
SAECRED: A State-Aware, Over-the-Air Protocol Testing Approach for Discovering
Parsing Bugs in SAE Handshake Implementations of COTS Wi-Fi Access Points

Muhammad Daniyal Pirwani Dar§, Rob Lorch†, Aliakbar Sadeghi§, Vincenzo Sorcigli§, Héloïse Gollier‡,
Cesare Tinelli†, Mathy Vanhoef‡, and Omar Chowdhury§

§Stony Brook University †The University of Iowa ‡DistriNet, KU Leuven
§{mdar, alisadeghi, omar}@cs.stonybrook.edu §vincenzo.sorcigli@stonybrook.edu

†{robert-lorch, cesare-tinelli}@uiowa.edu ‡{heloise.gollier, mathy.vanhoef}@kuleuven.be

Abstract—WPA3-Personal introduced the stateful Simultane-
ous Authentication of Equals (SAE) handshake protocol to
achieve forward secrecy and resistance to passphrase guessing
attacks during Wi-Fi connection bootstrapping, guarantees
that are lacking in WPA2-Personal. However, the initial design
of WPA3-Personal with SAE was susceptible to connection
downgrade and denial-of-service (DoS) attacks. The current,
enhanced version introduces mechanisms to mitigate these
vulnerabilities. Enabling these security-enhancing mechanisms,
however, results in a variable-structured, context-sensitive
packet format that can be challenging to parse and interpret
correctly. Misparsing SAE handshake packets can negatively
impact Wi-Fi protocol security. To uncover SAE handshake
packet misparsing in commercial-off-the-shelf (COTS) Wi-Fi
access points (APs), we present SAECRED, a packet-structure-
guided, SAE-state-aware black-box fuzzer. SAECRED reduces
the underlying problem of misparsing discovery to a two-
dimensional search problem, where the dimensions are the
packet structure and the underlying SAE protocol state. It
solves this search problem by combining Iterative Deepening
Search (IDS) with a context-sensitive grammar-based fuzzing
approach, where the latter relies on a Syntax-Guided Synthesis
(SyGuS) solver. SAECRED’s effectiveness is demonstrated by
evaluating it on 6 COTS APs and the widely used open-
source hostapd. Our evaluation discovered several instances
of 4 classes of bugs. Bugs in two of these classes violate the two
fundamental guarantees SAE expects to achieve (i.e., resistance
to downgrade and DoS attacks). We reported our findings
to the relevant stakeholders, which resulted in patches and
security advisories.

1. Introduction

The ubiquity of Wi-Fi and its over-the-air (OTA) com-
munication makes it a lucrative target for local adversaries.
Wi-Fi security, and especially its connection bootstrapping
protocol’s security, has been the focal point of numer-
ous recent efforts [1], [2], [3], [4]. The Wi-Fi connection
bootstrapping protocol in the WPA2-Personal Mode1 lacks

1. Unless explicitly mentioned, whenever we refer to WPA2 or WPA3,
we mean the WPA2-Personal and WPA3-Personal modes, respectively.

forward secrecy and is also susceptible to brute-force at-
tacks on the secret passphrase shared between the Wi-Fi
Access Point (AP) and the user (a.k.a., supplicant) [5].
To address these security concerns of WPA2, the IEEE
802.11 standard went through multiple revisions [6], [7]
before settling on the WPA3 standard. The WPA3 standard
introduces a stateful password-authenticated key exchange
(PAKE) protocol called the Simultaneous Authentication
of Equals (SAE). The SAE protocol enjoys both forward
secrecy and resistance to offline dictionary attacks on the
credentials. At a high level, this paper focuses on checking
the correctness of SAE implementations in commercial-off-
the-shelf (COTS) APs.

Tool Mode Grammar Mutation State Bugs

GREYHOUND ✗ B/P ✓
StateAFL ✗ B/P ✓
Braktooth ✗ B/P ✓
TCP-Fuzz ✗ P ✓
Tyr ✗ P ✓
SGFuzz ✗ B ✓
Nautilus ✓ G ✗
SNPSFuzzer ✗ B/P ✓
StateFuzz ✗ B ✓
EvoGFuzz ✓ G ✗
Superion ✓ G ✗

Owfuzz ✗ B ✗
AFLNet ✗ B/P ✓
PULSAR ✗ B/P ✓
FuzzPD ✗ P ✓
DPIFuzz ✗ B/P ✗
BLEEM ✗ B/P ✓
AFLNetLegion ✗ B/P ✓
L2Fuzz ✗ B ✓
ATFuzz ✓ G ✗
DIKEUE NA NA ✓
TLSAttacker ✗ B/P ✓
SAECRED ✓ G/P ✓

TABLE 1: Comprehensive fuzzer capability matrix. Mode:
: white-box, : gray-box, : black-box. Mutation: B: bit-

level, P: packet-level, G: grammar-based, B/P: bit+packet,
G/P: grammar+packet. Capability: : crashes, : semantic
bugs, : crashes+semantic bugs.

Despite its secure-by-design motto, the security of the

SAE handshake protocol has been under constant scrutiny
due to design flaws and implementation choices. Concretely,
the initial design and implementation in the widely used
hostapd library [8] were shown to be susceptible to con-
nection downgrade and DoS attacks [2], [9]. These findings
led to the current enhanced version of the SAE standard,
which introduces mechanisms (e.g., explicitly tracking re-
jected elliptic curve groups, introducing anti-clogging to-
kens) for mitigating these attacks. To enable these security-
enhancing mechanisms, however, the SAE handshake packet
structure has become more complex. These packets have
variable lengths, with inter-field dependencies and crypto-
graphic contexts. Precisely capturing this structure requires
a context-sensitive grammar with calculated fields. As a
consequence, parsing the packet format correctly and then
faithfully updating internal and protocol states can be a
challenging and error-prone task for AP implementations.
Misparsing SAE handshake packets can lead to several un-
desirable consequences: erroneous protocol state transitions,
memory safety issues (e.g., crashes, leakage of sensitive
information), undefined behavior, and unsafe or erroneous
internal state updates (e.g., updating an internal variable with
incorrect values, impacting future protocol behavior). These
undesired consequences can be exploited by adversaries to
launch attacks ranging from DoS to connection downgrades.
To mitigate these issues we designed, developed, and exper-
imentally evaluated SAECRED, a packet-structure-guided,
SAE-state-aware black-box over-the-air testing approach for
uncovering parsing bugs in COTS APs.

