≤ 1 +
ε

2
≤ exp (ε) (6.14)

For ε = 0 the inequalities are true. Further observe that exp (−ε) is a
decreasing function and 1 + ε

2 is an creasing function. This proves that the
first inequality is true for ε > 0. To prove the second inequality we know
that the function

exp (ε)− 1− ε

2
(6.15)

is increasing for ε > 0 by taking the derivate and showing that it is non-
negative. From this we know the second inequality is also true for non-
negative ε, completing the case for b = 0.

The case for b = 1 again begins by calculating the fraction of the prob-
abilities, resulting in the inequalities

exp (−ε) ≤ 1− ε

2
≤ exp (ε) (6.16)

For non-negative ε the second inequality is trivially true as we already
proved that 1 + ε

2 ≤ exp (ε). The first inequality is more tricky and is
equivalent to proving
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f(ε) = 1− ε

2
− exp (−ε) ≥ 0 (6.17)

The two zero points of the function f are at 0 and at 1.593 . . . and the
function is positive between these the points2. Given that 3

2 < 1.593 . . . the
proof is complete.

Utilising this claim we can prove the privacy guarantee of our density
estimation algorithm. The proof is based on the one given in [DNP+10].

Claim 6.3. Algorithm 6.1 provides 2ε-differential pan privacy.

Proof. The first part of the proof shows that the internal state of the algo-
rithm is ε-differently private at the time of intrusion. The second part shows
that the final output is also differentially private, even for an adversary who
has previously seen the internal state during an intrusion.

Part one: Private internal state. For all items x ∈ X in the table,
its value either didn’t appear in the data stream and its entry is drawn from
D0, or it did appear in the data stream and its entry is drawn from D1(ε).
Even if the item appeared multiple times its current entry is still drawn from
D1(ε). By claim 6.2 these entries all satisfy ε-differential privacy. The users
in X are thus guaranteed protection against an unannounced intrusion.

Part two: Private output. The query that would count the fraction
of 1’s the table at the end of the algorithms has sensitivity 1/|X|. Therefore
adding noise sampled from Lap(1/(ε|X|)) guarantees ε-differential privacy.
This is exactly what is done in the algorithm, thus proving the output on
its own is ε-differentially private.

From the composability of differential privacy we infer that the total
algorithm satisfies 2ε-differential privacy. This completes the proof.

Accuracy

All that is left to do is to explain how the return value is calculated and
prove that with high probability this result is accurate.

Let f denote the fraction of items in the universe X that appeared at
least once. The expected fraction of entries in the table with a value of 1 is
then

E [θ] = (1− f) · 1

2
+ f ·

(
1

2
+
ε

4

)
=

1

2
+
ε

4
f (6.18)

Solving the equation for f gives

f =
E [θ]− 1

2

4ε
(6.19)

2The actual value of the second zero point is 2 + LambertW(−2e−2) but such a calcu-
lation is out of scope for this work.
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which is exactly what our algorithm is returning when substituting the ex-
pected value of θ with it’s actual value. It’s possible to prove that the result
of the density estimation algorithm has good accuracy.

Claim 6.4. For every t > 0 it holds that

Pr [|f − E [f ]| ≥ t] ≤ 2 exp

(
−|X| t

2ε2

8

)

where f is a random variable defined as the output of algorithm 6.1 and
|X| the size of universe X.

Proof. This follows from the Hoeffding’s inequality on the sum of random
variables saved in the table. Let us first restate this inequality (for details
see section 2.4.3).

Theorem 6.5 (Hoeffdings’ Inequality). If X1, X2, . . . , Xn are independent
random variables with ∀i : ai ≤ Xi ≤ bi and with

f =
X1 +X2 + . . .+Xn

n

then for t > 0

Pr [|f − E [f ]| ≥ t] ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
(6.20)

Before we can apply the bound we must rewrite how the random variable
f is calculated. Letting n = |X| we get

f =
4

ε

(
θ − 1

2

)
(6.21)

=
4

ε

(
X1 +X2 + . . .+Xn

n
− 1

2

)
(6.22)

(6.23)

The Xi denote the independent random variables representing all the
entries in the table. We continue transforming this formula until we can
apply Hoeffding’s inequality.

f =
4

ε

((
X1 − 1

2

)
+
(
X2 − 1

2

)
+ . . .+

(
Xn − 1

2

)

n

)
(6.24)

f =

(
4
ε

(
X1 − 1

2

)
+ 4

ε

(
X2 − 1

2

)
+ . . .+ 4

ε

(
Xn − 1

2

)

n

)
(6.25)

f =

(
X ′1 +X ′2 + . . .+X ′n

n

)
(6.26)

(6.27)
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The last equation defines the new random variables X ′i = 4
ε

(
Xi − 1

2

)
.

Knowing that each variable Xi takes values in {0, 1} it’s straightforward to
see that each X ′i takes values in {−2

ε ,
2
ε}. The denominator in the exponent

of Hoeffding’s inequality becomes

n∑

i=1

(
−2

ε
− 2

ε

)2

= n
16

ε2
(6.28)

We can now directly apply Hoeffdings’ inequality which results in

Pr [|f − E [f ]| ≥ t] ≤ 2 exp

(
−nt

2ε2

8

)
(6.29)

And since we choose n = |X| the proof is finished.

Claim 6.4 shows that the probability of a result decreases exponentially
as it diverges away from the actual value. This substantially biases the
distribution towards accurate results. It also learns us that as the size of
the universe X grows linearly, the probability of the result diverging from
the actual value decreases exponentially.

Finally we notice that as ε becomes larger, the results is more accurate
and visa versa. This matches our intuition, since decreasing the “amount of
privacy an individual has” increases the accuracy of a result.
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Chapter 7
Handling Network Data

During the last decade there has been a growing interest in network data.
Here network data is defined as any kind of data which can be meaningfully
represented by a graph. In the previous chapters we have focused mainly
on tabular data. While technically a graph can be stored in a tabular data-
base, the existence of relationships between entities profoundly alters many
aspects of the privacy problem. In short the analysis of network data is
more complex and varied than the analyses of traditional tabular data, and
involves different privacy risks. In this chapter we will formally introduce
the graph model and several of it’s properties. Specific privacy problems
that arise when working with network data will also be addressed.

7.1 Motivation

The focus will be on social networks and their inherent privacy problems.
As a demonstration of the importance of network data we will give a brief
overview of several domains producing and analyzing such data. It also
shows that both fully identified, and supposedly anonymized network data,
are widely available and thus accessible by malicious individuals as well.
This overview is partly based on that of Narayanan and Shmatikov [NS09].

Data Mining

There is a multitude of datasets which can be used for research. For ex-
ample corporations like AT&T possess a database of nearly 2 trillion phone
calls going back decades [Hay06], and they have in-house research facilities
to perform analysis on these graphs. But smaller operators without such
luxury must share their graphs with external researchers, which is not al-
ways done due to privacy concerns. Call graphs might be useful for social
scientists and have also proven to be valuable to detect illicit activity such
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as calling fraud [Wil97]. Another purpose is improving national security,
where communication graphs are being studied to determine if command-
and-control structures of terrorist cells have a unique structure that can be
automatically detected [Hay06].

Health-care professionals, epidemiologists and sociologists also collect
various information about geographic, friendship, family and sexual net-
works to study disease propagation and risk. Potterat et al. [PPPM+02]
published a social network which shows a set of individuals related by sexual
contacts and shared drug injection. Researchers had to weigh the benefit of
public analysis against possible losses of privacy to the individuals involved,
without clear knowledge of potential attacks. In another study the National
Longitudinal Study of Adolescent Health (Add Health) collected the sexual-
relationship network of students of an anonymous Midestern high school.
The graph resulting from the Add Health study has been published in an
anonymized form [BMS04].

Online Social Networks

Another common source are online social networks. Such data can be col-
lected using a crawler that automatically visits public user profiles. Re-
searchers on graph anonymization algorithms usually use these data sets to
test the performance of their algorithms, or to show the feasibility of certain
attacks [NSR11, BDK07, LT08]. Although this information is already pub-
licly available, the generation of such graphs benefit adversaries who might
not have the capabilities to perform large and automated crawling of these
networks.

Advertising on online social networks is, most of the time, enhanced by
using the information of the social graph. There is empirical evidence that
using social network data increases the profit of advertising. As a result
network operators are inclined to share the social graph with advertising
partners. If we look at the facebook privacy policy we conclude that the
complete social graph isn’t handed over the advertiser, only information of
users that give permission to hand over the data are being shared, which
however might still be a large proportion of the users. The advertiser can
specify to whom certain advertisements are shown, for example it’s possible
to target a category of user like a “moviegoer” or a “sci-fi fan” [Fac], but
most of the data mining appears to be done by facebook itself. On the
other hand—based on the testimony of Chris Kelly, the chief privacy officer
at facebook—non-personally identifying information might be shared with
advertisers [Uni08]. This raises the question if the shared data truly pre-
serves privacy or actually resembles a form of naive anonymization, which
doesn’t assure privacy for all users.
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Other Sources and Advantages

In network security it is often essential to get a global overview of the network
if one wants to detect certain attacks. In particular it’s difficult to defend
against global phenomena such as botnets when operators can observe only
the traffic in the local domains [RAW+10]. Understandably network opera-
tors are hesitant in sharing information about the traffic in their networks.
Mechanism that are able to create a global overview of the network while
assuring privacy could provide a step in the right direction to solve these
problems.

Another domain that can benefit from network data is that of face recog-
nition, by exploiting the fact that users who appear together in photographs
are likely to be neighbours in the social network[SZD08]. Since a large num-
ber of photos are published on social networks (e.g. flickr and facebook),
having access to the anonymized graphs can greatly improve large-scale fa-
cial re-identification.

7.2 Graph Model

Evidently we will model network data by a graph G = (V,E) where V is
the set of nodes and E is a set of edges between the nodes.

It would also have been possible to save the nodes and edges in a tabu-
lar database and then apply the previous anonymization techniques such as
k-anonymity. However such a mechanism would ruin the utility of the un-
derlying network. In particular, if viewed as tabular database queries, many
graph analysis require the use of joins on the edges of the graph, e.g., when
calculating the diameter or transitivity of a graph. So the first disadvantage
is that tabular anonymization doesn’t work well if later on you want to use
analysis which require many joins.

Another problem is that, if we look at k-anonymity for example, it would
require that there are at least k entries representing “similar” edges (i.e.,
edges that are indistinguishable to the adversary), otherwise it wouldn’t be
indistinguishable with k other entries. Admittedly this depends on what
you consider sensitive attributes when applying k-anonymization, but as we
shall see the existence of an edge poses privacy risks. Such a modification
to the network data would completely destroy any utility it had before.

7.2.1 Assuring Privacy

As always there are multiple ways one can retain privacy. For network
data there are three main approaches if the goal is to release data while
retaining privacy. These are depicted in figure 7.1. The first option is to
release a so called naively anonymized graph, where identifiers are removed
and attributes are coarsened or not released at all. The weaknesses of this
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Figure 1.2. Our problem setting: individuals are connected by relations, forming a
network. We explore three approaches to protecting privacy: simple anonymization,
in which identifiers are replaced and attributes are coarsened or suppressed (a process
we call naive anonymization); transformed data release in which the network structure
is altered; and query answer perturbation, in which noise is added to query answers.

that represent pathways for disease transmission (intercourse or needle sharing). This

allows for new kinds of analyses on the role that network structure can play in disease

transmission. And it also raises new privacy concerns: the relationships are sensitive

and the participants in the network have an expectation that this information will be

kept private.

Network data can be naturally modeled as a graph where nodes represent entities

and edges the relationships among them. In many settings, the entities are people,

but they can also be other things, such as hosts in a computer network. There may be

attributes on nodes as well as edges. An example network is illustrated in Figure 1.2.

The relationships in network data encode additional information about the entities

which may be highly sensitive. Naturally, the existence of an edge may be sensitive

(e.g., in the data collected by Klovdahl et al. [65], an edge reveals a sexual or shared

needle relation). Other aspects of connections may be sensitive as well. For example,

the degree of a vertex may be sensitive: academics in a scholarly collaboration net-

10

Figure 7.1: Illustration of the three possible approaches to protecting privacy
in graph data. [Hay10]

paradigm are discussed in chapter 8. The second option is to transform
the network so the actual structure of the graph is altered. Chapter 9 will
show one method that can be used, but unfortunately doesn’t retain privacy
under all situations. Finally it’s possible to withhold the network data to
the analyst, and only allow him or her to pose queries and add noise to the
result in order to retain privacy.

7.2.2 Risk Assessment

Let’s consider the basic case where only the graph is released and all at-
tributes have been removed. In effect every node has been given a completely
random identifier, which on itself doesn’t disclose any private information.
The question is now what the privacy risk of releasing this graph would be.

The answer depends of course on the network data the graph represents.
In some cases the privacy risk could be low, but in other cases there could
be a high risk. Here we will focus on worst-case scenarios. Our example
will be the the “HIV graph” of Colorado Springs where nodes correspond
to individuals and the edges stand for sexual relationships or shared drug
injection [PPPM+02]. Such data contains sensitive information and can
have a high privacy risk. We will discuss the two most important possible
privacy violations when only the structure of the graph is released.
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Figure 7.2: Preventing identity disclosure doesn’t prevent edge disclosure.
If an adversary knows an individual corresponds to either A, B or D, his or
her identity is protected. However all three nodes have an edge to C, hence
the existence of the edge is not protected.

Identity Disclosure

A possible attack is that an adversary learns the location of an individual
in the released graph. This on itself could lead to a privacy violation. For
example, assume that only people having HIV are included in the graph,
then clearly identifying an individual in the graph means the adversary has
now learned that he or she has HIV.

Identity disclosure inevitably also leads to degree disclosure. That is,
when learning the location of an individual, an adversary will also learn
the degree of the corresponding node. This can also have privacy implica-
tions. For example, the degree of a node could signify how many sexual
relationships an individual has.

Edge Disclosure

Another risk is that of edge disclosure, where the adversary learns of the
existence of an edge between two individuals. Again taking the HIV graph
as an example, a malicious individual should not be able to learn whether
two individual are in a sexual relationship or not.

Remark that if we prevent identity disclosure, this doesn’t necessarily
prevent edge disclosure. Figure 7.2 illustrates this point. Say the adversary
wants to determine if there is an edge between Alice and Bob. He or she
knows that Alice has degree 2 and that Bob has degree 3. Based on this
information alone Alice can be node A, B or D, and Bob must be node C. In
other words the identity of Alice is protected, as the adversary doesn’t know
the corresponding node. However notice that all three nodes have an edge
to node C. So even though the adversary doesn’t know the exact location of
Alice, he or she does learn the existence of the edge to Bob.

Power of the Adversary

Our result of chapter 4 also applies for network data. That is, whenever
useful information is released, there is a possibility that the privacy of an
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individual is compromised. This means that if we decide to release a—
possibly modified—version of the graph, there will always remain a risk
that the privacy of someone can be violated. So we must focus on reducing
the chance of a privacy violation.

Commonly first the power of the adversary is specified in terms of ac-
cess to auxiliary information and computational power, and then a privacy
mechanism is designed to protect against such adversaries. A flexible model
to describe how much information an adversary has access to is presented
in the paper by Hay et al. [HMJ+08].

7.3 Graph Theory

Graphs are a natural way to represent network data. We will give a brief
overview of some basic graph definitions and properties that will be used in
forthcoming chapters.

7.3.1 Basic Definitions

Evidently we begin with the definition of a graph.

Definition 7.1 (Graph). A graph is an ordered pair G = (V,E) where V is
a set called the nodes, and E ⊆ V × V is a set called the edges.

Commonly we will also talk about simple graphs. These are graphs
satisfying the following three constraints:

1. They have no loops, i.e., they have no edges starting and ending at
the same node.

2. They are undirected, meaning if it has an edge (v1, v2) it must also
contain the edge (v2, v2).

3. And finally they must be unweighted, which means edges are not
mapped to a number.

Two graphs can have the same structure but their nodes can have dif-
ferent labels. This is formalized by the definition of an isomorphism.

Definition 7.2 (Isomorphism). Graphs G = (Vg, Eg) and H = (Vh, Eh) are
isomorphic if there exists a bijection f between the set of nodes Vg and Vh
such that

∀u, v ∈ Vg : (u, v) ∈ Ef ⇐⇒ (f(u), f(v)) ∈ Eh
An isomorphism can be seen as a relabeling of the nodes of a graph

so that both graphs become identical. An interesting property of an iso-
morphism is a fixed point, which will mainly be used in the proofs given in
chapter 8.
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Definition 7.3 (Fixed Point). A node v is a fixed point of an isomorphism
f : V → V ′ if v ∈ S ∩ S′ and f(s) = s. V and V ′ are the set of nodes of
both graphs.

Another common definition is that of a path. This is based on the
definition of incident nodes and edges, and on the definition of a walk.

Definition 7.4 (Incident). Given a graph G = (V,E), the nodes u, v ∈ V
are incident to the edge e = {u, v}. Similarly e is incident to both u and v.

Definition 7.5 (Walk). A walk on a graph is an alternating sequence of
nodes and edges, beginning and ending with a node, in which each edge is
incident with the node immediately preceding it and the node immediately
following it.

Based on these definitions we can give the definition of a path.

Definition 7.6 (Path). A path is a walk in which all edges and nodes are
distinct. As an exception the first and last nodes are allowed to be identical,
and if this is the case we talk about a closed path, otherwise it’s an open
path.

Often we will want to talk not about all the nodes and edges of a graph,
but only about a selected region of the graph. To do this will we will use
the notion of a subgraph.

Definition 7.7 (Subgraph). A graph H = (Vh, Eh) is called a subgraph of
G = (V,E) if Vh ⊆ V and Eh ⊆ E such that Eh ⊆ Vh × Vh.

Additionally we will call G a supergraph of H if and only if H is a
subgraph of G. Another interesting concept in the complement of a graph.