Due to the SAE protocol’s statefulness, discovering pars-
ing bugs is challenging. In particular, triggering a parsing
bug may require not only generating the concrete SAE
packet (potentially nonconformant with the SAE packet
format) that triggers the bug but also injecting it only when
the AP is in a SAE state that does trigger the bug. Reaching
the bug-triggering SAE state may require sending a long
sequence of SAE packets, which induces a large input
universe to sample from. Since we consider a black-box
setting, justified by the lack of access to proprietary AP
firmware, we do not have information about the internal
SAE protocol state of the AP under test. Further, we do not
have faithful coverage information (e.g., code coverage) to
guide the input generation part of testing, where each input
is a sequence of SAE protocol packets. A popular choice is
using proxy coverage measures, such as the execution time
of a test case, to approximate code coverage. Unfortunately,
such proxy measures tend to guide the testing approach
towards inputs that trigger timeouts rather than parsing bugs.

One key advantage of our testing setup is that one
can easily test a COTS AP with SAECRED with little to
no configuration or programming efforts. The setup also
requires an SAE-aware driver that can not only inject the
test inputs OTA to the AP under test but also decode and
classify the AP responses as expected or unexpected. The
driver has to support such intricacies of the SAE protocol as
cryptographic operations, contextual behavior (e.g., handling
anti-clogging tokens), timeouts, and retransmissions. Finally,
as with testing of stateful wireless protocols, executing each

test case may take a long time as the driver has to account
for timeouts and retransmissions, and also reset the AP to
a known initial state before injecting the next test case.
Faithfully resetting may require power cycling the AP.

Ignoring the SAE-specific driver (which is essential for
testing APs), Table 1 summarizes the existing gray-box and
black-box testing approaches, including those specifically
targeting stateful network protocols. These fuzzers are un-
suitable for our testing setup because they suffer from one
or more of the following limitations: (1) they require access
to source code or the firmware binary [10], [11], [12], [13],
[14]; (2) they do not consider malformed packets [15], [16],
[17]; (3) they lack support for stateful protocol behavior
[18], [13], [19], [20], [21]; (4) they cannot identify undesired
parsing behavior that does not induce a crash [13], [14],
[22], [23], [20], [17], [24], [25]; (5) they consider inputs
of certain shapes only [26], [27]; (6) they cannot handle
packet formats that can be expressed only with context-
sensitive grammars [13], [15], [11], [18], [28], [29]; (7) they
rely on test cases having a short execution time.[10], [18],
[15], [11]. A more detailed breakdown of the limitations of
these works in the WPA3-SAE context can be found in Sec-
tion 10. One key insight that enables SAECRED to address
these limitations is that discovering parsing bugs in SAE
implementations can be reduced to a search problem over
two dimension: the packet structure and the underlying SAE
protocol state space. SAECRED solves this two-dimensional
search problem by combining IDS with a grammar-based
fuzzing technique that uses context-sensitive grammars.

Generally speaking, SAECRED follows an iterative ap-
proach. Starting from some fixed seed inputs, at each it-
eration, it generates new test inputs — to be executed on
the AP under test — by mutating specific inputs from the
previous iteration, chosen based on some scoring criteria.
Internally, SAECRED can be viewed as running an IDS along
with grammar-based fuzzing. Concretely, for each input we
keep track of the inferred SAE protocol state, the path (i.e., a
sequence of concrete SAE packets) that got us to that state,
and the packet format to generate the next concrete SAE
packet. The packet format is specified by a context-sensitive
grammar, which can be viewed as an extension of a Backus-
Naur form (BNF) grammar with constraints on some of its
syntactic categories (e.g., the length of a certain packet field
f1 must be equal to the value of another packet field f2).
Mutations in SAECRED take the form of mutating the gram-
mar instead of concrete packets. The mutations can result
in (1) the structural modification of the packet format or (2)
the modification of some data-dependent constraints in the
grammar. After the grammar is mutated, SAECRED uses a
syntax-guided program synthesizer (SyGuS [30]) to generate
a concrete SAE packet that conforms to the mutated gram-
mar. Mutating the grammar, rather than mutating concrete
packets, has two key advantages: (1) it allows SAECRED
to explore subtle changes in both the packet structure and
the data-dependent constraints, which is difficult to achieve
by mutating concrete packets; (2) if an input generate from
a grammar causes a parsing bug in the AP under test, the
grammar can be used as symbolic evidence of the bug’s root

cause. Another notable aspect of SAECRED is that it tries
to make progress in the testing campaign by partitioning
the generated inputs in the previous iteration based on their
inferred SAE protocol states. This categorization of inputs
from the previous iteration enables SAECRED to implement
prioritization strategies in which inputs that take the AP to
dangerous states are given priority over benign inputs. This
allows SAECRED to avoid getting stuck in the initial state.

SAECRED is implemented in a combination of OCaml
and Python and uses cvc5SY as its SyGuS solver [31], [32].
We evaluated the effectiveness of SAECRED on 6 COTS
APs and the widely used open-source hostapd library. We
observed that SAECRED discovered instances of 4 classes of
bugs, two of which violate the two fundamental guarantees
SAE is designed to provide (i.e., resistance to downgrade
and DoS attacks). It also achieves a substantially high code
coverage on the open-source hostapd library compared
to some baselines. Notable among its findings is the bug
that causes the misparsing of an optional container, which
allows a Dolev-Yao-style network attacker to downgrade
the connection to a weaker security level. We reported all
our findings to the vendors. At the time of writing, some
of the vendors have already released patches and security
advisories, whereas others are still investigating them.

In summary, our work makes the following technical
contributions:

1) SAECRED reduces the problem of discovering parsing
bugs in SAE implementations to a two-dimensional
search problem, which it solves by combining IDS with
a context-sensitive-grammar-based fuzzing approach.

2) SAECRED contains an SAE-aware driver that can inject
test inputs OTA to the AP under test, and decode and
classify the AP responses as expected or unexpected.
The driver can enable other testing algorithms and is
of independent interest.

3) SAECRED discovered 4 classes of bugs in 6 COTS APs
and the open-source hostapd library.

4) The entire SAECRED system is open source.2

2. Background

The SAE handshake was added to the 802.11 standard
in 2011 to secure mesh networks [33]. A close variant of
this handshake, called Dragonfly, was later standardized in
RFC 7764 [34]. It became mandatory in 2018 for home net-
works in the new WPA3 specification. In contrast to WPA2,
SAE offers forward secrecy and prevents dictionary attacks.
Unfortunately, there are various side-channel leaks in the
hash-to-curve algorithm used to derive keys [2]. To mitigate
these vulnerabilities, a new hash-to-element algorithm was
introduced in the 2020 update to the IEEE 802.11 standard.

The SAE handshake has commit and confirm phases.
The commit phase negotiates a fresh key, and the confirm
phase checks that both parties agreed on the same key.
The format of commit and confirm frames3 is shown in

2. Available at https://github.com/izdar/SAECRED
3. We use frames and packets interchangeably to refer to Wi-Fi frames.

Figure 2a and 2b, respectively. All commit frames, excluding
those with an error status, have a scalar and an element
that are used to negotiate a fresh key. The lengths of these
fields depend on the finite cyclic group being used, where
WPA3 mandates that every implementation supports at least
group 19, which is a 256-bit elliptic curve group.

2.1. SAE Handshake

The SAE handshake for infrastructure Wi-Fi networks,
where a central AP manages all clients, consists of three
states: (1) Nothing, (2) Confirmed, and (3) Accepted.
The standard-specified state machine also supports mesh
networks and consists of four states. The client-server ar-
chitecture state machine, used in infrastructure networks, is
simpler, with a straightforward protocol flow: clients and
APs start in the Nothing state and make their way toward
the Accepted state. Figure 1 shows a successful handshake
flow: clients initiate the handshake through sending commit
frames that consist of (1) a password-element (PWE) algo-
rithm (hunting-and-pecking or hash-to-element H2E), (2) an
ECC group, and (3) two cryptographically generated values
(scalar and element) based on the chosen ECC group. If the
PWE algorithm is H2E, the client has the option to include
Information Elements (IEs or containers)4 at the end of the
frame, as shown in Figure 2a.

If the AP supports the client-chosen PWE algorithm and
ECC group, it will respond with its own commit frame
with two cryptographically generated values. If the AP does
not support the chosen ECC group, it will respond with
an UNSUPPORTED_CYCLIC_GROUP error. If the cryptographic
values conform to the standard-defined range and lie on the
ECC curve, both parties transition to the Confirmed state.

Both parties now enter the confirm phase where the goal
is to confirm that both parties generated the same Pairwise
Master Key (PMK). The PMK will be used in deriving the
session key (PTK); therefore, both sides must confirm that
they did indeed derive the same key. The parties generate
confirm hashes through an HMAC256-based key derivation
function (KDF) and authenticate each other through the con-
firm phase. If both parties successfully match the received
confirm hashes with their internally generated expected con-
firm hashes, they transition to the Accepted state.

The SAE handshake is now complete; the client will now
signal the successful termination of the handshake through
an ASSOCIATION_REQUEST to which the AP responds with
an ASSOCIATION_RESPONSE and begins the four-way hand-
shake for PTK generation.

2.2. SAE Hash-To-Element

Hash-To-Element. In the hash-to-element update of SAE,
which was meant to prevent side-channel flaws [2], the
crux of the handshake still consists of commit and confirm

4. Information Elements are referred to as containers in the 802.11 2020
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specification [7]; we will refer to them interchangeably.

https://github.com/izdar/SAECRED

Client AP

 Pick random r1, m1
 S1 = (r1 + m1) % q
 E1 = -m1 * PWE { + [optional containers]

Verify {S1 , E1} validity
Check optional containers

Pick random r2, m2
 S2 = (r2 + m2) % q

 E2 = -m2 * PWE

[optional containers] +

{
 Verify {S2 , E2} validity
 Check optional containers

 K = r1 * (S2 * PWE + E2)
 PMK, KCK = HMAC(K)
 CONFIRM = HMAC(KCK,S1,E1,S2,E2)

CONFIRM

 K = r2 * (S1 * PWE + E1)
 PMK, KCK = HMAC(K)

 CONFIRM = HMAC(KCK,S2,E2,S1,E1)

CONFIRM

Co
m
m
it
 P
ha

se
Co

n
fi
rm

 P
ha

se

PMK derived

 if H2E: PWE = H2E(SSID, Passwd, MAC1, MAC2)
 else: PWE = HMAC(Passwd, MAC1, MAC2)

Figure 1: Complete breakdown of the SAE handshake with
support for hash-to-element (H2E).

phases. This update introduced the use of optional IEs,
also called containers, to offer added security guarantees.
The format of a container embedded in a commit frame
is shown in Figure 2a, where after the ELEMENT ends, the
containers begin. Each container contains a tag, length,
extension ID, and value, where the extension ID defines
the type of container. The major addition to the handshake
is the inclusion of three containers: (1) Password Identifier,
(2) Rejected Groups, and (3) AC Token.
Rejected Groups. In SAE, the client proposes which cryp-
tographic cyclic group to use. The AP can reject unsupported
groups, after which the client can propose a different group.
This procedure has been shown to be vulnerable to down-
grade attacks [2]. To prevent them, the commit frame was
extended to contain a list of cyclic groups rejected by the
sender. This defense is only enabled when using the newer
and more secure hash-to-element algorithm to derive keys.
To make parsing feasible, the rejected groups are included
as an optional IE at the end of the commit frame.