Definition 7.8 (Complement of a Graph). The complement of a simple
graph G = (V,E) is the simple graph G = (V,E) where

E = {v1, v2 ∈ V | v1 6= v2 ∧ (v1, v2) /∈ E}

7.3.2 Graph Properties

When evaluating the impact of anonymization on graph, we will analyze
how certain properties of the graph change. For this reason we will first
introduce several commonly used and important properties.

Density

The density of a graph is defined as the number of edges divided by the
number of possible edges. Thus for a graph G = (V,E) it is equal to

density =
|E|(|N |

2

) =
|E|

|N | (|N | − 1)/2
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Figure 7.3: The degrees of A, B, C and D are 3, 2, 1 and 2 respectively.
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Figure 7.4: Graph with a degree sequence of (4, 3, 3, 2, 2, 1, 1, 0).

Degree

The degree of a node in an undirected graph is the number connections it
has to other nodes. In the graph displayed in figure 7.3, node A has a degree
of 3, node B a degree of 2 and node C a degree of one.

Often we will let d(v) stand for the degree of a node v. For directed
graphs one can make a difference between the in-degree and the out-degree.
As the names suggest, these correspond to the number of ingoing and out-
going edges respectively. In this work we will mainly focus on undirected
graphs.

Degree Sequence

The degree sequence is arguably one of the most important properties of a
graph. It influences both the structure of a graph and processes that operate
on it.

It is defined as a monotonic increasing sequence of all the node degrees
in a graph. For the example graph in figure 7.4 it is (5, 3, 3, 2, 2, 1, 0). Some
degree sequences uniquely correspond to only one possible graph (an extreme
example are complete graphs). Other define a world of possible graphs.

Clustering Coefficient

The clustering coefficient measures the likelihood that two neighbours of a
node are themselves connected. It’s commonly defined as
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CC(G) =
1

|V |
∑

v∈V

∆(v)

(d(v)(d(v)− 1))/2
(7.1)

for a graph G = (V,E) where ∆(v) denotes the number of triangles
(cliques of size 3) containing node v, and d(v) is the degree of v. The
denominator in the sum is the number of possible triangles node v can be
part of, and the numerator is the actual number of triangles it is part of.
Unfortunately this formula is not defined if there are nodes with a degree
of 1 or 0 (division by zero). Most of the time the term in the sum is then
treated as being equal to zero.

Another common variation of the formula is the following

CC1(G) =

∑
v∈V ∆(v)∑

v∈V (d(v)(d(v)− 1))/2
(7.2)

This avoids the devision by zero when some nodes have a degree of zero
or one.

Both of these formula are not ideal, because values that are not defined
(division by zero) should preferably have no influence on the result [Kai08].
To avoid this we introduce a variation of formula 7.1. Let S denote the set
{v ∈ V | d(v) ≥ 2}, then we have

CC2(G) =
1

|S|
∑

v∈S

∆(v)

(d(v)(d(v)− 1))/2
(7.3)

Intuitively the clustering coefficient is a measure of neighbourhood con-
nectivity. If a node has no neighbourhood it shouldn’t contribute to the
value of the clustering coefficient, making formula 7.3 a better option. How-
ever, when testing the effect certain graph modification algorithms have,
we will report the clustering coefficient as calculated in equation 7.1. The
reason behind this choice is that equation 7.1 is more frequently used, and
to remain consistent we will adopt the same formula.

Average Path Length

First consider the shortest path between two nodes v1, v2 ∈ V and denote
this by d(v1, v2). For unweighed graphs the distance is defined as the number
of edges of the shortest path between v1 and v2. If there is no path between
the nodes the convention will be that d(v1, v2) = 0. The average path length
is then defined as

APL =
1

n(n− 1)

∑

i,j

d(vi, vj) (7.4)
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The abbreviation APL will commonly be used in tables and figures. It is
a widely used property and can for example stand for the average number of
people one will have to communicate through to contact a complete stranger.

Diameter

The diameter is the maximum distance between any pair of nodes. Written
formally this becomes

Diameter = max
vi,vj∈V

d(vi, vj) (7.5)

Power Law Estimation

The degree distribution of empirically obtained graphs often follow a power
law distribution. Intuitively this means that there are a high number of
nodes with a low degree and only few nodes with a high degree. A quantity
x obeys a power law if it is drawn from a probability distribution

p(x) ∝ x−α (7.6)

where α is a parameter of the distribution known as the exponent or scaling
parameter [CSN09]. Most of the time the degree distribution doesn’t obey
the power law for all values of x. Particularly it only applies for values
greater than some minimum xmin. For most of our analysis we will pick
xmin = 3 unless otherwise noted.

A nontrivial problem is how to know whether the degree distribution
follows a power law, and if so what the value of α is. To estimate the scaling
parameter α we will use the algorithm presented in the paper by Clauset,
Shalizi and Newman [CSN09]. Their algorithm can estimate both xmin and
α, but for our data we have noticed better results when manually setting
xmin equal to 3. When testing the effect of anonymization we will measure
how much the scaling parameter α changes.

7.4 Differential Privacy for Graphs

The original definition of differential privacy was given for tabular data.
Hence, before being able to apply differential privacy to graphs, we must
first define differential privacy for graphs. Note that we will only briefly
cover this subject to inform the reader of its existence, and only the most
important definitions are given.

7.4.1 Possible Definitions

The definition of differential privacy for graphs mainly depends on what we
consider “neighbouring graphs”. A first definition, resembling the opt-in or
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opt-out semantic of differently privacy, says that two graphs are neighbours
if they differ by at most one node and all of its incident edges.

Definition 7.9 (Node neighbouring graphs). Two graphs G = (V,E) and
G = (V ′, E′) are node neighbours if and only if |V ⊕V ′| = 1 and |E⊕E′| =
{(u, v)|u ∈ (V ⊕ V ′) or v ∈ (V ⊕ V ′)}.

It results in one of the strongest forms of privacy that can be defined,
since results should be roughly the same whether or not an individual ap-
pears in the graph or not. For completeness, the definition of differential
privacy for graphs becomes

Definition 7.10 (ε-differential privacy for graphs). A randomized function
K gives node ε-differential privacy if for all neighbouring graphs G = (V,E)
and G′ = (V ′, E′), and for all outputs S ⊆ Range(K),

Pr [K(G) ∈ S] ≤ exp (ε) Pr
[
K(G′) ∈ S

]

The definition purposely doesn’t specify that the graphs are node neigh-
bouring. It allows us to specify other conditions which define when two
graphs are neighbouring, resulting in different privacy guarantees. When as-
suming node neighbouring graphs, one is assuring node ε-differential privacy.
Unfortunately node ε-differential privacy is too strong for many analysis be-
cause the amount of noise that must be added to assure privacy makes the
final output meaningless [HLMJ09]. For example, the empty graph consist-
ing of n isolated nodes is a neighbour of the star graph (one node connected
to n nodes) for node differential privacy, indicating that certain properties
can differ significantly for neighbouring graphs.

A more modest definition considers two graphs G and G′ to be neigh-
bours if one can produce G′ from G by adding or removing one edge, or by
adding or removing one isolated node [Hay10].

Definition 7.11 (Edge neighbouring graphs). Two graphs G = (V,E) and
G = (V ′, E′) are edge neighbours if and only if |V ⊕ V ′|+ |E ⊕ E′| ≤ 1.

Assuming edge neighbouring graphs in the definition of differential pri-
vacy for graphs results in edge ε-differential privacy. Using this definition
less noise has to be added making more analysis possible while assuring
privacy. However, it may not be a strong enough privacy guarantee in all
situations. For example, the degree of a node is not well protected un-
der this definition. When anonymizing graphs about sexual interaction or
shared drug usage the degree of a node is sensitive information and must
also be protected. The middle ground is captured by k-edge neighbouring
graphs, resulting in k-edge differential privacy.

Definition 7.12 (k-edge neighbouring graphs). Two graphs G = (V,E) and
G = (V ′, E′) are k-edge neighbours if and only if |V ⊕ V ′|+ |E ⊕ E′| ≤ k.
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For k-edge differential privacy two graphs are considered neighbours if
they differ by at most k edges or nodes. Note that for nodes with a lower
degree than k this is effectively the same as node differential privacy. Nodes
with a higher degree face more exposure, but this is only natural, since they
also have a higher influence on the structure of the graph. In other words
high degree nodes are bound to have a higher probability of disclosing some
information.

In complete analogy to differential privacy for tabular data, one can now
also define the sensitivity of a function for neighbouring graphs. Then it
can be proved that adding noise from Lap(∆f/ε), where ∆f is the sensi-
tivity of the function, assures privacy. For more details we refer the reader
to [HLMJ09].

7.4.2 Degree Distribution Estimation

Estimating the degree distribution is a good example of the applicability
of k-edge differential privacy. In fact it becomes almost trivial to calculate
it under k-edge differential privacy. First the real degree distribution is
computed. The sensitivity of it is 2k since adding or removing an edge
changes the degree of two nodes by one. Therefore adding noise distributed
by Lap(2k/ε) to each position in the real degree distribution will assure
k-edge differential privacy.

7.5 Asymptotic Notation

Because at times asymptotic notation is abused, which can lead to ambiguity
in certain cases, we will give precise definitions of the notations that are used
in the remainder of this work and cited papers. Asymptotic notation is used
when analyzing algorithms.

Definition 7.13 (Big-O Notation). We write f(x) = O(g(x)) iff

∃c > 0,∃n0 ≥ 0,∀n ≥ n0 : f(n) ≤ cg(n)

and say that f is Big-O of g.

When proving that a function f is indeed Big-O of g the subsequent
theorem can be used.

Theorem 7.1. If limx→∞
f(x)
g(x) ∈ R then f(x) = O(g(x)).

Let’s first recall the definition of the limit to positive infinity of a real-
valued function.

Definition 7.14 (Limit to Infinity). If we have that

∀ε > 0,∃S > 0,∀x : x > S =⇒ |f(x)− L| < ε
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then we say that the limit of f as x approaches infinity is L. We will denote
this with

lim
x→∞

f(x) = L

With this definition in mind the proof of theorem 7.1 becomes rather
straightforward.

Proof. From the definition of the limit to infinity it follows that

∀ε > 0,∃S > 0,∀x > S :

∣∣∣∣
f(x)

g(x)
− L

∣∣∣∣ < ε

∣∣∣∣
f(x)

g(x)

∣∣∣∣− |L| < ε

∣∣∣∣
f(x)

g(x)

∣∣∣∣ < ε+ |L|

|f(x)| < (ε+ |L|) · |g(x)|

Let ε′ = ε+ |L| then

∀ε′ > |L| , ∃S > 0,∀x > S : |f(x)| < ε′ |g(x)|

This surely implies

∃ε′ > 0,∃S > 0,∀x > S : |f(x)| ≤ ε′ |g(x)|

Apart from different variable names this precisely matches the definition
of the Big-O notation.

7.5.1 Special Notations

More important is how we deal with abuse of notation. Commonly the Big-
O notation is used inside a formula. For example we can have something
like

g(x) = h(x) · 2O(f(x))

which doesn’t strictly follow the definition. In such cases we will define this
to mean

∃c > 0,∃n0 > 0,∀n ≥ n0 : g(n) ≤ h(n) · 2cf(n)

One can even have multiple occurrences of the Big-O notation in a formula.
Say you have

g(x) = nO(x2) ·O(log log x)

which would translate to the following

∃c1, c2 > 0,∃n0 > 0,∀n ≥ n0 : g(n) ≤ c1n
2 · c2 log log n
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In practice, when there are multiple occurrences of the Big-O notation inside
a formula, we will commonly define c to be the maximum of all ci and use
that constant instead. So the previous formula would become

∃c > 0,∃n0 > 0,∀n ≥ n0 : g(n) ≤ cn2 · c log log n

where c is the maximum of c1 and c2.
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Chapter 8
Naive Anonymization and an
Active Attack

In this chapter we will show that publishing only the graph of a social
network, i.e., only the nodes and edges, can already disclose sensitive infor-
mation. We will describe an active attack where the adversary must be able
to inserts nodes and edges in the social network before the graph is released.

8.1 Naive Anonymization

One possibility that was once thought to provide enough privacy is called
naive anonymization. In this mechanism the nodes are renamed to a unique
but random identifier and the structure of the graph is left unmodified. In
other words only the graph of the social network is published. One might
reason that because all the identifying attributes of a person are removed,
the privacy of all the persons are now protected.

Unfortunately this is not the case. Nodes can be re-identified even if
only the graph of a social network is published. This is possible because
the all the edges among the nodes contain a large amount of information.
Particularly the neighborhood around a node can be used to uniquely locate
a node in the naively anonymized graph.

The exact definition of naive anonymization is

Definition 8.1 (Naive Anonymization [Hay10]). Given a network modeled
by an undirected graph G = (V,E), the naive anonymization of G is an
isomorphic graph Ga = (Va, Ea) defined by a random bijection f : V → Va.

This prevents re-identification when the adversary posses information
about the attributes of a node (e.g. their name, social security number,
address, and son on). So in absence of any other information privacy would
indeed be preserved. However the adversary may posses information about
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the structure of the graph itself. Such information can be obtained by
either manipulating the network before it is released, or by having access to
auxiliary knowledge about the social network structure. This corresponds
to the active and passive attack respectively, as we will see.

8.2 Active Attack

The first attack found on a naively anonymized network was due to Back-
strom et al. [BDK07]. They described an active attack where the adversary
must be able to constructs additional new nodes and edges in the network
before the anonymized version of the network is created and released. Al-
though such an attack can be hard to execute in practice it’s nevertheless
a perfect example of how anonymity in graph data does not imply privacy.
In their work they also suggested a passive attack which is fairly similar to
the active attack, but less powerful.

8.3 Background

We will assume the social network is a graph G = (V,E) where V is the set of
nodes of size n and E ⊆ V 2 is the set of edges. Nodes commonly correspond
to individual users but can also represent group of users, e.g., in many social
networks such as facebook a user can choose to be part of certain public or
private groups. An edge (u, v) signifies that u has a relationship with v.
In this context there is a relationship between two individuals if they are
friends on the particular network, they have communicated with each other
or they have interacted multiple times using other means. A relationship
between an individual and a group occurs when the individual is a member
of the particular group.

As mentioned the adversary must be able to create new nodes and edges
to the network. He or she can create new nodes by creating new user ac-
counts on the social network. Creating an edge between two nodes can be
done by communicating with the other node, befriending the individual, or
by subscribing to the updates of the user, or any other possible action de-
pending on the targeted network. Adding edges between two nodes that are
under control of the adversary is easy, and creating directed edges between
a node that is controlled by an adversary and another targeted node in the
network is also trivial. However it can be hard to make the targeted node
respond to messages of the adversary. We conclude that adding directed
edges is easy to do, but creating an undirected edge (i.e., creating a directed
edge from the targeted node back to our node) can be a nontrivial problem.

The attack becomes easier to carry out if the released anonymized graph
data is directed [BDK07]. Because of this the attack will focus on the
harder case of undirected graphs. In other words we assume the data curator
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released a graph where the direction of the edges are removed, and only
undirected edges remain. At its core the attack consists of picking a set
of targeted users w1, . . . , wb. The goal is then to find these users in the
anonymized graph. Once they have been found we can use the anonymized
graph to learn whether there is an edge between any of the targeted users
wi and wj . Apart from the existence of edges, the adversary will also learn
the degree of the targeted users.

8.4 Idea Behind the Attack

Backstorm et al. suggest two active attacks called the walk-based and the
cut-based attack. In the cut-based attack fewer nodes need to be created by
the adversary. The disadvantage is that the attack is more complicated, eas-
ier to detect and it requires a computationally more demanding algorithm.
Therefore we will only consider the walk-based attack in this chapter.

The attack begins by creating k new user accounts for a small value of
k. Edges are created between these users resulting in a subgraph H. These
newly created users are then connected to the targeted nodes {w, . . . , wb}
(e.g. by sending messages to the user or by subscribing to the updates of
the user) and possibly other nodes as well. This is done in such a way so
that we can uniquely identify each targeted user wi given the location of H,
how this is achieved will be explained in the following section. When the
data curator releases the anonymized graph G it will contain the subgraph
H along with the edges to the targeted nodes. The attack proceeds by
finding the constructed graph H. Based on this information the adversary
is able to determine the location of the targeted nodes w1, . . . , wb, and thus
re-identity these users in the supposedly anonymized graph. The adversary
will learn the degree of the targeted nodes and also any edges that exists
between any of the targeted users. This of course compromises the privacy
of the attacked individuals.

The difficulty of the attack lies in constructing a subgraph H that is
unique within the global graph G. This is particularly difficult because
the adversary doesn’t know G at the time of constructing H. He or she
must therefore attempt to construct a graph that is unique regardless of the
structure of G. Secondly the adversary must be able to efficiently find the
subgraph H which has been hidden within the anonymized graph G. In
other words he or she must create an instance of the subgraph isomorphism
problem that is tractable to solve, even for very large graphs G.

8.5 The Details

The main idea of the attack has already been discussed in the previous
section, i.e., we construct a new subgraph which we will then attempt to
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locate in the anonymized graph. We will let X denote the set of nodes we
will add to the network and H = (X,E′) the subgraph created by these
nodes, where E′ denotes the edges we will add within H itself. The graph G
is the naively anonymized graph released by the data curator which contains
the constructed subgraph H. To identity the original graph the notation
G−H is used. For a set of nodes S we will let G[S] denote the subgraph of
G induced by the nodes in S. Based on this notation we have H = G[X].

8.5.1 Requirements for success

There are a number of technical requirements the subgraph must satisfy in
order for the attack to be successful:

1. There exists no set of nodes S 6= X such that G[S] and H are isomor-
phic.

2. Given the anonymized graph G we must be able to efficiently locate
the subgraph H.

3. The subgraph H must contain no non-trivial automorphisms.

An automorphism of a graph (V,E) is an automorphism from the set
of nodes V to itself. Put differently the nodes of the edges are permutated
while the structure of the graph is preserved.