The inclusion of the optional rejected groups container
allows for a check on the AP side to detect downgrade
attacks. In addition to checking the container, the KDF on
both the client and AP sides must generate keys using
the list of rejected groups as a parameter. This guarantees
downgrade protection, given a Dolev-Yao [35] adversary ca-
pable of manipulating packets and removing rejected groups
from commit frames, since both parties will not derive
the same pairwise master key (PMK) when a downgrade
attack is attempted. All combined, the added parameter to
the KDF ensures that active adversaries cannot successfully
downgrade connections through trivial packet manipulation.
Password Identifiers. SAE successfully introduced forward
secrecy and made brute force attacks infeasible. However,
plain SAE does not support multiple passwords in a single
network because both the AP and client must commit to

a specific password when executing the SAE handshake.
To support multiple passwords in a single network, the
commit frame was later extended to include the use of
an optional password identifier container. On receipt of a
commit frame, the AP can then use the password identifier
to also commit to the same password. When using this
extension, in addition to computing intermediate keys based
on the SSID, password, and client/AP MAC addresses,
both parties also use the password identifier as an extra
parameter to intermediate key generation as a defense in
depth. APs can then be configured to support a set of
password identifiers, and clients must include one of the
configured password identifiers in their commit frames. In
case there is a mismatch, APs must terminate the handshake.
Password identifiers introduce complexities, as their exact
implementation is up to the APs.
Anti-Clogging (AC) token. In an attempt to reduce DoS
risks, the access point can require clients to reflect an AC
token. Originally, this optional AC token precedes the scalar
and element (see Figure 2a). This makes parsing commit
frames nontrivial: a receiver infers whether an AC token
is present based on the frame’s length. Moreover, an AC
token’s length is not fixed but chosen by the AP, which
further complicates frame parsing. The designers recognized
this complexity [36], and in the hash-to-element update,
encapsulated the AC token inside an AC token container.
This solves the variable length problem, as the length of the
element is included in the container, making parsing AC
tokens simpler.

3. Problem, Threat Model, and Challenges

We now present a motivating example for SAECRED’s
approaches for finding parsing bugs. We then present the for-
mal definition of the underlying problem, the threat model,
and the technical challenges one encounters when designing
a SAECRED-like testing approach.
Motivating Example. To motivate SAECRED and its under-
lying design, we discuss the following security-critical bug
SAECRED discovered. The 802.11 standard defines the use
of a rejected groups container in case the AP responds to
a commit message with an UNSUPPORTED_CYCLIC_GROUP
error code. If an AP sends this commit error message,
the client must append the rejected group as part of the
rejected groups container. This protects against ECDH group
downgrade attacks, as adversaries spoofing AP responses
and sending the UNSUPPORTED_CYCLIC_GROUP commit er-
rors would not be able to downgrade the chosen group,
as the client will append this group to their next commit
message. The AP can then verify whether the rejected group
is supported, and if so, it will detect the downgrade attack.

SAECRED generated a test case that mutated the length
field of the rejected groups container. It then ran that test
case against hostapd and reported that it was expecting a
commit error, but received a valid commit message from the
AP. We discuss the implications and details of this attack
in Section 9.1, but the discovery of this attack in a widely

GROUP
ID ELEMENTSCALAR ELEM

ID
PASSWD
EXT IDALGO SEQ STATUS

CODE AC TOKEN ELEM
ID

ELEM
ID

AC
EXT ID

2B 2B 32B/35B 32B (group 19) 64B (group 19) 1B variable2B 2B 1B1B 1B variable1B1B 1B variable1B1B
RG

EXT IDLENGTH PASSWD
ID LENGTH RG

LIST LENGTH AC
TOKEN

(a) SAE commit frame: Data dependent fields are color-coded together indicating the parsing context.

ALGO SEQ STATUS
CODE

SEND
CONFIRM CONFIRM

2B 2B 2B 32B2B

(b) SAE confirm frame.

Figure 2: The SAE handshake packet formats.

used and tested library motivates the need for approaches
like SAECRED for finding parsing bugs in Wi-Fi APs.
Problem Definition. The SAE handshake protocol can be
abstractly represented as a state transition system of the
form: M =∆ ⟨S, s0,L,Π,R⟩, in which S is the set of states,
s0 ∈ S is the initial state, L is the universe of SAE packets,
Π is a function that maps a state to a set of expected packets
in that state (i.e., Π : S → L), and R is the transition
relation where R ⊆ S×L×S . Concretely, a valid transition
t =∆ si

p−→ sj in M (i.e., t ∈ R) satisfies the following
conditions: si, sj ∈ S and p ∈ Π(si). A protocol execution
trace σ =∆ ⟨s0

p0−→ s1
p1−→ s2 . . . s(n−1)

p(n−1)−→ sn⟩ is
considered legitimate in M if and only if every transition
ti =∆ s(i)

p(n−1)−→ s(i+1) in σ satisfies the condition ti ∈ R
where 0 ≤ i ≤ (n− 1). Given the SAE protocol model M
and an AP implementation I of M , the discovery of parsing
bugs in I is to find a set of packet sequences which induces
executions Σ in I such that each σ ∈ Σ is considered
legitimate according to I but not in M .
Threat Model. In the SAE context, we consider a Dolev-
Yao-style [35] network adversary capable of passively ob-
serving and actively engaging in Wi-Fi communication.
Since Wi-Fi is an OTA local area network, we consider
the adversary to be locally present with packet sniffing and
injecting capabilities. The adversary is also able to target
victim client and AP MAC addresses, spoof the AP broad-
cast frames on a separate channel, and create a machine-in-
the-middle (MiTM) position by tricking the client to send
frames to the adversary MAC address. We also assume that
the adversary is able to observe all network communication
in the local area without associating with any AP.
Challenges. Addressing the underlying problem of finding
parsing bugs in Wi-Fi APs requires overcoming the follow-
ing key technical challenges.

1) Large input universe: Needing to consider both the un-
derlying protocol state and the packet structure induces
a large input universe that needs to be searched for
finding parsing bugs.

2) Need for state awareness: The SAE handshake is state-
ful; keys derived in one state are validated in later
states. This presents a testing challenge, as each state
expects specific packets. Moreover, it is possible that
packets expected in a particular state trigger parsing
bugs when the AP is internally in a different state.

3) Complex packet format: SAE handshake packets re-
quire a context-sensitive grammar to express the packet
structure. Meaningfully mutating the grammar and then

generating test cases from it is nontrivial.
4) Lack of access to proprietary AP firmware: Due to

the proprietary nature of the AP firmware, any test-
ing approach must rely on the I/O interface of the
AP to derive the protocol flow and trigger deviant
parsing behavior. This restriction also precludes the
use of coverage-guided white-box or gray-box testing
approaches. Having only access to the I/O interface also
makes it challenging to infer the internal state of the
AP, or whether a bug has been triggered.

5) Need for a context-aware driver: The driver needs to
communicate with the AP for injecting the test inputs
OTA. It must decode and classify the AP responses in a
context-aware fashion. For example, it needs to handle
anti-clogging tokens when they are presented by the AP
in response to the initial driver-sent COMMIT packet.

6) High cost of executing each test case: Executing a
test case OTA is expensive due to the following two
reasons: (1) the driver has to wait for the AP to respond
to the test input accounting for retransmissions and
timeouts, and (2) the driver has to reset the AP state
after each test case to ensure that the AP is in a
consistent state for the next test case. The latter may
require power cycling the AP.

7) Classifying AP responses: The absence of a reference
implementation or a test oracle makes it difficult to
classify whether a response from the AP constitutes an
expected behavior or a parsing bug. In some benign
cases, the AP’s behavior may deviate from the SAE
handshake specification, but it may not have secu-
rity consequence. As an example, some APs send the
COMMIT and CONFIRM frames together after receiving a
COMMIT frame from the client without waiting for the
client’s CONFIRM frame.

4. Design Overview of SAECRED

SAECRED realizes the idea of combining IDS with
context-sensitive grammar-based fuzzing through four main
logical components: a state-aware input generator, an AP
response/output classifier, the state-inference engine, and
a driver. SAECRED follows an iterative testing approach
and has a skeleton similar to most evolutionary fuzzing
approaches. SAECRED expects two inputs: (i) the packet
format expressed in a domain-specific language (DSL) we
have designed by extending BNF to capture context sensi-
tivity (e.g., inter-field dependencies), dubbed gDSL; (ii) a
fixed set of initial seed inputs.

In each testing iteration, SAECRED’s state-aware input
generator selects some inputs from its current input pop-
ulation based on some scoring criteria and then mutates
them to generate new inputs. It then provides these inputs to
the driver, which sends these inputs OTA to the target AP.
The driver waits for the AP’s responses and processes them
before feeding them to the output classifier and the state
inference engine. The former is responsible for adjudicating
the AP’s responses as either expected or unexpected. The
latter is responsible for inferring the state an SAE-standard-
compliant AP would be in after processing the given input.
We will refer to the response of the state-inference engine
as the idealistic state. We emphasize that this is not the
actual SAE protocol state of the AP, and thus SAECRED
can tolerate imprecisions in the state-inference engine.

We now discuss how SAECRED realizes this high-level
workflow. An input in SAECRED is internally represented as
a tuple of the form ⟨s, σ, g, score⟩ in which s is the idealistic
state, σ is called the state provenance, g is the gDSL
representation of the SAE packet format, and score indicates
the numeric score given to this input by SAECRED’s scoring
function signifying its utility. The state provenance σ is a
sequence of symbolic and concrete SAE frames that have
induced the idealistic state s. The symbolic packet in σ
represents a correctly-formatted SAE packet, which may not
be the expected packet in a given SAE state. The concrete
packet in σ, however, is likely a malformed SAE packet
(explained later). SAECRED partitions the inputs generated
in the previous iteration based on their s values (i.e., one
class for each unique idealistic state). Based on the scores
and some randomness, SAECRED tries to select an equal
number of inputs from each class. It is also possible to bias
this selection towards certain dangerous states which are
likely to trigger parsing bugs. This selection of inputs from
different classes ensures a fair exploration of the state space
without getting stuck in the initial state.

For each of the selected inputs from the previous it-
eration ⟨s, σ, g, score⟩, SAECRED’s input generator non-
deterministically decides whether to apply a mutation or
induce a valid transition. If the input generator decides to
mutate, it mutates the g component of the input to obtain
a new grammar g⋆. If g⋆ is a well-formed grammar, it
consults the SyGuS solver to generate a concrete packet
that conforms to g⋆. Suppose the concrete packet is pkt. It
then hands over σ · pkt (· denotes the append operation) to
the driver, which sends all the packets in σ · pkt OTA to
the AP. Based on the driver’s response, the state-inference
engine and the output classifier infer the new idealistic state
s⋆ and give a verdict on the AP’s response. Both of these
are fed back to the input generator, which updates the score
to score⋆ and stores the input ⟨s⋆, σ · pkt, g⋆, score⋆⟩ in the
input population. In case the input generator induces a valid
transition, it appends a correctly formatted symbolic SAE
packet to σ and hands it over to the driver which concretizes
the symbolic packet and sends it to the AP. In this case, the
grammar component remains the same in the input tuple.

One natural question is why it is necessary to store both
s and σ for a given input. The reason is that the idealistic

state s is not the actual state of the AP. Also, σ may induce
a state transition in the AP that cannot be directly mapped to
any known SAE state. The detailed algorithm of SAECRED
is presented in Algorithm 1 (discussed next).

5. Realization of SAECRED

This section presents how SAECRED concretely realizes
the high-level design discussed in the previous section (See
Figure 3). Except the driver, all SAECRED components
are implemented in OCaml across 4, 575 source lines of
code (SLOC). It consists of three major components, the
main test generation engine (referred to as just the fuzzer
from now on), a test oracle that implements both the AP
response/output classifier, the state-inference engine, and a
driver. SAECRED takes as input a fixed set of seed inputs
and the packet format in the form of a grammar in gDSL,
it and returns a set of interesting packet traces to analyze.
In the rest of the section, we first discuss the main fuzzing
algorithm (see Algorithm 1), followed by a discussion on
SAECRED’s main components: the state-aware input gener-
ator (or, the fuzzer), the test oracle, and the driver.

5.1. SAECRED’s Fuzzing Algorithm

SAECRED starts with a set of seed inputs. In each
iteration, it samples a maximum of t inputs from the current
input. It then flips a random coin (Line 12) to decide whether
to mutate each input or to try inducing a valid transition
(Lines 13-19). In the latter case (Lines 14-16), it picks a
well-formed COMMIT, CONFIRM, or ASSOCIATION_REQUEST
packet to append to the current input. Note that this well-
formed packet may not be a desirable packet in the im-
plementation’s current state. In contrast, if it chooses to
mutate the input (Lines 16-19), it first mutates the grammar
component of the input to obtain a new grammar g⋆. It then
consults the SyGuS solver (i.e., PktGenSyGuS) to generate
a concrete packet pkt that conforms to g⋆ (Line 18). In both
cases (Lines 15 and 19), it appends the generated inputs to
the next population (i.e., nPop).