If the first requirements holds we can locate the nodes of the subgraph we
have constructed. The second requirements assures we can find these nodes
within an acceptable amount of time. The third requirement is needed so
we can correctly label the nodes as x1, . . . , xk and hence find the targeted
nodes.

8.5.2 Construction of the Subgraph H

The construction of the subgraph happens in four steps:

(1) We begin by creating k = (2 + δ) log n new nodes, and represent these
using the set X = {xi, . . . , xk}. Then for each node in xi ∈ X we pick
an integer value ∆i ∈ [d0, d1]. The value ∆i stands for the number of
edges node xi will have to nodes in G−H. The two constants d0 ≤ d1

can be chosen arbitrary, but normally they are chosen in such a way to
reduce the detectability of the subgraph H. Furthermore it’s also pos-
sible to simply choose each ∆i arbitrarily, but in experiments in works
well to choose them at uniform from the interval [d0, d1] [BDK07].

(2) Now pick the nodes W = {w1, w2, . . . , wb} which we want to re-identity
in the anonymized graph. Here b = O(log2 n). For each targeted node
wi we choose a set Nj ⊆ X such that all Nj are distinct and each xi
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appears in at most ∆i of the setsNj (note that this places an additional
constraint on the possible values b can take). We add edges from each
node wj to all nodes in Nj . This allows us to find the targeted nodes
once we located H in the anonymized release.

(3) Edges are added from H to G − H so that each node xi ∈ X has
exactly di edges to G−H. These edges must be added while preserving
the unique linkage to the targeted nodes, i.e., for each targeted user
wj there must be no other nodes in G−H that are also connected to
precisely the nodes in Nj . Otherwise we would not be able to uniquely
find the targeted users once we located H in the anonymized graph.

(4) As a last step we add all the internal edges of our subgraph H. We
begin by including all the edges (xi, xi+1) for 1 ≤ i ≤ k − 1. This will
allow us to uniquely label the nodes of H once we have located its
position, provided that it has no non-trivial automorphisms. Finally
we include each other edge with probability 1/2. The degree of a node
xi ∈ X in the full graph is denoted by ∆′i which is equal to ∆i plus its
number of edges to other nodes in X.

As already mentioned, in order for the attack to be successful, we must
be sure that H contains no non-trivial automorphisms. Results from the
domain of random graph theory imply that with high probability our con-
structed graph H has no non-trivial automorphisms [Bol01]. In the remain-
ing of this work we will assume that H indeed has no non-trivial automor-
phisms.

An example of a subgraph that might be constructed by this algorithm
is shown in figure 8.1. Note that the figure doesn’t include any additional
edges between the nodes xi and gi. These were excluded to prevent the
figure from getting too cluttered.

8.5.3 Finding our Constructed Subgraph

We attempt to find H in G by searching for the path x1, x2, . . . , xk. This
search begins by considering every node in G with degree ∆′1. Then we
try to add any node with the degree ∆′2 continuing with nodes of degree
∆′3 and so on. Apart from this degree test we also use a second edge test
which verifies that the edges among the nodes currently in the path exactly
correspond with the edges that exists in our constructed graph H. In other
words words our search space is pruned by two constraints. The first one
being the degree test where each possible candidate for node xi must have
the correct degree ∆i. The second one is an internal structure test which
verifies that each candidate for node xi must have the correct subset of edges
to the current path xi, x2, . . . , xi−1. All this is done by constructing a search
tree T according to the the following details:
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x1
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Figure 8.1: Example construction of a subgraph G with k = 8. The nodes
x1 to x8 form the subgraph constructed by the adversary. Nodes w1, w2 and
w3 are the targeted nodes. The edges draw in red are the unique sets Ni to
identify the targeted nodes. For completeness a few nodes gi are also shown
and represented the remained of the released graph G.

1. Every other node in the search tree corresponds with a node in G.
Letting α be a node in T , we will define f(α) as the node in G.
It’s possible that a node it represents in G appears multiple times
in the search tree. The tree T is now constructed in such a way so
that for every path of nodes α1, . . . , α` from the root to a leaf node,
the corresponding nodes f(α1), . . . , f(α`) from a path in G with the
same sequence of degrees and the same internal edges as x1, . . . , x`.
Additionally every such path in G corresponds to a distinct rooted
path in T [BDK07].

2. The actual construction of T begins with a fixed dummy root node
α∗. All the nodes in G having degree ∆′1 are considered children of
the root node. For further constructing T we consider every current
leaf node α with its associated path α∗ = α0, α1, . . . , α` = α to the
dummy root node. We know that this path corresponds to a path
f(α1), f(α2), . . . , f(α`) in the graph G (notice that here we ignore the
dummy root node α∗ = α0). The task is now to find all neighbours
v of f(α`) in G for which the degree of v is ∆′`+1 and has the correct
subset of edges to the path, i.e.,

∀` : 1 ≤ i ≤ ` : (f(αi), v) is an edge iff (xi, x`+1) is an edge.

For every v satisfying both these test we create a new child β of α
with f(β) = v.
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3. Once the tree has been build and there is a unique rooted path of length
k, then we know that it correspond to the nodes in H. Moreover we
immediately learn the labels of these nodes since we associated each
node α in T with a specific node f(α) in G, and we know that for the
k-length path the node α0 corresponds with x0, α1 with x1, and so on.

Using H we can now re-identify the targeted nodes w1, w2, . . . , wb by
following the unique set of edges Ni to the target node wi. Note that the
running time of this algorithm is only slightly larger that the size of T .

8.5.4 Privacy Breach

Having identified the targeted nodes we learn their node degree and whether
there are edges between any of the targeted nodes. As explain in chapter 7
this can result in a privacy breach depending on the nature of the network
that is being attacked.

8.6 Analysis

Both the correctness of our assumptions and the efficiency of the attack have
to be proved. Our assumption is that with high probability the graph H
will be a unique subgraph in G. To prove the efficiency we show that the
size of the search tree T does not grow too large.

Uniqueness of H

Although describing the attack was not complicated, the analysis and proofs
are complex and not easily comprehensible [BDK07]. Since the true focus
of this work is to design robust anonymization techniques we will omit these
long and intricate proofs. Instead we will focus on a simplified version of the
theorem which states that H is unique with high probability. This proof is
also included in the paper by Backstrom, Dwork and Kleinberg [BDK07] as
a motivating example, and provides the technical intuition and idea behind
the more general statement of the theorem. Let us first state the general
theorem.

Theorem 8.1. Let k ≥ (2+δ) log n for an arbitrary positive constant δ > 0,
and suppose we use the following process to construct an n-node graph G:

1. We start with an arbitrary graph G′ on n−k nodes and we attach new
nodes X = {x1, . . . , xk} and arbitrarily include some edges to nodes in
G′.

2. We build a random subgraph H on X by including each edge (xi, xi+1)
for i = 1, . . . , k − 1, and including each other edge independently with
probability 1/2.
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Then with high probability there is no subset of nodes S 6= X in G such
that G[S] is isomorphic to H = G[X].

We will prove a more restricted statement where the subset of nodes S
need not be merely unequal to X, but also disjoint from X. This is easier
to prove while still capturing the idea behind the more general proof.

Claim 8.2. Let F0 be the event that there is no subset of nodes S disjoint
from X such that G[S] is isomorphic to H. Then with high probability the
event F0 holds.

Proof. We pick an arbitrary graph G yet consider it to be a fixed graph
during the proof. Pick a specific ordered sequence S = (s1, s2, . . . , sk) of k
nodes in G − H having edges between the consecutive nodes si and si+1.
Define ES as the event that the function f : S → X given by f(si) = xi is
an isomorphism for H and G[S]. Since graph G is fixed, all but k − 1 of
the edges in H are chosen independently with probability 1/2, and since S
is disjoint from X, we have that

Pr [ES ] =

(
1

2

)(k2)−(k−1)

(8.1)

where the probability is over all possible graphs H. Simplifying the
exponent using basic operations gives

(
k

2

)
− (k − 1) =

k(k − 1)

2
− 2(k − 1)

2
(8.2)

=
k2 − 3k + 2

2
(8.3)

=
(k − 1)(k − 2)

2
(8.4)

=

(
k − 1

2

)
(8.5)

And hence we get

Pr [ES ] =

(
1

2

)(k−2
2 )

= 2−(k−2
2 ) (8.6)

where the probability is again for all possible graphs H. We now use
the equation F0 = ∪SES where the union is over all possible sequences
S of k nodes in G − H. Recalling that G has n nodes, the number of
different sequences S is bounded by nk. As we picked k ≥ (2+ δ) log n when
constructing the subgraph H we have that n ≤ 2k/(2+δ). This gives
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Pr [F0] = Pr [∪SES ] (8.7)

≤ nk · 2−
(
k−1

2

)
(8.8)

≤ 2
k2

2+δ · 2−
k2

2 · 21 + 3k
2 (8.9)

= 2
−δk2

2(2+δ) + 3k
2 + 1

(8.10)

where inequality 8.7 follows from a union bound as explained in sec-
tion 2.4.1. We notice that the probability of event F0 goes to zero exponen-
tially quick in k. This completes the proof of claim 8.2.

For the complete proof we refer the reader to the paper by Backstrom
et al. [BDK07]. An important part of their complete proof is claim 8.3 as
stated below.

Claim 8.3. With high probability, for any constant c ≥ 15, the following
holds. Let A,B and Y be disjoint sets of nodes in G with A,B ⊆ X, and
let f : A∪ Y → B ∪ Y be an isomorphism. Then the set Y contains at most
c log k nodes that are not fixed points of f .

Although no proof is given of this claim here, we will however use this
when proving that the size of the search tree T is relatively small.

Efficient Recovery

Finally it’s possible to show that the search tree T doesn’t grow too large
in size.

Theorem 8.4. For every ε > 0, with high probability the size of T is
O(n1+ε).

Proof. Recall that k denotes the size of H, and let d be the maximum degree
in G of a node in H. As a result from the construction of H both of these
quantities are O(log n). Let Γ be a random variable equal to the number of
nodes in the search tree T . We decompose Γ into the sum of two simpler
variables. The first one is Γ ′ and stands for the number of paths of G −H
corresponding to some node of T . The second variable Γ ′′ is the number
of paths in G that meet H and correspond to some node in T . We have
Γ = Γ ′ + Γ ′′. Our goal is now to find an upper bound on E [Γ ]. During the
proof we will assume the events F0 and F1 hold.

Part One. We begin by finding an upper found for E [Γ ′]. For any path
P in G−H we define the random variable Γ ′P as

Γ ′P =

{
1 if P corresponds to a node in T
0 otherwise
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Further we call a path P feasible if the degree of every node in P is at
most d. If P is not feasible then Γ ′P is almost surely (i.e., with probability
one) equal to 0.

Now consider any feasible path P of length j ≤ k. For P to be present
in T , i.e., that there exists a node α in T defining a path that corre-
sponds to P , we need the edges among nodes in P to match the edges
among {x1, x2, . . . , xj}. In the probability calculations we can imagine that
the edges between nodes in {x1, x2, . . . , xj} are being generated after P is
chosen. The edges (xi, xi+1) for 1 ≤ i ≤ j − 1 resulting from the path
x1, x2, . . . , xj are of course already known to exist. We have, even for the
special cases when the length j of the path is 1 or 2, that

E
[
Γ ′P
]

= 0 · Pr
[
Γ ′P = 0

]
+ 1 · Pr

[
Γ ′P
]

(8.11)

= Pr
[
Γ ′P
]

(8.12)

=

(
1

2

)(j2)−(j−1)

(8.13)

= 2−(j−1
2 ) (8.14)

A feasible path of length j can start with any node in the graph having
at most degree d. At worst these are n possibilities. For every consecutive
node in the path we can choose between at most d neighbours of the current
node, since the degree of all nodes in a feasible path is at most d. Thus the
worst case total number of feasible paths of length j is ndj−1. Hence we
obtain

E
[
Γ ′
]
≤
∑

P

E
[
Γ ′P
]

(8.15)

≤
k∑

j=1

ndj−12−(j−1
2 ) (8.16)

= n

k∑

j=1

(
d2−

j−2
2

)j−1
(8.17)

To simplify the inequality we use the fact that d = O(log n). In other
words there exists a c > 0 and n0 > 0 such that for all n ≥ n0:

E
[
Γ ′
]
≤ n

k∑

j=1

(
n log(c)2−

j−2
2

)j−1
(8.18)

Let s = 2 log log n+ 2 log c+ 2 and split the sum into two parts based on
this value.
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E
[
Γ ′
]
≤ n

s−1∑

j=1

(
c log(n)2−

j−2
2

)j−1
+ n

k∑

j=s

(
c log(n)2−

j−2
2

)j−1
(8.19)

Focusing on the second sum we notice that every j in it is larger or equal
to s. Hence we obtain the following

j ≥ s = 2 log log n+ 2 log c+ 2 (8.20)

j − 2

2
≥ log log n+ log c (8.21)

2−
j−2
2 ≤ (log(n)c)−1 (8.22)

c log(n)2−
j−2
2 ≤ 1 (8.23)

(
c log(n)2−

j−2
2

)j−1
≤ 1 (8.24)

(8.25)

From this we deduce that each term in the second sum is smaller or equal
to one. In other words, once j is Θ(log log n) the second term is smaller than
1. Since there are less than k such terms, the total sum is surely bounded
by k. Hence we have found the following upper bound for the second sum

n

k∑

j=s

(
c log(n)2−

j−2
2

)j−1
≤ nk (8.26)

We continue with finding an upper bound for the first sum. Observe that
for j ≥ 1 the factor 2−j/2 can only decrease the sum. Hence we can drop
the factor and introduce an inequality. Further working out this inequality
gives us

n

s−1∑

j=1

(
c log(n)2−

j−2
2

)j−1
= n

s−1∑

j=1

(
2c log(n)2−

j
2

)j−1
(8.27)

≤ n
s−1∑

j=1

(2c log(n))j−1 (8.28)

= n

s−2∑

j=0

(2c log(n))j (8.29)

= n
(2c log n)s−2 − 1

2c log n− 1
(8.30)
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The last equality uses the formula of geometric series. Finally we can
rewrite this back into asymptotic notation.

n
s−1∑

j=1

(
c log(n)2−

j−2
2

)j−1
= nO(log n)O(log logn) (8.31)

After all this we end up with our upper bound

E
[
Γ ′
]

= n · (O(log n)O(log logn) +O(log n))

which we can further simplify. Let c be the maximum of the constant values
used in all three Big-O notations (this is possible because all functions are
monotonically increasing). With this we can rewrite the upper bound.

∃n0 > 0,∀n > n0 : E
[
Γ ′
]
≤ n

(
(c log n)c log logn + c log(n)

)

= n
(

2log(c logn)·c·log logn + 2log(c logn)
)

= n
(

2log(c)·c·log logn+c·(log logn)2 + 2log(c)+logn
)

= n2O((log logn)2)

At long last we have the upper bound E [Γ ′] = n2O((log logn)2) and this
concludes the first part of the proof.

Part Two. For the second part of the proof we will try to find an upper
bound for E [Γ ′′]. This is done by decomposing it into a separate random
variables for each possible pattern in which a path could snake in and out of
H. In order to describe such a pattern we will use the notion of a template.
A template τ is a sequence of ` ≤ k symbols (τ1, . . . , τ`) where symbol τi ∈ X
is either a distinct node of H or the special symbol ⊥. We call the set of
all nodes of H that appear in τ the support of τ , and denote it s(τ). For
example the support of template

τ = (x2, x6,⊥,⊥, x1,⊥)

is {x1, x2, x6}. We will say that a path P in G is associated with τ if the ith

node on P lies in G−H for τi =⊥, and otherwise is equal to τi ∈ X. So for
our example template, possible paths associated with it are

x2, x6, g1, g1, x1, g33

x2, x6, g5, g2, x1, g12

. . .

where each gi can be any node in G−H. Finally, we say that the reduction
of τ , denoted τ , is the template for which τ i =⊥ whenever τi =⊥, and for
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which τ i = xi otherwise. We will call such a template τ a reduced template.
The reduced template of our example is

(x1, x2,⊥,⊥, x5,⊥)

Notice that the support of a reduced template need to be the same as the
support of the original template.

Let Γ ′′τ be a random variable equal to the number of paths P associated
with τ that are represented in the search tree T . The length ` of τ is also
equal to the length of the path P . If at least one such path exists, then
there is an isomorphism

f : s(τ)→ s(τ)

given by f(x) = xi when τi = x. Why is this an isomorphism? Well, if
a path P is represented in the search tree T then it passed the internal
structure test, which verifies that each node in the path has the same subset
of edges as are present our constructed subgraph. The isomorphism we
defined is exactly this bijection between the nodes of the path P—which
passed the internal structure test—and the corresponding subset of nodes
in our constructed subgraph H.

We know from claim 8.3, taking A = ∅, Y = s(τ) and B = s(τ)− s(τ),
that with high probability all but at most O(log k) nodes are fixed points
of f . For the remainder of the proof we will assume this is indeed the case.
Put differently we have that τ agrees with τ on all but O(log k) positions.

From this one can deduce that the only templates τ for which Γ ′′τ can
be non-zero are those that differ in at most O(log k) positions from a re-
duced template. After all, if it differs in more than O(log k) positions then,
following from the contraposition of claim 8.3, there wouldn’t exist an iso-
morphism between s(τ) and s(τ), hence—again by contraposition—there
would be no path P associated with τ that is represented in the search tree
T .

To continue with our search for an upper bound we will decompose Γ ′′τ
into a sum of random variables Γ ′′τj for every feasible path P associated with
τ . If P is represented in T then Γ ′′τP = 1 and otherwise Γ ′′τP = 0. We now
have that

E
[
Γ ′′
]
≤
∑

τ,P

E
[
Γ ′′τP
]

=
∑

τ,P

Pr
[
Γ ′′τP = 1

]

To calculate this sum we will actually consider all reduced templates
with exactly j ⊥’s, and then sum over all possible values of j. First we
want to know how many reduced templates there are with j ⊥’s. Note
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that the template cannot contain only ⊥’s since then any path associated
with it wouldn’t contain nodes of H, meaning the minimum length ` of a
template containing j ⊥’s is j + 1. For a reduced template we only need to
pick the location of the ⊥’s, the other symbols are then determined by their
location, i.e., location i will then contain xi. We have that the total number
of templates with j ⊥’s is

k∑

`=j+1

(
`

j

)

It is proven in section 8.11 that kj+1 is an upper bound of this sum.
Hence there are at most kj+1 reduced templates with j ⊥’s, and therefore
at most kO(log k) ·kj+1 templates τ with j ⊥’s for which Γ ′′τP can be non-zero.
For each such τ , there are at most dj feasible paths P associated with τ .