Each input in nPop is fed to the implementation under
test using the driver (Line 21). The response packets (or,
a non-response) from the AP implementation are returned
(i.e., π) by the Driver. The input σ and the obtained
response π are then passed to the oracle (i.e., TestOracle).
The test oracle adjudicates (Line 22) whether the response
is unexpected, in which case the input σ is added to the
set of interesting traces (i.e., Σ) to be manually investigated
later (Lines 23-24). Finally, based on the test oracle’s output,
each of the new inputs in nPop is scored and stored in the
current input population queue (Lines 25-26).

SAECRED repeats this process until the maximum num-
ber of iterations (i.e., maxIterCount) is reached (Line 3).
Every cleanupIter iterations, it also resets the input popula-
tion to the seed inputs (Line 4). Also, in any iteration, if the
size of the input population exceeds a maximum size (i.e.,
maxPop), the input queue is resized to a smaller size (Line
6): 20% of maxPop.

Initial seed

provenance,
grammar, score

Engine

Grammar
mutator

Syntax-guided
synthesizer

State-
inference
oracle

L2-Layer
I/O

interface
1

Grammar-guided
test case generator

Queue
handler

Population
scheduler

Fitness
function

Fuzzer

Driver

Access
Point

2

3
5

6

4

8

9

7

Figure 3: The complete SAECRED architecture.

Algorithm 1 The SAECRED Fuzzing Algorithm

1: Σ← ∅ ▷ Output: Set of interesting inputs
2: Q← fillStateQueues(Seeds) ▷

Array⟨InputQueue⟩
3: while i < maxIterCount do
4: if i % cleanupIter = 0 then
5: Q← fillStateQueues(Seeds)

6: if size(Q) ≥ MaxPop then
7: Q← resize(Q, MaxPop

5)

8: cPop, nPop← ∅ ▷ Current and New Population
9: for q ∈ Q do

10: cPop← sample(q, Min(size(q),∆))

11: for ⟨s, σ, g, score⟩ ∈ cPop do
12: coin

$← {H, T} ▷ Random coin flip
13: if coin = H then ▷ Well-formed Packet
14: sym_pkt← nondet(AllGoodPkts)
15: nPop← nPop ∪ {s, σ · sym_pkt, g, score}
16: else ▷ Mutated Packet
17: g∗ ← MutateGrammar(g)
18: pkt← PktGenSyGuS(g∗)
19: nPop← nPop ∪ {s, σ · pkt, g∗, score}
20: for ⟨s, σ, g, score⟩ ∈ nPop do
21: π ← Driver(σ) ▷ Response packets from AP
22: ⟨s∗, oracle_out⟩ ← TestOracle(σ, π)
23: if oracle_out is not expected then
24: Σ← Σ ∪ {σ}
25: score∗ ← scoring(σ, oracle_out)
26: Q[s∗].enqueue(⟨s∗, σ, g, score∗⟩)
27: i← i+ 1

Fixed Constants Used in SAECRED. SAECRED’s
fuzzing algorithm relies on a set of configurable con-
stants for its operations. In our instantiation of SAECRED,
we set the maximum number of iterations (denoted by
maxIterCount) to 1150, the number of iterations after which
the population is reset to only the seed inputs (denoted by
cleanupIter) to 100, the maximum population size (denoted
by maxPop) to 10, 000, the maximum number of elements
picked from each queue in each iteration (denoted by ∆) to

20, and the maximum number of inputs picked overall to
mutate in each iteration (denoted by t) to 3×∆.

5.2. SAECRED’s State-Aware Input Generator

We now discuss the different components behind the
realization of SAECRED’s state-aware input generator.

Partitioning Inputs. An input in SAECRED is a tuple
⟨s, σ, g, score⟩. s denotes the idealistic state of the imple-
mentation under test according our test oracle (discussed
later) when it is fed the input σ, which is a sequence of well-
formed and malformed packets. We partition the inputs in
the current population based on their s values (i.e., one class
for each unique idealistic state). We maintain a different
queue for each class of inputs. In our instantiation, we
have three queues for the three states of the SAE protocol:
Nothing, Confirmed and Accepted. Nothing is the initial
state of the SAE protocol, Confirmed is the state after the
COMMIT packet is sent, and Accepted is the state after the
CONFIRM packet is sent after a successful COMMIT message
exchange. ASSOCIATION_REQUEST is sent in the Accepted
state to terminate the SAE handshake and initiate the four-
way handshake. Although SAECRED samples inputs from
each of these queues with equal priority, it is possible to
bias this selection towards certain dangerous states that
are more likely to lead to interesting parsing bugs. The
main goal of this partitioning is to recognize that inputs
leading to different idealistic states may end up revealing
different kinds of parsing bugs. In contrast, as we will
demonstrate, sampling input while disregarding the idealistic
state hampers both bug detection and performance.

Seed Inputs. For generating the initial seed popula-
tion, we rely on the standard SAE protocol state machine.
For each state si in the standard state machine, the seed
inputs are represented as the following set: seed(si) =∆

{⟨si, p, g, 0.0⟩ | p ∈ R(si)∧ g ∈ G}, in which R(si) returns
a set of symbolic, well-formed packets that can induce the
state si to be reached through simple paths from the initial
state, and G is the set of all packet format combinations in
the gDSL. The seed inputs to SAECRED are

⋃
si∈S seed(si)

where S is the set of all states in the protocol.
Sampling Inputs to Mutate. SAECRED samples from

each of the state queues ∆ (chosen to be 20) inputs to

 <RG_CONTAINER> ::=
 <RG_CID><RG_LENGTH>
 <RG_EXT_ID><RG_LIST>
 {
 <RG_CID> = 0xFF ;
 <RG_LENGTH> =
 length(<RG_LIST>);
 <RG_EXT_ID> = 0x5C ;
 }

 <COMMIT> ::=
 <ALGO><SEQ><GROUP_ID>
 <SCALAR><ELEMENT>
 {
 <ALGO> = 0x03 ;
 <SEQ> = 0x02 ;
 <GROUP_ID> = 0x13 ;
 }

 <COMMIT> ::=
 <ALGO><SEQ><RG_LIST>
 <SCALAR><ELEMENT>
 {
 <ALGO> = 0x03 ;
 <SEQ> = 0x02 ;
 }

 <RG_CONTAINER> ::=
 <RG_CID><RG_LENGTH>
 <RG_EXT_ID><GROUP_ID>
 {
 <RG_CID> = 0xFF ;
 <RG_EXT_ID> = 0x5C ;
 }

Figure 4: The crossover mutation operation. Two nontermi-
nals are picked from two production rules and crossed over.
Any semantic constraints on the nonterminal in the original
production rule are removed.

potentially mutate (Line 10 of Algorithm 1). Out of these
∆ inputs, 75% are sampled from the inputs with the highest
scores, whereas the rest are randomly sampled from the
entire population of that queue. In case a queue size is less
than ∆, all inputs are chosen from that queue. The sampling
of 75% of the highest performers from each queue is not
necessarily static in the sense that SAECRED narrows down
the sampling of the top percentage to prioritize the best
performers (if population ≤ 100 then 50%; if population
≤ 1000 then 25%; if population ≤ 5000 then 10%; other-
wise, 5%).

Mutation Operations. SAECRED mutates the grammar
g of the sampled inputs to obtain a new grammar g⋆ (Line
17 of Algorithm 1). The mutations can be categorized into
two categories: (1) structural mutations and (2) semantic
mutations. The latter is introduced to violate the semantic
constraints of the grammar. SAECRED non-deterministically
chooses to apply one of the following mutations.

The goal of the structural mutations is to consider
packet formats that are structurally different from the ones
prescribed in the standard. The structural mutations are
further divided into three types: addition, deletion and two-
point crossover. In the first two types, SAECRED nonde-
terministically chooses a production rule and then inserts
(resp., deletes) a non-terminal in the chosen production
rule. The two-point crossover picks two production rules
at random, two nonterminals at random, and crosses over
the nonterminals in the production rules (see Figure 4). If
the nonterminals are present in the semantic constraints,
we delete those semantic constraints. The goal of two-point
crossover is to test whether a production rule contains fields
that appear out of order, leading to possible misbehavior.

The semantic mutation non-deterministically picks a
nonterminal nt and violates the semantic constraints as-
sociated with the production rules defining nt. The SAE
packet structure contains numerous intra-packet field de-
pendencies such as ECC groups linked to the scalar and
element or length fields of every container. The modification
may apply to different types of semantic constraints, such as
Boolean constraints (length ≤ 128) and value assignment
constraints (length = length(rejected_groups)). For

Boolean constraints, SAECRED will take the negation of
the constraint i.e. C 7→ C; for arithmetic assignments, SAE-
CRED will nondeterministically pick either a (+1) or (−1)
operation and change the assignment value by the chosen
arithmetic i.e. A = f(x) 7→ A = f(x)± 1.

Identifying Ill-formed Post-Mutation Grammars.
Mutating a grammar may yield an ill-formed grammar.
As an example, consider a grammar with the following
production rule ⟨S⟩ → ⟨B⟩ | ⟨S⟩⟨A⟩. Suppose due to the
delete mutation, we end up deleting the nonterminal ⟨B⟩
from the production rule, resulting in the production rule:
⟨S⟩ → ⟨S⟩⟨A⟩. This grammar does not generate any finite
terms. To avoid situations like this, we canonicalize the
grammar after each mutation (i.e., ordering production rules
based on their appearances), check for non-terminating cir-
cular dependencies, and discard ill-formed grammars (e.g.,
grammars that cannot generate finite terms).

Concrete Packet Generation. For generating concrete
packets from the grammar (Line 18 of Algorithm 1), we
rely on a SyGuS solver [31]. The input to the concrete
packet generator is a context-sensitive grammar in the gDSL,
and its output is a semi-concrete packet pkt, which is con-
crete except for the presence of placeholders. Placeholders
are special symbolic values (e.g., cryptographic parameters
SCALAR and ELEMENT) that are context dependent and are
replaced with concrete values later. This conscious choice of
leaving derived values symbolic is to ensure the termination
of the SyGuS solver by precluding the non-linear reasoning
that often appears in cryptographic constructs.

Due to space constraints, we explain the high-level
approach using a concrete example. Suppose we want to
generate a concrete, grammar-conformant packet from the
following grammar in gDSL:

⟨S⟩ → ⟨A⟩⟨B⟩⟨C⟩ { ⟨A⟩ < ⟨B⟩||⟨C⟩ } | ⟨A⟩⟨B⟩ { ⟨A⟩ < ⟨B⟩ }
⟨A⟩ :: BitVec(16), ⟨B⟩ :: BitVec(16), ⟨C⟩ :: BitVec(16)

Above, each nonterminal symbol ⟨sym⟩ is specified by either
a production rule denoted by →, or by a type annotation
of the form ⟨sym⟩ :: τ , where the type annotation means
that the nonterminal symbol ranges over the given type.
The expressions within curly braces denote the context-
sensitive semantic constraints on the corresponding options
of the production rule. We generate a corresponding SyGuS
problem, formulated in the SyGuS Language [32]:

; "bv16" is shorthand for "(_ BitVec 16)"
(declare -datatype S (; algebraic datatypes

(s_con0 (a0 bv16) (b0 bv16) (c0 bv16))
(s_con1 (a1 bv16) (b1 bv16))))

(synth -fun f () S ; function to synthesize
; declare nonterminals
...
; grammar rules (

(s S ((s_con0 a b c) (s_con1 a b)))
(a bv16 ((Constant bv16)))
(b bv16 ((Constant bv16)))
(c bv16 ((Constant bv16)))))

(define -fun cn ((s S)) Bool ; sem. constraints
(match s (

((s_con0 a b c) (bvult a (bvor b c)))

((s_con1 a b) (bvult a b)))))
(constraint (cn f))
(check -synth)

First, we infer an algebraic data type (ADT) (see the
blue code block) for each production rule in the grammar,
which is inductively defined based on the types of the right-
hand-side nonterminals. Each option in the production rule
has its own constructor in the ADT, and each nonterminal
within an option has its own destructor in the ADT. Second,
we generate a function to synthesize f of type unit →
τ (see the red code block), where τ is the inferred type
of the start symbol. The grammar rules characterizing the
syntactic constraints of the function to synthesize directly
align with those in the input grammar. Finally, we generate
an SMT-LIB [37] predicate (see the black code block) of
type τ → Bool from the given semantic constraints. We
handle constraints on variables with algebraic data types by
pattern matching on the possible constructors.