Each such path P as a probability of at most 2−(j−1
2 ) of being represented

in T . When summing over all j’s this results in

E
[
Γ ′′
]
≤

k−1∑

j=1

kj+1djkO(logn)2−(j−1
2 )

= kO(logn)
k−1∑

j=1

k2d

(
kd

2(j−2)/2

)j−1

Similarly to part one of the proof, once j is Θ(log kd) = Θ(log log n) each
term is less than 1, so

E
[
Γ ′′
]
≤ kO(log k)O(log log n)(kd)O(log logn) (8.32)

= 2O((log logn)2) (8.33)

Conclusion. Combining both upper bounds we can conclude that
E [Γ ] = n2O((log logn)2) + 2O((log logn)2) = n2O((log logn)2).

Lemma 8.5. ∀ε > 0: f(x) ∈ n2O((log logn)2) =⇒ f(x) ∈ O(n1+ε).

Lemma 8.5 shows that this implies that E [Γ ] = O(n1+ε) for every ε > 0.
For a proof of lemma 8.5 see section 8.11. This completes the proof of
theorem 8.4.

8.7 Experiments

In order the verify the attack a simulation was carried out on real social
network data. The social graph used in the experiments was creating by
crawling the blogging site LiveJournal. Each node in the graph corresponds
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that a path P in G is associated with τ if the ith node on P lies
in G − H for τi = ∗, and otherwise is equal to τi ∈ X . Finally,
we say that the reduction of τ , denoted τ , is the template for which
τ i = ∗ whenever τi = ∗, and for which τ i = xi otherwise. (We
will call such a τ a reduced template.)

Let Γ′′
τ be a random variable equal to the number of paths P

associated with τ that are represented in the search tree T . If at
least one such path exists, then there is an isomorphism f : s(τ) →
s(τ) given by f(xr) = xi when τi = xr . Since we are assuming
that F1 holds, Claims 2 and 3 from the proof of Theorem 2.1 imply
that at all but at most O(log k) nodes are fixed points of f , and
hence that τ agrees with τ on all but O(log k) positions. Hence,
the only templates τ for which Γ′′

τ can be non-zero are those that
differ in at most O(log k) positions from a reduced template.

We further decompose Γ′′
τ into a sum over random variables

Γ′′
τP , for feasible paths P associated with τ , where Γ′′

τP = 1 if
P is represented in T , and 0 otherwise. Now, there are at most
kj reduced templates with j ∗’s, and hence at most kO(log k) · kj

arbitrary templates with j ∗’s for which Γ′′
τ can be non-zero. For

each such τ , there are at most dj feasible paths P associated with
τ . Each such P has a probability of at most 2−(

j−1
2 ) of being rep-

resented in T . Summing over all j gives

E
ˆ
Γ′′˜ ≤

X
τ,P

E
ˆ
Γ′′
τP

˜
≤

kX
j=1

kjdjkO(log k)2−(
j−1
2 )

≤ kO(log k)
kX

j=1

kd

„
kd

2(j−2)/2

«j−1

Once j is Θ(log kd) = Θ(log logn), each term is O(1), so

E
ˆ
Γ′′˜ ≤ kO(log k)O(log logn)(kd)O(log logn)

= O(2O((log logn)2)).

We conclude with some comments on the tests used in the re-
covery algorithm. Recall that as we build T , we eliminate paths
based on an internal structure check (do the edges among path
nodes match those in H?) and a degree check (do the nodes on
the path have the same degree sequence as H?). Although the
proofs of Therems 2.1 and 2.2 use just the internal structure check
to prove uniqueness and to bound the size of T respectively, it is
very important in practice that the algorithm use both checks: as the
experiments in the next subsection will show, one can get unique
subgraphs at smaller vales of k, and with much smaller search trees
T , by including the degree tests. But it is interesting to note that
since these theorems can be proved using only internal structure
tests, the attack is robust at a theoretical level provided only that
the attacker has control over the internal structure of X , even in
scenarios where nodes elsewhere in the graph may link to nodes
in X without the knowledge of the attacker. (In this case, we still
require that the targeted nodes wj ∈ W are uniquely identifiable
via the sets Nj , and that all degrees in X remain logarithmic.)

2.3 Computational Experiments

Social Network Data. We now describe computational experi-
ments with the algorithm on real social network data drawn from an
on-line setting. We find that the algorithm scales easily to several
million nodes, and produces efficiently findable unique subgraphs
for values of k significantly smaller than the upper bounds in the
previous subsections.
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Figure 1: For two different choices of d0 and d1, the value k = 7
gives the attack on the LiveJournal graph a high probability of
success. Both of these choices for d0 and d1 fall well within the
degrees typically found in G.

As data, we use the network of friendship links on the blogging
site LiveJournal, constructed from a crawl of this site performed in
Februrary 2006. Each node in LiveJournal corresponds to a user
who has made his or her blog public through the site; each user can
also declare friendship links to other users. These links provide the
edges of the social network we construct; they are directed, but we
follow the principle of the previous subsections and convert them
to undirected edges for purposes of the experiments. LiveJournal
thus works well as a testbed; it has 4.4 million nodes and 77 million
edges in the giant component of its undirected social network, and
it exhibits many of the global structural features of other large on-
line social networks. Finally, we emphasize that while LiveJournal
has the right structure for performing our tests, it is not in reality
an anonymous network — all of the nodes in the network represent
users who have chosen to publish their information on the Web.

We simulate anonymization by removing all the user names from
the nodes; we then run our attack and investigate the ranges of pa-
rameters in which it successfully identifies targeted nodes. As a
first question, we examine how often H can be found uniquely for
specific choices of d0, d1, and k. In our construction, we gen-
erate a random external degree ∆i for each node xi uniformly
from [d0, d1]. We then create links to targeted nodes sequentially.
Specifically, in iteration i we choose a new user wi in G − H to
target; we then pick a minimal subset X ′ ⊆ X that has not been
used for any wj for j < i, and where the degrees of nodes in X ′ are
less than their randomly selected target degrees. We add an edge
between wi and each user in X ′. We repeat this process until no
such X ′ can be found. If, at the end of the process, some nodes in
X have not yet reached their target degrees, we add edges to ran-
dom nodes in G (and remove nodes from W so that no two nodes
are connected to the same subset of X).

Uniqueness. We say the construction succeeds if H can be re-
covered uniquely. Figure 1 shows the success frequency for two
different choices of d0 and d1 (the intervals [10, 20] and [20, 60]),
and varying values of k. We see that the success frequency is not
significantly different for our two choices. In both cases the num-
ber of nodes we need to add to achieve a high success rate is very
small – only 7. With 7 nodes, we can attack an average of 34 and
70 nodes for the smaller and larger degree choices, respectively.

Figure 8.2: Success rate of the active attack for two given intervals [d0, d1] on
the LiveJournal graph. The x-axis show the size of the constructed subgraph
H and the y-axis the probability of uniquely locating H. [BDK07]

to a user with a public blog. Users are able to mark other users as their
friends which in turn creates a directional edge in the underlying social
graph. Since our focus is on undirected edges we will convert all directed
edges to undirected ones. Obviously all the nodes in their crawl are users
who have chosen to publish their information publicly on the web, so a
selection bias may be present. In total the graph has 4.4 million nodes and
77 million edges and has the same properties compared to other large online
social networks [BDK07]. Anonymization has been simulated by removing
all the attributes such as the username, location, age, etc. from the nodes.

The attack succeeds when the adversary can uniquely locate the con-
structed subgraph H within the LiveJournal social graph. To simulate the
attack we randomly created several subgraphs over a range of possible sizes,
and check if we can find a unique match in G. The construction is exactly
as explained previously, i.e., during the simulation we will randomly select a
few nodes to serve as the targeted nodes and we will further include edges to
G so each node has the required amount of edges ∆i it nodes in G−H. The
probability of success is then defined as the as the number of unique matches
divided by the number of attempts. Figure 8.2 shows the success probability
for varying values of k, the size of G, and for two different choices of the
interval [d0, d1] [BDK07]. These two intervals fall well within the degrees
typically found in G.
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From figure 8.2 we notice that with k ≥ 7 the attack has a high proba-
bility of success. The reason such a low value already results in a successful
attack is because, apart from an internal structure test, we also utilize the
degree test. In the LiveJournal graph each of the possible Hamiltonian
graphs1 on 7 nodes actually occurs. Hence the degree sequence of H within
G is essential in finding a unique match. Note that in theorem 8.1 we base
the probability of recovering the constructed subgraph merely on its inter-
nal structure. As k = 7 is much lower compared to the analyzed bound of
(2 + δ) log n there results are not conflicting.

Not only must the adversary be able to recover G, he or she must also
be able to do this within an acceptable amount of time. During the analyses
we briefly stated that the running time of the algorithm is only a small
factor larger than the size of the search tree. Combined with theorem 8.4
this means that the proposed algorithm for recovering the subgraph H is
efficient. And indeed, in practice the search tree T is not much larger than
the number of nodes u such that d(u) = d(x1), making its recovery fast in
practice [BDK07].

8.8 Detectability

We have purposely restricted the degree of the edges to the interval [d0, d1]
during the construction phase. If one chooses this interval to match the
average degrees found in the social graph, then it shouldn’t stand out based
on its degree distribution. We have also assumed that we are working with
undirected edges. Based on this one may conjecture that the attack is hard
to detect.

In practical settings however, we commonly have to deal with directed
edges. While this would make the active attack easier to execute, it also
makes it easier to detect by the data curator. The reason is that the sybil2

nodes, i.e., the nodes added by the adversary, will likely have very little
incoming edges. This is because must users will have little to no reason to
link back to the sybil nodes. In turn this results in the subgraph having
many outgoing edges while having no incoming edges, which makes it easier
to detect. Current research also shows that it’s possible to detect sybil
attacks on social networks [YGKX08].

1A Hamiltonian graph is a graph possessing a cycle visiting each node exactly once.
2This comes from the term Sybil attack, which is an attack in computer security where

multiple identities in a system are forged with the goal of exploiting or subverting the
system.
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8.9 As a Passive Attack

As a final note we can convert the active attack to a less powerful passive
attack. The idea is that instead of creating a subgraph, users currently
participating in the network from a coalition. They then attempt to locate
themselves in the released graph. If this is successful it might be possible to
re-identify certain friends.

Such an attack is however of limited effect. A large obstacle is that we
cannot target arbitrary users. Only users having edges to the graph formed
by the coalition can potentially be re-identified. This greatly restricts the
effectivity of the attack. On the other hand it has been found empirically
that once a collation is moderately-sized, it can uniquely locate itself and
compromise the privacy of at least some users [BDK07]. We also note that
finding a coalition need to be hard. An adversary can pay other users for
their information, partial information might be retrieved from other public
networks, a badly secured account can be hacked, and so on.

8.10 Conclusion

The active attack shows that naive anonymization is flawed and does not
assure privacy. But on the other hand the attack requires that the adversary
is able to influence the network before any data is released. Moreover he or
she has to able to create edges to the targeted nodes. This is not always
an easy task. Given that in some networks an edge is only created when,
say, the targeted node actually accepts a friend request, this could greatly
reduce the effect of the active attack. After all, the targeted node will not
always accept such a request. Even though the feasibility of the attack can
be called into question, it does show that naive anonymization is not an
option.

To provide privacy we must find a mathematically rigor definition of
privacy that is applicable to graph data. For satisfying such a definition
one will have to change the underlying graph structure, otherwise an active
attack is possible. The search is now on for a definition that provides ade-
quate privacy while also being achievable in practice. This will be our focus
for the next chapter.

8.11 Proofs

8.11.1 Lemma 8.5

We first restate the lemma below.

Lemma 8.5. ∀ε > 0: f(x) ∈ n2O((log logn)2) =⇒ f(x) ∈ O(n1+ε).
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Proof. The proof begins by expanding the left hand side

∃c > 0,∃n0 > 0,∀n > n0 : f(n) ≤ n2c(log logn)2 (8.34)

Here the implication can be proven by showing that

∀ε > 0,∀c > 0: n2c(log logn)2 ∈ O(n1+ε) (8.35)

This in turn can be proven by using theorem 7.1 and showing that for
all positive ε and c it is true that

lim
n→∞

n2c(log logn)2

n1+ε
∈ R (8.36)

Working out this limit can be done as follows

lim
n→∞

[
n2c(log logn)2

n1+ε

]
= lim

n→∞

[
2c(log logn)2)−ε logn

]
(8.37)

We continue by proving that the exponent in the limit goes to minus
infinity.

lim
n→∞

[
c(log log n)2 − ε log n

]
= lim

n→∞

[
log n

(
c
(log log n)2

log n
− ε
)]

(8.38)

This can be further worked out by showing that

lim
n→∞

[
c
(log log n)2

log n

]
= c lim

n→∞

[
2

log log n

log n

]
(8.39)

= c lim
n→∞

[
2

1

log n

]
(8.40)

= c · 0 = 0 (8.41)

where the first two equations use l’Hôpital’s rule. Plugging this result into
equation 8.38 we have that, given a ε greater than zero, the exponent in
the limit of equation 8.37 goes to minus infinity. In turn this proves that
the limit we started with in equation 8.36 goes to zero, which is indeed an
element of R.

8.11.2 Lemma 8.6

We prove the following result

Lemma 8.6. For every k and j it holds that
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k∑

`=j+1

(
`

j

)
≤ kj+1

with k and j are natural numbers.

Proof. The proof is by induction. As the base case we will prove the state-
ment is true for all positive k and j = 0.

k∑

`=1

(
`

0

)
=

k∑

`=1

`!

0!`!
(8.42)

=

k∑

`=1

1 (8.43)

= k (8.44)

≤ kj+1 (8.45)

For the inductive step we will assume the statement holds for all k and
j = n. We will then prove that is also holds for all k and j = n + 1. To
begin we have

k∑

`=n+2

(
`

n+ 1

)
=

k∑

`=n+1

(
`

n+ 1

)
−
(
n+ 1

n+ 1

)
(8.46)

To reduce this to the induction hypothesis we exploit the following ob-
servation

(
`

n+ 1

)
=

`!

(n+ 1)!(`− n− 1)!
(8.47)

=
`− n

(n+ 1)
· `!

n!(`− n)!
(8.48)

=
`− n

(n+ 1)
·
(
`

n

)
(8.49)

Filling this into equation 8.46 gives
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k∑

`=n+2

(
`

n+ 1

)
=

k∑

`=n+1

`− n
(n+ 1)

·
(
`

n

)
− 1 (8.50)

≤
k∑

`=n+1

k − n
(n+ 1)

·
(
`

n

)
(8.51)

=
k − n

(n+ 1)
·

k∑

`=n+1

(
`

n

)
(8.52)

≤ k · kj+1 (8.53)

= kj+2 (8.54)

The first inequality is true because ` is always smaller or equal to k. The
second inequality follows from the induction hypothesis and the fact that
n ≥ 0. This proofs the induction step, and hence it has now been proved
by the principle of induction that the formula holds for all positive k and
n.
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Chapter 9
Degree Anonymization

In this chapter we will consider a privacy mechanism called degree anonymiza-
tion, which attempts to transform the graph in order to guarantee privacy.
Both the implementation and evaluation of several algorithms will be dis-
cussed in detail. The chapter is based on the paper by Liu and Terzi [LT08].

9.1 Introduction

We make the assumption that the adversary only knows the degree of a
targeted node. This can happen when the adversary visits a public pro-
file of the target, and he or she can see how many friends the target has. It
must be noted that a more powerful adversary can possess more information
which can be used to identify an individual. Nevertheless it is an interesting
assumption against weak adversaries, or in cases where the network data
doesn’t contain highly sensitive information and protection against power-
ful adversaries is not deemed necessary. Admittedly this makes the appli-
cability of degree anonymization rather low. However it provides a good
insight in how anonymization can be done, and illustrates the importance
of knowing how much auxiliary information the adversary has. Specifically,
in chapter 10 we will argue that a powerful adversary can still defeat degree
anonymization.

9.2 Anonymity Guarantees

The degree anonymization mechanism is similar to k-anonymity. The goal
is to modify the input graph, with all attributes removed, so each node
has the same degree with at least k − 1 other nodes. We will call this pri-
vacy definition k-degree anonymity. The definition is based on k-anonymous
vectors.
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Figure 9.1: On the left is a 4-anonymous graph, and on the right a 2-
anonymous graph.

Definition 9.1 (k-anonymous vector). A vector of integers is k-anonymous
if every distinct value in it appears at least k times.

For example the vector [5, 5, 3, 3, 2, 2, 2] is 2-anonymous. The definition
of k-degree anonymity now states that the degree sequence of G must be
k-anonymous. By first defining k-anonymous vectors it will be easier for us
to split the k-degree anonymization algorithm up in two parts. As we shall
see, first we can create a k-anonymous degree sequence, and then construct
a graph having this degree sequence that resembles the input graph.

Definition 9.2 (k-degree anonymity). A graph is k-degree anonymous if its
degree sequence is k-anonymous.

Assuming an adversary only knows the degree of individuals, k-degree
anonymity prevents identity disclose but may not prevent edge disclosure in
all cases (this is similar to the homogeneity attack on k-anonymity described
in section 3.3.2). An example of a 4-degree anonymous graph and a 3-degree
anonymous graph is shown in figure 9.1. Theoretically transforming the
input graph to the complete graph would make the graph satisfy k-degree
anonymity, but would render the graph useless for any study. Moreover,
simply copying the graph k− 1 times would also make it satisfy the privacy
definition, but clearly provides zero additional privacy. So we want to find a
graph satisfying k-degree anonymity without adding or removing nodes, and
by using the minimum amount of edge-modifications on the input graph.

Definition 9.3 (k-degree anonymization). The k-degree anonymization of
an input graph G = (V,E) is a graph Ĝ = (V, Ê) that is k-degree anonymous,
obtained by modifying the input graph G using the minimum amount of
insertions or deletions of edges, i.e., it minimizes |Ê − E|+ |E − Ê|.
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The algorithm we describe in this chapter will assume the graph is sim-
ple, i.e., the graph is undirected, unweighted and contains no self-loops or
multiple edges. From the definition of k-anonymous vectors it’s trivial to
derive the following claim

Claim 9.1. If a graph is k1-degree anonymous, then it is also k2-degree
anonymous, for every k2 ≤ k1.

Based on these definition we will be able to create a graph anonymization
algorithm which will assure k-degree anonymity. Unfortunately guarantee-
ing that only the minimum number of possible alterations are made to the
input graph is a nontrivial problem, and we will have to fall back on ap-
proximations.

9.3 Problem Description

Let G = (V,E) be the input graph we want to anonymize. For now we will
restrict ourselves only to edge additions. Edge deletions can be simulated
by the giving the complement of the input graph to the anonymization
algorithm. Adding an edge in the complement of the graph is identical to
removing edges in the original graph. In algorithm 9.1 the details are shown
on how to turn an edge addition algorithm into an edge deletion algorithm.
The function Anonymization Edge Addition is the anonymization algorithm
using only edge additions and returns a k-degree anonymous graph.

Algorithm 9.1 Simulating edge deletions.

1: G = Complement of input graph G.
2: Ga = Anonymization Edge Addition(G, k).
3: return Ga = Complement of Ga

An algorithm capable of simultaneously utilizing edge additions and
deletions will be considered at the end of this chapter. The goal of the
anonymization algorithm we want to design first is formulated in prob-
lem 9.1.

Problem 9.1 (Graph Anonymization). Given a graph G = (V,E) and an
integer k, find a k-degree anonymous graph Ĝ = (V, Ê) with E ⊆ Ê such
that |Ê − E| = |Ê| − |E| is minimized.

This problem always has a solution: The complete graph always satisfies
the anonymity constraint, given that a sensible k has been chosen, i.e.,
k < |V |. Since we need to a find a graph Ĝ that minimizes |Ê| − |E|, it
will also minimize the L1 distance between the degree sequence of G and Ĝ
since we have the equality
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|Ê| − |E| = 1

2
L1(d̂, d) (9.1)

The equality is true because adding one edge to the graph increases the
degree of two nodes, hence the fraction 1

2 in the formula. Recall that the L1

distance is defined as follows

L1(d̂, d) =
∑

i

∣∣∣d̂(i)− d(i)
∣∣∣ (9.2)

Here d stands for the degree sequence of the graph G, and d̂ for that
of Ĝ. This is a very interesting observation that can be exploited when
designing an algorithm. Instead of immediately trying to modify the graph
by adding edges, we can first find the degree sequence d̂ that is k-anonymous
and minimizes the L1 distance. As a second step we can modify the input
graph making sure it has the desired k-anonymous degree sequence. We will
continue by formalizing these two subproblems.

Part 1: Degree Anonymization

First, starting from d, we construct a new degree sequence d̂ that is k-
anonymous and minimizes L1(d̂, d). From equation 9.1 we know that mini-
mizing this distance is equivalent to the requirement in problem 9.1 stating
that we must use as few edge additions as possible.

Problem 9.2 (Degree Anonymization). Given d, the degree sequence of
graph G = (V,E), and an integer k, construct a k-anonymous sequence d̂
by only increasing the degree of nodes, such that L1(d̂, d) is minimized.

Part 2: Graph Construction

Having the optimal k-anonymous degree sequence d̂, the next step consists
of constructing a graph with this degree sequence that closely resembles the
input graph. If all edges of the input graph are included in the constructed
graph this gives an optimal solution for k-degree anonymization defined in
problem 9.1.

Problem 9.3 (Graph Construction). Given a graph G = (V,E) and a k-
anonymous degree sequence d̂, construct the graph Ĝ = (V, Ê) such that its
degree sequence is equal to d̂ and E ⊆ Ê.

9.4 Degree Anonymization

Problem 9.2 can be efficiently solved by a dynamic-programming algorithm
having a time complexity of O(n2). We can further optimize this algorithm
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to obtain a time complexity of O(nk). Hence we can obtain the optimal re-
sults within a linear amount of time. First we outline the algorithm running
in time O(n2) because it’s easier to explain, and then we will describe how
to improve the algorithm.

Since we have restricted ourselves to edge additions only, the degree of
the nodes can only increase. Furthermore we make the following observation.

Claim 9.2. Let d be the degree sequence of a graph. Then if d(i) = d(j)
with i < j, it follows that d(i) = d(i+ 1) = . . . = d(j).

Proof. The proof is by contradiction. Assume that there is a position `
with i ≤ ` < j such that d(`) < d(` + 1). Because a degree sequence
is monotonically increasing this implies that d(i) < d(j), which leads to
a contradiction. Hence there is no position in the subsequence where the
degree increases, so all degrees must be equal.

Let DA(d) be the cost of anonymizing the degree sequence d, which is
equal to L1(d, d̂) where d̂ is the optimal solution as defined in problem 9.2.
We will callDA(d) the anonymization cost of a sequence d for a given number
k. Furthermore we will let d[i, j] denote a subsequence of d containing the
elements d(i), d(i+ 1), . . . , d(j). Additionally I(d[i, j]) is defined as

I(d[i, j])
def
=

j∑

`=j

(d(i)− d(`)) (9.3)

which can be seen as the anonymization cost when all nodes i, i + 1, . . . , j
are put in the same anonymization group1 and all degrees are set to d(i).

Using these notations we can derive the set of dynamic programming
equation which can be used to solve the Graph Anonymization program.

For i < 2k :

DA(d[1, i]) = I(d[1, i]) (9.4)

For 2k ≤ i ≤ n :

DA(d[1, i]) = min

{
I(d[1, i]), min

k≤t≤i−k
{DA(d[1, t] + I(d[t+ 1, i]))}

}
(9.5)

The first equation is correct because, when i < 2k, one cannot construct
two different anonymized groups each of size k. Therefore all nodes in the
subsequence are put into the same anonymization group, and all the degrees
are set to d(1).

For i larger or equal to 2k either the complete sequence can be put
into one big anonymization group, or the sequence can be split up into two

1In an anonymization group all nodes have the same degree.
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subsequences that are anonymized. The equation is set up such that, when
a sequence is split up, both subsequences are guaranteed to have a length
of at least k. Then the minimum is found over all possible positions where
the sequences can be split, and also checks if not splitting at all might be
optimal.

Implementing the algorithm is done by first initializing I(d[i, j]) for every
1 ≤ i ≤ j ≤ n, which has a time complexity of O(n2). Then equation 9.4
is implemented and simply assigns the correct value to every DA(d[1, i]) for
i < 2k having only a time complexity of O(k). Given that k < n these two
preprocessing steps take time at most O(n2). For the recursive formula 9.5
the algorithm considers every i starting at 2k and ending at n. Every step
it calculates the minimum over at most i − 2k + 1 splits. This results in a
total running time of O(n2).

9.4.1 An Improvement

Improving the running time of the algorithm can be done by exploiting the
following observation.

Claim 9.3. An anonymization group with a size larger than 2k − 1 can be
split into two anonymization groups without increasing the overall anonymiza-
tion cost.

Proof. Say the original anonymization group would be anonymized so all
nodes were given degree `. Then after splitting it into two anonymization
groups, one can always anonymize them so that in both groups all the node
degrees are again anonymized to `. This will not change the anonymization
cost and thus completes the proof.

Based on this claim we can change the dynamic programming equations.
The first equation stays the same, but for the second equation we now
know that the outermost minimum function can be removed, so only the
innermost minimum function remains. Furthermore when considering all
possible splits, we know that the second subsequence should have a size of
at most 2k − 1. All this results in the following recursive formula for i’s
satisfying 2k ≤ i ≤ n :

DA(d[1, i]) = min
max{k,i−2k+1}≤t≤i−k

{DA(d[1, t] + I(d[t+ 1, i]))} (9.6)

Analyzing the time complexity again starts at the initialization steps.
To precompute I(d[i, j]) we no longer have to consider all the possible pairs
of i and j, but instead can focus on sequences having length at least k and
at most 2k − 1. This is done by considering, for every i, only j’s such that
k ≤ j − i+ 1 ≤ 2k. We conclude that the running time for the initialization
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step drops to O(nk). Secondly the recursion formula 9.6 needs to consider
only O(k) splits for every i, totaling in a time complexity of O(nk). This
proves the following theorem.

Theorem 9.4. There exists an algorithm solving the Degree Anonymization
problem in linear time.

We conclude that this part of the algorithm is efficiently solvable. The
algorithm can quickly find the optimal solution, and implementing it also
isn’t a complex task. In subsequent sections we will call this algorithm
DegreeAnonymization(d, k) where d is a degree sequence and k the privacy
parameter. The function returns the optimal k-anonymous degree sequence
using only edge additions.

9.5 Graph Construction

9.5.1 Realizability and ConstructGraph

Having a k-anonymous degree sequence the goal is now to construct a graph
that closely resembles the input graph with the given anonymous degree
sequence. It is not clear that a graph having the given degree sequence must
exist. After all, not all possible degree sequences have a corresponding simple
graph. We will call a degree sequence that can be achieved by constructing
a simple graph realizable.

Definition 9.4 (Realizable). A degree sequence is realizable if and only if
there exists a simple graph having precisely this degree sequence.

Thanks to Erdős and Gallai [Cho86] we can use the following theorem
to test whether a degree sequence is realizable or not.

Theorem 9.5 (Erdős-Gallai Theorem). A degree sequence d is realizable if
and only if

∑
i d(i) is even and for every 1 ≤ ` ≤ n− 1 it holds that

∑̀

i=1

d(i) ≤ `(`− 1) +

n∑

i=`+1

min{`, d(i)} (9.7)

The first requirement is easy to understand, since the total sum of all
the degrees is equal to 2 · |E| and thus always even. The second requirement
states that for every subset of the ` highest-degree nodes we can draw enough
edges between these nodes themselves, and to the “remaining nodes”, such
that the node can obtain its given degree. The proof of this theorem is
by induction and gives rise to a natural algorithm for constructing a graph
with the specified degree sequence [Cho86, MV02]. Algorithm 9.2 called
ConstructGraph shows the details of this algorithm.
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First ConstructGraph initializes the graph to be constructed by creating
n isolated nodes. During each iteration it will pick a random node and add
edges such that the selected node has the required degree. This is done
by storing the residual degree of every node during the executing of the
algorithm. Basically the residual degree stands for the number of edges that
still have to be added to the node in question for it to obtain the required
degree. The randomly picked node is connected to the nodes with the highest
residual degree, making sure that inequalities of the Erdős-Gallai Theorem
hold. If it turns out the degree sequence is not realizable the algorithm will
give some of the nodes a negative residual degree, and will then return “No”.
On the other hand, once all the nodes have a residual degree of zero, the
graph has been constructed and is returned.

Algorithm 9.2 The ConstructGraph algorithm.

Input: A degree sequence d of length n.
Output: A graph G = (V,E) with the given degree sequence d or “No”
if d is not realizable.

1: V := {1, . . . , n}, E := ∅
2: if

∑
i d(i) is odd then

3: return “No”
4: while 1 do
5: if ∃i : d(i) < 0 then
6: return “No”
7: if ∀i : d(i) = 0 then
8: return G = (V,E)
9: Pick a random node v with d(v) > 0

10: Set d(v) = 0
11: W := the d(v)-highest entries in d other than v
12: for each node w ∈W do
13: E := E ∪ (v, w)
14: d(w) := d(w)− 1
15: end for
16: end while

Note that algorithm 9.2 is an oracle for the realizability property of a
degree sequence. It will return “No” if and only if the degree sequence is
not realizable.

To analyze the running time of ConstructGraph let n be the number
of nodes and dmax = maxi d(i). One can store all the residual degrees in
a hash table with the key being the residual degree. When the node of a
degree changes updating the hash table takes only constant time. Also note
that checking if a residual degree is negative can be done while updating
it, so we can avoid having to check all the values each iterations. Detecting
if all residual degrees are zero can be done by saving the currently highest
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residual degree. By using the current maximum residual degree we can also
efficiently find the current d(v)-highest residual degrees. Finally a node is
at most updated dmax times, giving an overall time complexity of O(ndmax).

A possible variation of the algorithm can pick the highest degree node
at each iteration. This would result in a topology having a very dense core.
On the other hand, starting with the lowest degree, would result in very
sparse cores. The middle ground is obtained by picking a random node. All
these variations would still have the same time complexity.

9.5.2 SuperGraph: Resemblance to the Input Graph

If one would use ConstructGraph to construct the graph of a k-anonymized
degree sequence of the input graph, it could different significantly from the
given input graph. This it not want we want. What we need is an algorithm
that finds a solution to the Graph Construction problem. That is, the
constructed graph Ĝ = (V, Ê) must satisfy the constraint E ⊆ Ê, where
G = (V,E) is the input graph. For this we first introduce a new definition.

Definition 9.5 (Realizable Subject to a Graph). Given an input graph
G = (V,E), a degree sequence d̂ is realizable subject to G if and only if there
exists a simple graph Ĝ = (V, Ê) having precisely the degree sequence d̂ and
with E ⊆ Ê.

Given the above definition one has the following variation of the Erdős-
Gallai Theorem [LT08].

Theorem 9.6. Given a degree sequence d̂ and a graph G = (V,E) with
degree sequence d. Let

1. a = d̂− d

2. V` be the ordered set of ` nodes containing the ` largest a(i) values
sorted in decreasing order

3. d`(i) be the degree of node i in the input graph G when counting only
edges in G that connect node i to one of the nodes in V`

we have that if d̂ is realizable subject to G then
∑

i a(i) is even and for every
1 ≤ ` ≤ n− 1 it holds that

∑

i∈V`

a(i) ≤
∑

i∈V`

(
`− 1− d`(i)

)
+

∑

i∈V−V`

min
{
`− d`(i), a(i)

}
(9.8)

Notice that for every pair of nodes (u, v) with u ∈ V` and v ∈ V − V`
it’s always true that a(u) ≥ a(v) and that |V`| = `. Important is that
the theorem only gives an implication. It gives no guarantees that if the
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formula is true, the degree sequence is realizable subject to the graph. In
other words the theorem only gives a necessary condition, it might not be a
sufficient one. The authors have not published a proof [LT08]. Nonetheless,
to gain some insight in the theorem, it’s helpful to convince yourself that
the following two inequalities always hold:

∀i : d`(i) ≤ ` (9.9)

∀i ∈ V` : d`(i) ≤ `− 1 (9.10)

These make sure that the terms in the sum are never negative.
Even though theorem 9.6 gives no sufficient condition, we can still design

an algorithm similar to ConstructGraph that will attempt to construct a
graph that is a supergraph of the input graph and has the desired degree
sequence. It can first check if inequality 9.8 holds for all appropriate `. If
it doesn’t it returns “No” signaling that no such supergraph exists. Oth-
erwise it will attempt to find the supergraph and return it, or return the
value “Unkown” signaling that it didn’t find a supergraph but one might
nevertheless exist.

Algorithm 9.3 The SuperGraph algorithm.

Input: A degree sequence d̂ of length n and a graph G = (V,E).
Output: A graph Ĝ = (V, Ê) with degree sequence d̂ and E ⊆ Ê,
“Unknown” if no supergraph found, “No” if d̂ is not realizable s.t. to G.

1: a := d̂− d, with d the degree sequence of G
2: if

∑
i a(i) is odd or equation 9.8 doesn’t hold then

3: return “No”
4: Ê := E
5: while true do
6: if ∃i : a(i) < 0 then
7: return “Unknown”
8: if ∀i : a(i) = 0 then
9: return Ĝ = (V, Ê)

10: Pick a random node v with a(v) > 0
11: Set a(v) = 0
12: W := the a(v)-highest entries in d̂ other than v, ignoring nodes that

are already connected to v in Ĝ
13: for each node w ∈W do
14: Ê := Ê ∪ (v, w)
15: a(w) := a(w)− 1
16: end for
17: end while

Algorithm 9.3 gives the pseudo code of SuperGraph. The algorithm
works on the residual degrees a = d̂ − d. These are the degrees that must
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Figure 9.2: Example graph to be 2-degree anonymized.

be added in order to obtain the desired degree d̂. First it checks whether
the conditions of theorem 9.6 are met, if not it outputs “No”. Otherwise it
attempts to add edges by first picking a random node v having a(v) > 0.
It then adds edges to the a(v)-highest residual degree nodes while ignor-
ing nodes that are already connected to v in G. If not enough nodes can
be found satisfying this condition, the algorithm will return “Unknown”.
The remaining details of the algorithm are similar to ConstructGraph. If
the algorithm returns “Unknown” it doesn’t mean that a graph satisfying
the required condition doesn’t exists, it merely means that our algorithm
couldn’t find it.

Concerning the time complexity we can use the same datastructures as
in ConstructGraph. With amax = maxi a(i) this gives a time complexity
of O(namax). Here we assume that checking if an edge already exists can
be done in constant time. This is possible when using appropriate data
structures, e.g., a hash table containing the existing edges.

There is one subtlety we haven’t addressed yet. This is best explained
using an example. Say we want to 2-degree anonymize the graph shown
in figure 9.2. The degree sequence d of the graph is [3, 3, 3, 2, 2, 1]. The
2-degree anonymization d̂ is [3, 3, 3, 3, 2, 2]. The vector of residual degrees a
becomes d̂− d = [0, 0, 0, 1, 0, 1]. Adding an edge between both nodes having
residual degree 1 could complete the anonymization (if this edge doesn’t
exists already). But we have a problem: We no longer know the node
the residual degree belongs to! The two residual degrees of 1 are located
at indices 3 and 5 in the vector a. However, these indices of the residual
degrees do not correspond to nodes, as can be clearly seen in figure 9.2.
Fortunately this can be easily solved by deviating from the formal definition
of a degree sequence, and pairing each degree with its node. The vector a
then contains pairs (b, v) where b is the residual degree and v represent the
node. Slightly abusing notation, in our example a would be equal to

[3, 3, 3, 3, 2, 2]− [(3, 1), (3, 2), (3, 4), (2, 3), (2, 5), (1, 0)]

= [(0, 1), (0, 2), (0, 4), (1, 3), (0, 5), (1, 0)]

Now we do know the nodes where an edge could be added between.
Based on the calculated value of a is would mean adding the edge (0, 3).
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And indeed, adding (0, 3) makes the graph 2-degree anonymous. However
adding this edge might come as a surprise. If you look at figure 9.2 visual
inspection of the graph clearly shows that adding the edge (0, 5) also makes
the graph 2-degree anonymous. Thus it’s possible there are multiple options
that anonymize the graph and minimize the anonymization cost. Depending
on how we order nodes with the same degree, different solutions can be
found. If the nodes would be sorted differently, say in decreasing order:

[3, 3, 3, 3, 2, 2]− [(3, 4), (3, 2), (3, 1), (2, 5), (2, 3), (1, 0)]

= [(0, 4), (0, 2), (0, 1), (1, 5), (0, 3), (1, 0)]

we see the other solution pops up which adds the edge (0, 5).

A New Improvement?

In general the way we order nodes with the same degree can not only produce
different solutions, sometimes it means the difference between finding and
not finding a solution. For example, we can sort nodes with the same degree
in increasing order of their node id, which could result in the following
sequence

[(3, 4), (3, 2), (3, 1), (2, 5), (2, 3), (1, 0)]

Or we could sort them in decreasing order, giving rise the to sequence

[(3, 1), (3, 2), (3, 4), (2, 3), (2, 5), (1, 0)]

How we sort nodes having the same degree can impact the realizability of a
degree sequence subject to the input graph. Therefore one might propose the
following improvement: The order in which nodes with the same degree are
put in the degree sequence should be randomized. The ConstructrGraph

algorithm is then run several times so multiple orderings are tested. Un-
fortunately, after several tests on different graphs, we concluded that the
performance increase of this modification is very low.

9.5.3 The Probing Scheme

The advantage of SuperGraph is that if it returns a graph, we know that the
least amount of edge additions were made. The disadvantage is that the algo-
rithm doesn’t always return a graph (the same is true for ConstructGraph).
This is not want we want. We want to return a k-degree anonymous graph
that closely resembles the input graph. If this would require slightly more
edge additions than calculated by DegreeAnonymization, this is a penalty
we must pay. After all, releasing no graph whatsoever is not an option.

A simple solution, called the probing scheme, can be used. If no graph
was found it slightly changes the degree sequence of the input graph G, re-
computes the k-anonymous degree sequence d̂, and then runs the SuperGraph
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algorithm on the new degree sequence d̂. It continues doing this until a graph
has been found. Although rather simple it has been claimed to work fairly
well in practice. We will extensively study the effectivity of the probing
scheme in section 9.7.2. The details are outlined in algorithm 9.4.

Algorithm 9.4 The Probing scheme.

Input: A graph G = (V,E) and integer k.
Output: A k-degree anonymous graph Ĝ = (V, Ê) with E ⊆ Ê.

1: d := the degree sequence of G
2: d̂ := DegreeAnonymization(d, k)
3: Ĝ := SuperGraph(d̂, G)
4: while Ĝ is not a graph do
5: d := AddRandomNoise(d)
6: d̂ := DegreeAnonymization(d, k)
7: Ĝ := SuperGraph(d̂, G)
8: end while
9: return Ĝ

The most important step is the AddRandomNoise function. The precise
implementation determines how well the probing scheme works, and whether
it will work at all. First it must add random noise in such a manner so even-
tually a graph will always be found. Adding noise to a random location while
avoiding that the degree doesn’t exceed |V | − 1 achieves this requirement.
Eventually the degree sequence d will converge to the complete graph which
is always a solution to the anonymization problem. We can conclude that
the probing scheme always halts.

Secondly the question is where to best add noise. A good heuristic is
to increase the degree of low-degree nodes. The reasoning behind this is
that during the degree anonymization of the degree sequence, nodes having
a high degree are put into the same anonymization group. Rarely will these
nodes have the same degree, forcing the anonymization step to increase the
degree of the other nodes with a possibly large amount. In turn this po-
tentially large increase must be compensated by increasing the degree of
low-degree nodes, which the degree anonymization algorithm does not guar-
antee. Therefore the AddRandomNoise function should be baised towards
increasing the degree of low-degree nodes.

Now, the degree sequence of most graphs have many low degree entries
at the tail of the sequence. So when picking the node of which we want to
increase the degree, simply picking a position uniform at random gives the
desired bias towards increasing low degree nodes. The resulting implemen-
tation is shown in algorithm 9.5.

Deciding with how much to increase the selected degree is also a crucial
step. Setting this value too low could greatly increase the running time of
the algorith (in algorithm 9.5 this value is maxDelta). On the other hand,
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Algorithm 9.5 The AddRandomNoise function.

Input: A degree sequence d of length n.
Output: A slightly modified degree sequence.

1: pos := pick a number from [1, n] uniform at random
2: delta := pick a number from [1,maxDelta] uniform at random
3: d(pos) := Min(n− 1, d(pos) + delta)
4: return Sort(d)

picking a too big value could lead to unnecessary many edge additions, and
would produce a result far from optimal. In our implementation we man-
ually selected an appropriate value for each graph. It might be possible to
automatically select the value by inspecting the highest, lowest and average
degree.

It’s regrettable that these details, which all influence the performance of
the algorithm, are not discussed by Lui and Terzi in their paper.

9.5.4 Relaxed Graph Construction using GreedySwap

The SuperGraph algorithm creates a k-degree anonymous graph such that
E ⊆ Ê. This can be a strong requirement, and we’re actually looking for
a graph that looks like the input graph, it doesn’t have to be a supergraph
of the input graph. So the real goal is to find a graph such that Ê ≈ E.
Since not all edges of E need to be present in the anonymous graph, this
implicitly allows both edge additions and deletions. We will come back on
simultaneous edge additions and deletions in the next section.

To avoid multiple modifications to the algorithm at once, we will still
use the DegreeAnonymization algorithm designed only for edge additions.
Later on we will modify it to also allow edge deletions. So assume that the
algorithm DegreeAnonymization returns a k-anonymous degree sequence d̂
and that it’s realizable such that ConstructGraph will return a graph Ĝ0.
The goal of the utility function called GreedySwap is, given the input graph
G and a k-degree anonymous graph Ĝ0, to transform the graph G0 as close
as possible to the input graph, without modifying its degree sequence. The
result would be an anonymous graph that better resembles the input graph.
Put differently GreedySwap will transform Ĝ0 into Ĝ = (V, Ê) which is still
k-anonymous and with Ê ≈ E.

Because the degree sequence of Ĝ0 is not allowed to change we can only
apply transformations to edges that do not change the degree of any node
in the graph. Such modifications are called valid swaps.

Definition 9.6 (Valid Swap). Given a graph Gi = (V,Ei) a valid swap
starts with the nodes i, j, k, l ∈ V such that (i, j) ∈ Ei and (k, l) ∈ Ei. Two
valid swaps might be possible depending on the following conditions:
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Algorithm 3 The Greedy_Swap algorithm.

Input: An initial graph Ĝ0(V, Ê0) and the input graph
G(V,E).

Output: Graph Ĝ(V, Ê) with the same degree sequence

as Ĝ0, such that Ê ∩ E ≈ E.

1: Ĝ(V, Ê) ← Ĝ0(V, Ê0)

2: (c, (e1, e2, e
′
1, e

′
2)) = Find_Max_Swap(Ĝ)

3: while c > 0 do
4: Ê = Ê \ {e1, e2} ∪ {e′1, e′2}
5: (c, (e1, e2, e

′
1, e

′
2)) = Find_Max_Swap

6: return Ĝ

the degree sequence d̂ is realizable. The first step involves
a call to the ConstructGraph algorithm, which we have de-
scribed in Section 5.1, Algorithm 1. The ConstructGraph

algorithm will return a graph Ĝ0 with degree distribution d̂.
The Greedy_Swap algorithm is then invoked with input the

constructed graph Ĝ0. The final output of the process is a

k-degree anonymous graph that has degree sequence d̂ and
large overlap in its set of edges with the original graph.

A naive implementation of the algorithm would require

time O(I|Ê0|2), where I is the number of iterations of the

greedy step and |Ê0| the number of edges in the input graph

graph. Given that |Ê0| = O(n2), the running time of the
Greedy_Swap algorithm could be O(n4), which is daunting
for large graphs. However, we employ a simple sampling
procedure that considerably improves the running time. In-
stead of doing the greedy search over the set of all pos-
sible edges, we uniformly at random pick a subset of size

O(log|Ê0|) = O(log n) of the edges and run the algorithm
on those. This reduces the running time of the greedy algo-
rithm to O(I log2 n), which makes it efficient even for very
large graphs. As we show in our experimental evaluation,
the Greedy_Swap algorithm performs very well in practice,

even in cases where it starts with graph Ĝ0 that shares small
number of edges with G.
The Probing Scheme for Greedy_Swap: As in the case
of the Supergraph algorithm, it is possible that the Con-

structGraph algorithm outputs a “No” or “Unknown”. In
this case we invoke a Probing procedure identical to the one
we have described in Section 5.3.

6.2 The Priority algorithm
We additionally show a simple modification of the Con-

structGraph algorithm that allows the construction of de-
gree anonymous graphs with similar high edge intersection
with the original graph directly, without using Greedy_Swap.
We call this algorithm the Priority algorithm because dur-
ing the graph-construction phase, it gives priority to already
existing edges in the input graph G(V,E). The intersec-

Algorithm 4 An overall algorithm for solving the Relaxed
Graph Construction problem; the realizable case.

Input: A realizable degree sequence d̂ of length n.

Output: A graph Ĝ(V,E′) with degree sequence d̂ and
E ∩ E′ ≈ E.

1: Ĝ0 = ConstructGraph(d̂)

2: Ĝ = Greedy_Swap(Ĝ0)

tions we obtain using the Priority algorithm are compara-
ble, if not better, to the intersections we obtain using the
Greedy_Swap algorithm. However, the Priority algorithm
is less computationally demanding than the naive implemen-
tation of the Greedy_Swap procedure.

The Priority algorithm is similar to the ConstructGraph.
Recall that the ConstructGraph algorithm at every step

picks a node v with residual degree d̂(v) and connects it

to d̂(v) nodes with the highest residual degree. Priority

works in a similar manner with the only difference that it

makes two passes over the sorted degree sequence d̂ of the
remaining nodes. In the first pass, it considers only nodes

v′ such that d̂(v′) > 0 and edge (v, v′) ∈ E. If there are

less that d̂(v) such nodes it makes a second pass consider-

ing nodes v′ such that d̂(v′) > 0 and edge (v, v′) /∈ E. In
that way Priority tries to connect node v to as many of
his neighbors in the input graph G. The graphs thus con-
structed share lots of edges with the input graph. In terms
of running time, the Priority algorithm is the same as Con-
structGraph.

In the case where Priority fails to construct a graph
by reaching a dead-end in the edge-allocation process, the
Probing scheme is employed; and random noise addition is
enforced until the Priority algorithm outputs a valid graph.

7. EXPERIMENTS
In this section we evaluate the performance of the pro-

posed graph-anonymization algorithms.

7.1 Datasets
We use both synthetic and real-world datasets. For the

experiments with synthetic datasets, we generate random,
small-world and scale-free graphs.

Random graphs: Random graphs are graphs with nodes
randomly connected to each other with probability p. Given
the number of nodes n and the parameter p, a random graph
is generated by creating an edge between each pair of nodes
u and v with probability p. We use GR to denote the family
of graphs generated by this data-generation model and GR

to denote a member of the family.
Small-world graphs: A small-world graph is a type of

graph in which most nodes are not neighbors of one an-
other, but most nodes can be reached from every other by
a small number of hops. This kind of graphs have large
clustering coefficient (CC) that is significantly higher than
expected by random chance, and small average path length
(APL) that is close to that of an equivalent random graph.
The average path length is defined as the average length of
the shortest path between all pairs of reachable nodes. The
clustering coefficient is defined as the average fraction of
pairs of neighbors of a node that are also connected to each
other. These two indices, along with the degree distribu-

Figure 9.3: Illustration of valid swap operations [LT08]

If (i, j) /∈ E and (k, l) /∈ E

Ei+1 := Ei − {(i, k), (j, l)} ∪ {(i, j), (k, l)} (9.11)

If (i, l) /∈ E and (j, k) /∈ E

Ei+1 := Ei − {(i, k), (j, l)} ∪ {(i, l), (j, k)} (9.12)

The valid swaps given in the previous definition are illustrated in fig-
ure 9.3. Important is that the valid swaps can change the structure of the
graph, but they do not change the degree sequence of the graph.

GreedySwap now finds valid swaps with the maximum increase in edge
intersection, i.e., it finds a swap such that

|E ∩ Êi+1| − |E ∩ Êi|

is maximized, and continues until no more valid swaps are found. The utility
function FindMaxSwap is used to find precisely these valid swaps. It returns
the increase in edge intersection and the swap belonging to this increase.
As shown in algorithm 9.6 GreedySwap will greedily keep swapping edges
until there are no more valid swaps that can increase the size of the edge
intersection.

Using GreedySwap it’s now possible to implement our original idea:
Given the input graph G we find the k-anonymous degree sequence, con-
struct a graph with this degree sequence using ConstructGraph, and finally
transform this graph making sure it resembles the input graph. In the case
the degree sequence d̂ is not realizable, we can invoke a Probing scheme
identical to the one we have described in algorithm 9.4. The final process is
given in algorithm 9.7.

To calculate the time complexity we will ignore the probing scheme
since it’s hard to find usable upper bounds for it. However, remember
that it converges to the complete graph and hence always terminates. A
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Algorithm 9.6 The GreedySwap algorithm.

Input: Input graph G = (V,E) and initial graph Ĝ0 = (V, Ê0).
Output: A k-degree anonymous graph Ĝ = (V, Ê) with Ê ≈ E.

1: Ĝ(V, Ê) := Ĝ0(V, Ĝ0)
2: (c, (e1, e2, e

′
1, e
′
2)) := FindMaxSwap(Ĝ)

3: while c > 0 do
4: Ê := Ê − {e1, e2} ∪ {e′1, e′2}
5: (c, (e1, e2, e

′
1, e
′
2)) := FindMaxSwap(Ĝ)

6: end while
7: return Ĝ

Algorithm 9.7 The RelaxedConstruction algorithm.

Input: A graph G = (V,E) and integer k.
Output: A k-degree anonymous graph Ĝ = (V, Ê) with Ê ≈ E.

1: d := degree sequence of G
2: d̂ := DegreeAnonymization(d, k)
3: Ĝ0 := ConstructGraph(d̂)
4: while Ĝ0 is not a graph do
5: d := AddRandomNoise(d)
6: d̂ := DegreeAnonymization(d, k)
7: Ĝ0 := ConstructGraph(d̂)
8: end while
9: return Ĝ = GreedySwap(Ĝ0, G)
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naive implementation of FindMaxSwap would result in a time complexity of
O(|E|2) = O(n4). Letting I be the number of iterations the Greedy Swap
algorithm needs, the total time complexity would be O(In4). This is un-
acceptable for large input graphs. Instead we will sample only O(log |E|)
edges in the FindMaxSwap utility function. As a result we are no longer
guaranteed that it will find the real maximum swap, but it still gives good
results in practice. Also note that the GreedySwap is by itself already an
approximation algorithm. The running time becomes O(I log2 n).

An important comment remains: Similar to the SuperGraph algorithm
it’s of importance how we decide which nodes in the graph returned by
ConstructGraph correspond to which nodes in the input graph. Again this
can be solved by slightly deviating from the formal definition of a degree
sequence and pairing each degree with its node. This can then be used in
the ConstructGraph algorithm to create the mapping as specified by this
degree sequence.

9.5.5 SimultaneousSwap: Edge Additions and Deletions

Finally we move to our algorithm allowing both edge additions and deletions
at all steps. First we must modify the DegreeAnonymization algorithm.
Surprisingly it’s very easy to include edge deletions and additions at the
same time. All we need to update is I(d[i, j]) denoting the anonymization
cost when all nodes i, i+ 1, . . . , j are put in the same anonymization group.
It’s now equal to

I(d[i, j])
def
=

j∑

`=i

|d∗ − d(`)|

where d∗ is

d∗
def
= arg min

d

j∑

`=i

|d∗ − d(`)|

The value of d∗ has been proven to be equal to the median of the values
{d(i), . . . , d(j)} [Lee95]. Thus calculating I(d[i, j]) can be done in linear
time. The recursion equations stay exactly the same. So when using the im-
provement explained in section 9.4.1 the time complexity of calculating the
optimal k-anonymous degree sequence is O(nk). We will call this algorithm
OptimalDegreeAnon.

Combined with a probing scheme, ConstructGraph and GreedySwap this
results in algorithm 9.8. First it uses the probing scheme to construct a
k-degree anonymous graph. Then it transform the graph to more closely
resemble the input graph. We call it the SimultaneousSwap algorithm.
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Algorithm 9.8 The SimultaneousSwap algorithm.

Input: A graph G = (V,E) and integer k.
Output: A k-degree anonymous graph Ĝ = (V, Ê) with Ê ≈ E.

1: d := degree sequence of G
2: d̂ := OptimalDegreeAnon(d, k)
3: Ĝ0 := ConstructGraph(d̂)
4: while Ĝ0 is not a graph do
5: d := AddRandomNoise(d)
6: d̂ := OptimalDegreeAnon(d, k)
7: Ĝ0 := ConstructGraph(d̂)
8: end while
9: return Ĝ = GreedySwap(Ĝ0, G)

9.6 Experiments and Implementation: Prologue

All algorithms are implemented in Java and accompanied with appropriate
unit tests. This should assure that the algorithms function correctly. Al-
though other papers on anonymization tend to use Python, we have chosen
Java because of its speed advantages. This allows use to test the algorithms
on large graphs within an acceptable amount of time.

9.6.1 Datasets

To test the anonymization algorithms several datasets have been used. We
will briefly describe how we obtained them and how they were created.

Enron graph

During the Enron2 scandal the Federal Energy Regulatory Commission re-
leased all the emails that had been send between employers of Enron. From
these correspondences a social graph has been created. A link is introduced
between two people only if both have sent emails to each other, and if in
total they have send more than 5 messages to each other.

A cleaned MySql database created by Shetty and Abidi [SA04] was used
in our experiments. From this we manually derived the social graph. At the
time of writing the dataset was available at http://www.isi.edu/~adibi/
Enron/Enron.htm.

Powergrid graph

In this graph, the nodes represent generators, transformers and substations
in a powergrid network. The edges represent high-voltage transmission lines
between them. [LT08] A visualization of the dataset is shown in figure 9.4.

2The Enron Corporation was an American energy company.
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Pajek@USpowerGrid. 4941 nodes, 6594 edges.
Figure 9.4: Powergrid graph visialization by AT&T Research.

At the time of writing the dataset was available at http://www.cise.

ufl.edu/research/sparse/matrices/Pajek/USpowerGrid.html as a ma-
trix saved in Matlab. A small utility function was written to convert the file
into a format our own application could better handle.

Facebook100 dataset

In a study on the social structure of facebook networks, Traud, Mucha and
Porter where given an anonymous dataset directly by Adam D’Angelo of
Facebook [TMP11]. It contains the friendship graphs of 100 American col-
leges and universities as they existed in September 2005. Even if users didn’t
publish their friend list on facebook at the time, this dataset does contain all
their friends! Thus it’s a very accurate graph representing a real social net-
work. Later on the Facebook Data Team requested that researchers should
no longer distribute the dataset. However, copies of it still float around on
the internet. Given that this graph contains invaluable information we still
decided to use it. This also allows us to test the algorithm on real social
networks, and not publicly scraped ones, or on randomly generated ones.

For our analysis we picked three graphs: The Texas graph, the Berke-
ley and the American graph. Later on the graphs Caltech and Bowdoin
where also included. These are two smaller graphs that will be used when
analyzing more computationally demanding algorithms. See table 9.1 for
basic properties about these graphs. Looking at the amount of edges of the
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first three mentioned graphs, they are 10 to 100 times bigger compared to
the largest graphs used in the tests by Lui and Terzi, and even though the
Caltech and Bowdoin graphs are of a more moderate size, they’re still 2 to
8 times bigger.

Co-authors graph

From the DBLP Computer Science Bibliography it’s possible to derive the so
called co-authors graph. In this graph each node represents an author, and an
edge is drawn between authors that have co-authored a paper. This is a very
large graph containing more than 1 million nodes and more than 3.6 million
edges. This makes it too big to be used to evaluate more computationally
demanding algorithms. However, when possible, a limited number of tests
were also performed on this graph.

An XML file containing the dataset was downloaded from http://www.

informatik.uni-trier.de/~ley/db/. The file is almost 1GB large and
had to be parsed using a SAX parser to avoid running out of memory.

Graph Name #Nodes #Edges

Enron 151 502
Caltech 768 16,656
Bowdoin 2,251 84,387

Powergrid 4,939 6,594
American 6,386 217,662
Berkeley 22,937 852,444

Texas 36,371 1,590,655
Co-authors 1,048,435 3,663,990

Table 9.1: Basic graph statistics.

9.6.2 Testing Randomized Algorithms

It’s very important to realize that most of our algorithms are randomized.
For example, ConstructGraph picks a random node at every iteration. As
another example, during the probing scheme a random amount of noise is
added to a random location in the degree sequence. This complicates our
analysis of the performances of the algorithms, since the output can change
every run. Strangely Lui and Terzi don’t mention how they dealt with this
inherent randomness, raising questions how they performed their analysis.
Either they reported the average value over an unknown number of runs, or
only ran the algorithm once.

Only reporting the average value returned by a randomized algorithm
actually gives us little information about the performance of it! [Sha] This
is easily demonstrated by considering two randomized algorithms who have
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Figure 9.5: This example shows the fictive response time of two servers for
100 request. Both servers have the same average response time, but a differ-
ent variance. This shows reporting only the average is not sufficient. [Sha]

the same average return value. The problem is that the variance of both
algorithms can differ significantly. Here the algorithm with a lower variance
performs better. A visual example is shown in figure 9.5. Both samples
have the same average but a different variance. An algorithm with a lower
variance is preferable as its results are more predictable.

During our tests we will report both the average and variance over a
selected number of runs. The number of runs is chosen such that the total
running time remains within practical limits. This gives a much better
understand on the performance of the algorithm instead of just reporting
the average value. On the other hand, if the variance is low, we will omit it
in the graphs.

9.7 Individual Algorithm Evaluation

First we look at how the algorithms behave on their own. Particularly this
evaluates the influence of the random steps that are taken in the algorithms,
if they contain any at all.

9.7.1 Degree Anonymization

Implementing the Degree Anonymization algorithm was first done in Python
and later on ported to Java. The reason for switching to java was to increase
the speed of the algorithm, which made it possible to test it on larger and
more realistic graphs within an acceptable amount of time.

Both DegreeAnonymization and OptimalDegreeAnon always return the
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optimal result. Nevertheless it is interesting to know what the anonymiza-
tion cost is for certain graphs. Figure 9.6 shows the L1-distance between the
original degree sequence and that obtained by DegreeAnonymization and
OptimalDegreeAnon. We immediately see that allowing both edge deletions
and additions greatly reduces the anonymization cost.

In figure 9.7.1 the anonymization cost when running the OptimalDegreeAnon
algorithm are shown for the American and Powergrid graph. This illustrates
that some graphs are easier to anonymize than others.

9.7.2 SuperGraph using Probing Scheme

We continue by evaluating the performance of the SuperGraph algorithm
using the probing scheme. The precise algorithm is shown in algorithm 9.4
with maxDelta set to 10. First the L1 distance between d̂ and d̂′ is mea-
sured, where d̂ is the degree sequence returned by DegreeAnonymization

and d̂′ the degree sequence of the graph returned by algorithm 9.4. In effect
this measures how much the probing scheme, and in particular the imple-
mentation of AddRandomNoise, have to modify the degree sequence in order
for it to be realizable with respect to the input graph. For each value of
k the algorithm was run 20 times on the input graph. Figure 9.8 shows
the average L1 distance in a full line, and to visualize the variance the the
dotted line shows the variance added to the average. A low variance then
means both lines are close to each other, while a high variance increases the
distance between both lines.

For the Enron and Powergrid graphs we notice the anonymization pa-
rameter k has little effect on the result. If we look at the graphs of Caltech
and Bowdoin we see that that k does influence the result. The higher k,
the higher the solution differs from the optimal one. In turn this means
the probing scheme needs to make more and more iterations before it finds
a solution. Lui and Terzi already warned that in most cases the probing
scheme only needs to be invoked a few times. However, it appears that for
real social networks, the current implementation of the probing scheme will
not scale well to large graphs and values of k. For the even bigger Bowdoin
graph it became too time consuming to test for all values of k, hence only
the first few values are shown. Social networks can be much bigger than
these example graphs, raising questions on the performance of the probing
scheme in combination with the SuperGraph algorithm.

Probing Scheme 2

We attempted to improve the probing scheme by making the following mod-
ifications to the AddRandomNoise function:

• If the sum of degrees is uneven, increase the degree of a random node
by only one.
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(a) Enron graph
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(b) Powergrid graph
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(c) American graph
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(d) Berkeley graph
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(e) Texas graph
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(f) Co-authors graph

Figure 9.6: L1-distance of original degree sequence and that obtained by
DegreeAnonymization, shown in a dashed line. And L1 distance between
original degree sequence and that obtained by OptimalDegreeAnon, shown
in a full line. X-axis stands for the privacy parameter k and the y-axis for
the L1-distance.
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Figure 9.7: Comparison of L1-distance between original degree sequence and
that obtained by OptimalDegreeAnon for two different graphs, showing that
some graphs are easier to anonymize.
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(a) Enron graph
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(b) Powergrid graph
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(c) Caltech graph
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(d) Bowdoin graph

Figure 9.8: The full line is the average L1-distance between the degree
sequence returned by OptimalDegreeAnon and that of the graph returned
algorithm 9.4 over 20 runs. The dotted line is obtained by adding the
variance to the full line.
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• If the sum of degrees is even, increase the degree of a random node by
an event amount.

In retrospect these might seem like obvious improvements. We will call
this modification probing scheme 2, and the original version probing scheme
1. Figure 9.9 shows the results when using these modifications. We notice
that not much has changed. Both the results and the variance are roughly
the same. For low values of k such as 2 and 3 the L1 difference is actually
much higher! A comparison between the old and new probing scheme is
shown in figure 9.10 for the Powergrid and Caltech graph. Here we see that
for some values of k probing scheme 2 is better, and for some values it’s
actually worse.

Probing Scheme 3

When running the tests a more drastic modification was also tried: We
modified AddRandomNoise such that it increased the degree of the last node
in the degree sequence by one. We will call it probing scheme 3. A predicted
downside is that this will increase the running time of the algorithm. The
first observation is that on all tested graphs the variance is much lower,
making it impossible to visually see the dotted line, and therefore it’s no
longer included in any graphs dealing with probing scheme 3. A comparison
of the L1 distance between the optimal degree sequence and that of the
returned graph is shown in figure 9.11 with as input the Powergrid and
Caltech graphs. We observe that when using probing scheme 3 on average
less edge additions have to be used. A disadvantage is that because only a
low amount of noise is added, on average the algorithms take a longer time
to execute, as we already predicted. From the Caltech graph however, we
observe something very interesting. For most values of k the result is indeed
better, yet there are some outliers for which the returned result is actually
worse!

Probing Scheme 4

Our last attempt at improving the probing scheme is to increase the degree
of a random node located in the second half of the degree sequence by
one. The idea is that this will still reduce the variance and decrease the
L1 distance as we have seen in probing scheme 3, but that it hopefully
reduces the peaks where it performed worse than probing scheme 1 and 2.
Figure 9.12 shows the results. The variance is higher than probing scheme
3, but lower than scheme 1 and 2. Figure 9.13 shows a comparison between
the probing schemes for the Caltech graph. The accuracy is better than
scheme 1 and 2 and has less outliers than scheme 3.

We conclude that improving the probing scheme appears to be a tedious
task, and that for some graphs many iterations are needed before a result is
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Facebook100: Bowdoin (Probing 1)

0

50

100

150

200

250

300

2 12 22 32 42 52 62 72 82 92

L1
 d

if
fe

re
n

ce
 

Privacy parameter k 

0

100

200

300

400

500

2 12 22 32 42 52 62 72 82 92

L1
 d

if
fe

re
n

ce
 

Privacy parameter k 

0

2000

4000

6000

8000

10000

12000

14000

16000

L1
 d

if
fe

re
n

ce
 

Privacy parameter k 
1000

1500

2000

2500

3000

(a) Enron graph

Facebook100: Bowdoin (Probing 1)
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(b) Powergrid graph
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(c) Caltech graph
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(d) Bowdoin graph

Figure 9.9: The full line is the average L1-distance between the degree
sequence returned by OptimalDegreeAnon and that of the graph returned
algorithm 9.4 using probing scheme 2 over 20 runs. The dotted line is
obtained by adding the variance to the full line.
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Facebook100: Bowdoin (Probing 1)
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(a) Powergrid graph
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(b) Caltech graph

Figure 9.10: Comparison between average L1-distance of the degree se-
quence returned by OptimalDegreeAnon and that of the graph returned
algorithm 9.4 using probing scheme 1 and 2 over 20 runs.
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(b) Caltech graph

Figure 9.11: Comparison between average L1-distance of the degree se-
quence returned by OptimalDegreeAnon and that of the graph returned
algorithm 9.4 using probing scheme 1 and 3 over 20 runs.
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(a) Powergrid graph
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(b) Caltech graph

Figure 9.12: The full line is the average L1-distance between the degree
sequence returned by OptimalDegreeAnon and that of the graph returned
algorithm 9.4 using probing scheme 4 over 20 runs. The dotted line is
obtained by adding the variance to the full line.
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Figure 9.13: Comparison between average L1-distance of the degree se-
quence returned by OptimalDegreeAnon and that of the graph returned
algorithm 9.4 using probing scheme 1, 3 and 4 over 20 runs for the Caltech
graph.

159



found. In the following algorithms we will always use probing scheme 4.

9.7.3 GreedySwap and SimultaneousSwap

Both GreedySwap and SimultaneousSwap use ConstructGraph to create
the initial anonymous graph. Both algorithms will then swap edges in the
created graph to make it resemble the input graph. The difference is that
GreedySwap only uses edge additions when computing the k-anonymous
degree sequence while SimultaneousSwap allows both edge deletions and
additions during this step. When the degree sequence isn’t realizable a
probing scheme is used.

The probing scheme has already been extensively studied for the algo-
rithm SuperGraph, and we will use probing scheme 4 for all algorithms.
Furthermore the variance of the results are similar to that of SuperGraph
for the input graphs we used. No particularly interesting observations were
made when individually implementing and testing these algorithms. Our
main interest is in comparing the results of the algorithms, which will be
done in the next section.

9.8 Comparison Between Algorithms

Finally we can compare the performance of the anonymization algorithms
against each other. Abbreviated algorithm names have been used to avoid
the graphs from becoming too cluttered. We will test the following three:

• SuperGraph: Algorithm 9.4 on page 143

• Relaxed: Algorithm 9.7 on page 146

• SimulSwap: Algorithm 9.8 on page 148

The Enron, Powergrid, Caltech and Bowdoin graphs will be used to
test the algorithms. Note that because the Enron graph has only 151 nodes,
results deteriorate quickly for it in function of k, and once k is higher than 75
all nodes of the Enron graph are put in the same anonymization group. The
other three graphs are large enough to avoid this problem. Again we will run
the algorithms a number of times and then take the average of the computed
properties. However, because of the size of the graphs, only a limited amount
of runs for each value of k could be executed. To increase the speed not all
values of k were tested and its value was increased with a predefined interval.
An interval of, say 3, would mean the algorithm was tested for the values
k = 2, 5, 8, 11, . . . , 98. These parameters are summarized in table 9.2.

Unfortunately there are no special metrics designed to measure “how
much two graphs differ in terms of structure” [Hay10]. Hence the effect of
anonymization on the graphs will be measured by studying the change in
several graph properties.
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Graph Name #Nodes #Edges #Runs Interval Size

Enron 151 502 20 2
Powergrid 4,939 6,594 5 3
Caltech 768 16,656 4 3
Bowdoin 2,251 84,387 2 5

Table 9.2: Graph Statistics and Testing Parameters.

Diameter

The effect on the diameter of the graphs is shown in figure 9.14 on page 163.
Although not shown, the variance of this property can be rather high. For
the Enron and Caltech graph the variance is generally around 1, but for
the Powergrid and Bowdoin graph using the SimulSwap algorithm it can
be as large as 4. When using the Supergraph or Relaxed algorithms the
variance is typically lower. That the variance of this property is large can
be explained because it’s the maximum distance between any pair of nodes.
Adding or removing a specific edge can drastically influence this property.

Our tests indicate that SimulSwap best preserves the diameter of a graph.
Remember that the results for the Enron graph deteriorate quickly because
it only has few nodes, and therefore one should not focus too much on the
results obtained from this graph.

Average Path Length (APL)

The effect on the average path length of the graphs is shown in figure 9.15
on page 164. The variance of this property is low. Interestingly SuperGraph

seems to have better results for low values of k on the Powergrid graph, but
SimulSwap is still better for higher values of k. For the other three graphs
SimulSwap is clearly the better algorithm when considering the average path
length.

Density

Figure 9.16 on page 165 shows the effect on the density of the graphs. Since
only SimulSwap allows both edge additions and deletions using when con-
structing the k-anonymous degree sequence it clearly performs better. How-
ever we also see that Relaxed is slightly better than SuperGraph.

Powerlaw Estimation of the Degree Sequence

The effect on the powerlaw estimation of the degree sequence (as explained
in section 7.3.2 on page 106) is shown in figure 9.17 on page 166. For the
Powergrid graph the results of Relaxed and SuperGraph coincide, and for
the Bowdoin graph the results of SimulSwap and Relaxed coincide.
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Because the Enron graph contains only 151 nodes, estimating the pow-
erlaw distribution becomes meaningless for higher values of k, since there
will be only few anonymization groups left.

Clustering Coefficient

In figure 9.18 on page 167 the change in the clustering coefficient is show after
anonymization. For the Powergrid graph SuperGraph clearly outperforms
the other two algorithms. However, for the Caltech and Bowdoin graph it’s
less ideal and SimulSwap might be better for very large values of k.

Summary

There is no superior algorithm. Depending on both the graph and the prop-
erty being measured, some algorithms perform better than others. Thus se-
lecting an anonymization algorithm can be a hard task, although commonly
SimulSwap is chosen because it allows both edge additions and removals
during all steps of the algorithm [Hay10].

9.9 Relation to Link Prediction

All the previous algorithms add or remove random edges. A possible prob-
lem is that the edges being added might actually be unlikely to exists in
reality. Or that the removed edges are easy to predict. Therefore it might
be possible to detect which edges where added during the anonymization
on the graph, and that removed edges can be predicted. This boils down
to the link prediction problem, where the question is asked which new inter-
actions among its members are likely to occur in the near future [LNK07].
It might be possible to remove part of the noise introduced by the degree
anonymization mechanism, and thus still breach the privacy of certain indi-
viduals. Unfortunately we did not have the time to explore this idea, but it
could be an interesting direction for future work.

9.10 Conclusion

There are two obstacles that prevent degree anonymization from being useful
in practice. First of all, assuming that the adversary only knows the degrees
of targeted individuals is a strong assumption, an adversary likely also knows
about the existence of certain edges. The second problem is that the current
algorithms do not scale well to large graphs due to—among other things—
the probing scheme.
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Figure 9.14: Diameter. The x-axis shows the privacy parameter k and the
y-axis the diameter of the k-anonymous graph returned by the the various
anonymization algorithms.
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(c) Caltech graph
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Figure 9.15: Average Path Length (APL). The x-axis shows the privacy
parameter k and the y-axis the APL of the k-anonymous graph returned by
the the various anonymization algorithms.
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Figure 9.16: Density. The x-axis shows the privacy parameter k and the
y-axis the density of the k-anonymous graph returned by the the various
anonymization algorithms.
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Figure 9.17: Powerlaw. The x-axis shows the privacy parameter k and the
y-axis the powerlaw estimation of the degree sequence of the k-anonymous
graph returned by the the various anonymization algorithms.

166



0

0,1

0,2

0,3

0,4

0,5

1 10 20 30 40 50 60 70 80 90

SimulSwap SuperGraph Relaxed

1,4

1,6

1,8

2

2,2

2,4

2,6

1 4 8 12 16 20 24 28 32 36 40 44 48

SimulSwap SuperGraph Relaxed

3,15

3,25

3,35

3,45

0,055

0,065

0,075

0,085

(a) Enron graph

1,3

1,4

1,5

1,6

1,7

1,8

1,9

0,25

0,35

0,45

0,55

3,15

3,2

3,25

3,3

3,35

3,4

3,45

1 8 17 26 35 44 53 62 71 80 89 98

SimulSwap SuperGraph Relaxed

0,055

0,06

0,065

0,07

0,075

0,08

0,085

1 8 17 26 35 44 53 62 71 80 89 98

SimulSwap SuperGraph Relaxed

(b) Powergrid graph

1,3

1,4

1,5

1,6

1,7

1,8

1,9

1 8 17 26 35 44 53 62 71 80 89 98

SimulSwap SuperGraph Relaxed

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

1 8 17 26 35 44 53 62 71 80 89 98

SimulSwap SuperGraph Relaxed

1,4

1,5

1,6

1,7

1,8

1,9

0,15

0,25

0,35

0,45

(c) Caltech graph

1,4

1,5

1,6

1,7

1,8

1,9

2

1 5 15 25 35 45 55 65 75 85 95

SimulSwap SuperGraph Relaxed

0,15

0,2

0,25

0,3

0,35

0,4

0,45

1 5 15 25 35 45 55 65 75 85 95

SimulSwap SuperGraph Relaxed

(d) Bowdoin graph

Figure 9.18: Clustering Coefficient. The x-axis shows the privacy parameter
k and the y-axis the clustering coefficient of the k-anonymous graph returned
by the the various anonymization algorithms.
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Chapter 10
Passive Attack

The degree anonymization mechanism explained in chapter 9 protects only
against limited adversaries, and is still vulnerable to attack. Although not
causally related to degree anonymization, the passive attack will be pre-
sented as an example of a powerful attack an adversary can perform which
can possibly defeat degree anonymization. In contrary to the active at-
tack, the passive attack can be performed without adding new nodes in
the target network. The chapter is based on two papers by Narayanan et
al. [NSR11, NS09].

10.1 Background

When applying the degree anonymization mechanism explain in the previ-
ous chapter, we assumed the adversary only knows the degree of the user(s)
he or she wants to target. We already mentioned that this is not always
a realistic assumption, and in certain situations the adversary can posses
more detailed information. As a result degree anonymization is not a very
powerful anonymization technique that is usable in practice. However, it’s
an excellent example that illustrates how one can attempt to prevent pri-
vacy breaches, but if an adversary posses more auxiliary information than
assumed, he or she will still able to re-identify individuals.

Originally the passive attack outlined in this chapter was not a reac-
tion to demonstrate the weaknesses of degree anonymization. However, it
was the first algorithm that showed the feasibility of large-scale, passive
de-anonymization of real-world social networks [NS09]. Although time re-
strictions prevent us from testing the passive attack on a degree anonymized
network, we believe a significant amount of individuals can be re-identified
using a passive attack. And even if not the case, the passive attack is an
important result on its own.

The target of the passive attack is an anonymized social network which
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is possibly modified by introducing noise [NS09]. The auxiliary information
of the adversary consists of a second social network that has some overlap
with the network to be attacked. Note that this overlap doesn’t need to be
large, even an overlap of only 15% suffices. With this auxilairy information
the adversary is able to re-identify a significant amount of individuals using
only the structure of both networks.

10.2 The Setting

The passive attack attempts to re-identity nodes in an anonymized graph.
Anonymization is modeled by publishing only a subset of attributes, and
that the released attributes themselves are insufficient for re-identification.
Furthermore the data release process may involve perturbation or sanitiza-
tion that changes the graph structure in some way to make re-identification
attacks harder [NS09]. An example of sanitization can be degree anonymiza-
tion. We will call the sanitized target network SSAN. Because of how the
graphs are obtained and published some nodes might have no outgoing edges,
and we will call such nodes crawled nodes.

In addition to SSAN the adversary also has access to a different network
SAUX whose membership partially overlaps with SSAN. This auxiliary net-
work can be obtained in several ways. It can be creating by crawling a
similar, but public, social network. Or a government-level agency can use
modern surveillance techniques to create their own social graph. Another
possibility is that a hacker can obtained an auxiliary graph from a data
breach. When carrying out the attack it makes no difference how SAUX

was obtained. The only requirement is that there is a partial membership
overlap between SSAN and SAUX.

The actual de-anonymization of SSAN is done in two steps. The first
step, called seed identification, is the biggest challenge and consists of de-
anonymizing an initial number of nodes. In the second step, called propa-
gation, the de-anonymization is propagated by selecting an arbitrary, still
anonymous node, and finding the most similar node in the auxiliary graph.
Both steps will be discussed in detail.

10.3 Seed Identification

Seed identification consists of creating an mapping between an initial sub-
set of nodes in SSAN to nodes in SAUX. Note that a mapping effectively
de-anonymizes the node in question, as we now know its identity from the
auxiliary information. Seed identification can be achieved using two meth-
ods. The first one uses individual auxiliary information [NS09], and the
second one is based on the weighted graph matching problem [NSR11].
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10.3.1 Individual Auxiliary Information

To de-anonymize an initial number of nodes an attackers individual auxiliary
information can be used. It consists of detailed information about a very
small number of members of the target network SSAN. With this information
the attacker can determine the location of these members in the anonymized
graph, or if they are not present in the graph. An example used in the
original paper of Narayanan and Shmatikov is a clique of k nodes which are
present in both SSAN and SAUX. The attack must also know the degree of
each node and the number of common neighbors each pair of nodes in the
clique has.

Based on this information the seed identification step searches the target
graph for the unique clique with matching node degrees and common neigh-
bors counts. This closely resembles the active attack discussed in chapter 8,
and this method is essentially a pattern search. Remark that only few seeds
are needed, so only a limited amount of individual auxiliary information is
needed. An attacker can collect such information by bribing individuals that
are included in both networks, some individuals share all their information
publicly which the attacker can crawl, or an attacker can attempt to hack a
selected number of social profiles in order to retrieve enough information.

Originally this method was used to find seeds between two different social
networks. Specifically, in the paper by Narayanan and Shmatikov, it was
used to find seeds for crawls of Twitter and Flickr. And these are different
social networks.

10.3.2 Combinatorial Optimization Problem

In this method the structure of both graphs is used to find initial seeds.
Before we explain it further, it’s important to know is that this attack was
designed to find seed mappings between two networks that originated from
the same social network. The target network SSAN was created by Kaggle
by crawling Flickr during 21-28 June 2010. Between mid-December 2010
and mid-January 2011 the researcher created the auxiliary network SAUX

by also crawling Flickr. The crawls were made by initially downloading
random nodes, and subsequently sampling uniformly from the outbound
neighbors of these nodes. Not all nodes had outgoing edges in the target
graph, such edges may exist in reality but weren’t included in the crawls
(these are positions were the crawling process was terminated). We will call
nodes without outgoing edges crawled nodes.

Since the graphs can contain millions of nodes, it’s essential to first
reduce the search space. The assumption that will be used is that, with high
probability, nodes having a high in-degree in both graphs roughly correspond
to each other. In other words nodes with the highest in-degree will be present
in both graphs. Note that for the crawling process used to obtain SSAN and
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Figure 10.1: Example to who high in-degree nodes A and B.

SAUX this is highly likely.
Now, in order to reduce the search space, we can pick two small subsets

of nodes, where all nodes have a high in-degree, knowing that with high
probability there will be a large correspondence between these subsets. The
next step is to find the actual correspondence between these high in-degree
nodes. Because we are not sure if all edges among the top k nodes are
present in the target graph, it’s not possible to search for the mapping that
minimizes the edges mismatches between them.

Instead, for each graph separately, the cosine similarity of the sets of
in-neighbors is calculated for every pair of nodes. The set of in-neighbors of
a node are all the nodes with a directed edge from themselves to the node
under consideration. Here the cosine similarity between two set of nodes X
and Y is defined as

sim(X,Y ) =
|X ∩ Y |√
|X||Y |

For example, the cosine similarity of the nodes A and B in figure 10.1 is

|{2, 3}|√
3 · 3

=
2

3

The idea is now that the cosine similarity between two nodes is roughly
the same as the cosine similarity between the corresponding nodes in the
other graph. Thus we must find a mapping that minimizes the differences
between the cosine similarity of all pairs of nodes. This can be reduced
to an existing problem by regarding the cosine similarity as the weight of
an edge between these two nodes. Doing this for both graphs creates two
complete weighted graphs. Now the goal is to find a mapping such that the
weights of corresponding edges are as close to each other as possible, which is
called the weighted graph matching problem. It can be solved using existing
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Figure 10.2: Blue nodes have already been mapped. The similarity between
A and B is 2

3 . Possible edges between A and A’ or B and B’ do not influence
the similarity. [NSR11, Nar11]

algorithms or heuristics [NSR11]. We end up with a mapping between the
high in-degree nodes, completing the seed identification step.

10.4 Propagation

In order to propagate the de-anonymization, the algorithm stores a partial
mapping between the nodes and iteratively extends this mapping. How the
mapping is extended depends on how the input graphs were obtained. Some-
times different strategies are needed in different situations, as is evidenced
by the different algorithms used in the two papers by Narayanan. In this
section we can combine both methods to create a general algorithm, but
note that in practice our presented algorithm may require further tweaking.

Similarity Measure

First we need to measure the similarity between two unmapped nodes in
both graphs. For this we calculate the cosine similarity between the already
mapped neighbors of both nodes. Nodes mapped to each other will be
treated as identical for the purpose of cosine comparison. Figure 10.2 shows
an example. Note that only edges to already mapped nodes influence the
cosine similarity. However, this calculation is not trivial, as we also have
to take into account edge directionality and the fact that not all nodes are
crawled (i.e., some nodes have no outgoing edges). This is solved by ignoring
the outgoing edges of the nodes unless both have been crawled. The final
similarity measure is shown in algorithm 10.1.
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Algorithm 10.1 Similarity scores for two nodes.

Input:
vsan: a node in the target graph
vaux: a node in the auxiliary graph
D: set of nodes in vsan de-anonymized so far
map: current partial mapping between nodes in SSAN and SAUX

CSAN: set of crawled nodes in SSAN

CAUX: set of crawled nodes in SAUX

N+(·): out-neighborhood of a node
N−(·): in-neighborhood of a node

Output: Similarity score between vsan and vaux.

1: NSAN := map[N−(vsan) ∩D] ∩ CAUX

2: NAUX := N−(vaux) ∩map[CSAN]
3: if vsan ∈ CSAN and vaux ∈ Caux then
4: NSAN := NSAN ∪map[N+(vsan) ∩D] ∩ CAUX

5: NAUX := NAUX ∪N+(vaux) ∩map[CSAN]
6: end if
7: return CosineSim(NSAN, NAUX)

Further Details

To increasing the probability that a mapping is correct the eccentricity of a
mapping is used. It measures how much an item stands out from the rest,
and is defined as

max(X)−max2(X)

σ(X)

where max and max2 denote the highest and second highest values, respec-
tively, and where σ is the standard deviation [NS09]. It’s now possible to
reject a mapping if the eccentricity is below a certain threshold.

During the executing of the algorithm it will revisit already mapped
nodes. The newly calculated mapping for a node may be different than the
current mapping, and if so it will be updated accordingly. This is done
because at the early stages of the algorithm only few mapped nodes are
available, thus making an incorrect mapping more likely. As more and more
mappings become available this error can be detected and corrected. Prac-
tically this is done by trying to find a mapping for every node during each
iteration, even for already mapped ones.

When a possible mapping from a node in SSAN to SAUX is found, the
graphs are switched. Only if then the same mapping is found on the switched
graphs will it be added. This increases the probability that the mapping is
correct. By doing this is also makes no difference which graph is the target
network, and which is the auxiliary network. Switching them will still result
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1 def matchScores(lgraph, rgraph, mapping, lnode):
2 return [ similarity (lnode, rnode) for rnode in rgraph.nodes]
3

4 def propagationStep(lgraph, rgraph, mapping):
5 for lnode in lgraph.nodes:
6 scores [lnode] = matchScores(lgraph, rgraph, mapping, lnode)
7 if eccentricity (scores [lnode]) < theta: continue
8 rnode = (pick node from rgraph.nodes where
9 scores [lnode ][node] = max(scores[lnode]))

10

11 scores [rnode] = matchScores(rgraph, lgraph, invert(mapping), rnode)
12 if eccentricity (scores [rnode]) < theta: continue
13 reverse match = (pick node from lgraph.nodes where
14 scores [rnode][node] = max(scores[rnode]))
15

16 if reverse match != lnode:
17 continue
18

19 mapping[lnode] = rnode
20

21 def passiveAttack():
22 while not converged:
23 propagationStep(lgraph, rgraph, seedMapping)

Listing 10.1: Passive Attack

in the same output. For this reason we will also use the more general terms
lgraph and rgraph, denoting the left graph and right graph, respectively.

Propagation Step

The passive attack is can now be implemented. Each iteration it calculates
the similarity score of all pair of nodes, and if the eccentricity is high enough
the mapping is added. Theta will be a parameter denoting the threshold on
the eccentricity for a mapping to be added. It will continue to iterate over
all node pairs until not more changes are made to the mapping. The final
algorithm is shown in listing 10.1.

10.5 Experiments

10.5.1 Anonymized Flickr Graph

As already mentioned in section 3.1.4 a passive attack was performed on a
supposedly anonymized social graph used in the Kaggle link prediction chal-
lenge. For the challenge they crawled a subset of the Flickr social network.
Fake edges where added to the resulting graph, and contestants had to use
link prediction to determine whether selected edges were fake or genuine.
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In an attempt to preserve privacy—and to prevent cheating—the released
graph was naively anonymized.

Narayanan, Shi and Rubinstein where able to re-identify 64.7% of the
nodes with an accuracy of 95.2% [NSR11]. First they made their own crawl
of Flickr to obtain the auxiliary graph used in the passive attack. Because
both graphs stem from the same network the seed identification was done
using the combinatorial optimization problem. During the contest they found
a seed mapping of 10 nodes among the top 20 nodes by mere visual inspection
of the matrix of cosines [NSR11]. Later on they developed an automated
approach to the weighted graph matching problem.

10.5.2 Flickr and Twitter

The passive attack was also tested on two different social networks, namely
Twitter and Flickr. The graphs were obtained by crawling the public profiles
on the social network sites, so again a selection bias may be present due to
the crawling process. First a ground truth was established, i.e., the true
mapping between the two graphs. These mappings were based on exact
matches of username and name of a profile. Human inspection of a random
sample of the resulting ground truth indicated that the error rate is well
under 5%.

Seed identification was done by simply selecting 150 pairs of nodes from
the ground truth. This mapping was then fed to the passive attack algo-
rithm. When completed 30.8% of the mappings were correctly re-identified,
12.1% where incorrectly re-identified and 57% of the ground truth map-
pings were not identified. Interestingly 41% of the incorrectly identified
mappings (6.7% overall) where mapped to nodes that were neighbors of
the true mapping. It’s suggested that human verification can complete the
re-identification process in those situations.

10.6 Conclusion

The passive attack is a potentially powerful attack, given that the adversary
has access to enough auxiliary information. And the experiments illustrate
that one must not underestimate the amount of auxiliary information an
adversary can posses.
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Chapter 11
Conclusion

We have argued that privacy is increasingly important now that more and
more data is being collected. Previous events have taught us that intuitive
methods to assure privacy are likely to fail. This is manifested by examples
such as the AOL search fiasco, the HMO record linkage attack, the Netflix
prize and the Kaggle machine learning contest. In all of these cases super-
ficial attempts have been made to assure privacy, which caused all of them
to fail. This motivated the search to a mathematical definition of privacy.

The holy grail of privacy definitions would be Dalenius desideratum,
which states that obtaining access to the database doesn’t increase the chance
of a privacy breach. Unfortunately such a guarantee is impossible, as there
is always a piece of auxiliary information that, combined with access to the
database, will violate the privacy of an individual. After all, the goal of
a database is to store data and learn new information from this data. It’s
unavoidable that this newly learned information can increase the chance of a
possible privacy breach. From this the idea of relative disclosure prevention
was suggested.

Relative disclosure prevention states that there is only a small increase of
the possibility that a privacy breach occurs. This can give rise to a definition
that is achievable in practice. One of the most promising definitions in this
area is differential privacy. Roughly speaking it states that handing over
your data—or keeping it private—doesn’t significantly affect the chance of
a privacy breach occurring. Written differently, hiding your data doesn’t
offer you much benefits when differential privacy is being used.
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