For larger grammars, we implement a divide-and-
conquer algorithm that applies the above strategy to generate
a SyGuS problem for each production rule with seman-
tic constraints. Once we have the corresponding SyGuS
problem(s) from g, we generate pkt by simply calling a
SyGuS engine and serializing the results. We also replace
the symbolic placeholder values with meaningful concrete
values that are contextually dependent on the protocol flow.

Scoring Inputs. The scoring function (Line 25 of Algo-
rithm 1) takes the symbolic output of the TestOracle and
scores the input. The four symbolic outputs are timeout,
expected_output, crash, and unexpected_output with
the weighted scores of 0.1, 0.3, 0.5 and 0.7, respectively.
The weights reflect the preference of the classes of bugs that
SAECRED targets.

Packets that lead to timeouts are scored the least because
such inputs can tremendously slow down the fuzzing process
and may not necessarily lead to interesting bugs unreachable
from other inputs. Although expected outputs are not very
interesting, they are preferred over timeouts because they
may lead to interesting bugs in the future. Crashes and
unexpected outputs are scored the highest since crashes lead
to complete DoS of APs, and unexpected outputs imply
parsing bugs with possible security implications.

5.3. SAECRED’s Test Oracle

SAECRED’s test oracle is responsible for classifying
whether the AP’s responses to a given input are desirable.
It is also responsible for inferring the idealistic state of
the AP under test after processing a given input. It mainly
consists of two components: a packet parser and a protocol
state machine. Note that we follow the standard to manually
construct the test oracle. SAECRED’s effectiveness does
not necessarily rely on the correctness of the test oracle.
However, a correct test oracle can improve the effectiveness
of SAECRED.

5.4. SAECRED’s Driver

SAECRED’s driver consists of 2, 909 lines of Python
code. It communicates with the main testing algorithm. It
carries out two tasks: (1) replacing placeholders with con-
textually meaningful values and (2) sending and receiving
packets over the link. The driver maintains the cryptographic
context and SAE state, allowing SAECRED to transparently
and statefully interact with the APs under test.

After running each test case, the AP state must be reset.
Prior work [2] sent DEAUTHENTICATION frames to reset the
AP state. We observe that COTS APs often do not respect
this behavior. An alternative reset approach is to complete
the SAE handshake and let the four-way handshake time
out. This strategy, however, requires waiting for the reset
timer to expire (i.e., 7 seconds). In some COTS APs, this
approach also does not work. When an AP has an ad-
ministration portal, we use the Selenium WebDriver and
instrument Selenium to connect to the AP web interfaces
and programmatically restart the APs without removing the
WPA3-Personal-only configuration, SSID, and passphrase.
For some APs, we use smart switches to programmatically
power cycle the APs when none of the above approaches
worked.

The AP’s internal SAE configuration is opaque to the
driver. Whether APs support H2E, multiple ECC groups, or
password identifiers is unknown to the driver. Thus, a gen-
eralizable driver can only make a best effort in attempting
to report test cases as deviating. For example, consider an
AP implementation supporting only one ECC group. If the
driver were to send a packet that contains a stronger, AP-
unsupported ECC group in the rejected groups container, the
AP will not respond with an error, as it does not support the
rejected group. The driver will report this case as a deviation,
as it is oblivious to the internal AP configuration. These edge
cases require manual investigation into the nature of the test
cases and require a separate root-cause analysis.

6. Evaluation

This section presents the evaluation details of SAECRED,
showcasing its effectiveness in identifying deviant protocol
behaviors and comparing it against baseline approaches.
Test Subjects. We evaluate 6 COTS APs that support the
SAE handshake and the open-source hostapd implementa-
tion. Details of these APs, including their firmware versions,
are provided in Table 6. Among these, 3 APs support the
new hash-to-element algorithm, which incorporates optional
containers for enhanced security guarantees.
Preparing APs for Testing with SAECRED. To evaluate the
SAE handshake, each AP is manually configured to operate
in WPA3-Personal mode exclusively. By default, APs are
preconfigured for WPA2-Personal, necessitating a switch to
WPA3-Personal to focus on the updated SAE handshake.
This ensures that (1) the fuzzer’s scoring function is not
skewed by WPA2-related test cases, and (2) transition-mode
vulnerabilities, which are well-documented to have weaker
security guarantees [2], are avoided. The primary objective

is to uncover new bugs within the SAE handshake rather
than in transition-mode operations.

6.1. Research Questions

The evaluation of SAECRED is guided by the following
research questions:

• RQ1. How well does SAECRED find parsing bugs?
• RQ2. How effective are SAECRED’s mutation opera-

tions in generating meaningful test cases?
• RQ3. What is the contribution of each individual com-

ponent of SAECRED to its overall efficacy?
• RQ4. How does SAECRED compare to baseline ap-

proaches in terms of code coverage?
Setup for RQ1-RQ3. We adhere to established fuzzing best
practices [38] across all test subjects. SAECRED’s efficacy
is evaluated based on the number of deviations identified.
Answering RQ2. We analyze the discovered bugs and
trace them back to the responsible mutation operations.
This provides insights into the effectiveness of semantic
constraint modifications and structural modifications in gen-
erating meaningful test cases.
Answering RQ3. To assess the contributions of SAECRED’s
individual components, we perform a systematic decomposi-
tion. This involves selectively disabling key functionalities,
such as grammar-based mutation versus byte-level mutation,
multi-queue versus single-queue setups, and state-inference-
guided feedback versus temporal scoring. By comparing the
results of these configurations, we quantify the importance
of each component in improving fuzzing outcomes.
Answering RQ4. We utilize coverage data obtained from
all baseline and ablation campaigns conducted on hostapd.
This allows us to measure SAECRED’s impact on achieving
higher SLOC coverage compared to alternative approaches.

6.2. Baselines

To establish a fair comparison, we evaluate SAECRED
against 3 baseline configurations. Each baseline experi-
ment is conducted over 5 trials, with each trial lasting 24
hours. Coverage is measured using lcov for the open-source
hostapd implementation.
AFL++ with grammar-based fuzzing. We implement cus-
tom handlers for hostapd’s read() and recv() functions
and run AFL++ using a context-free grammar (CFG) ap-
proximation of SAECRED’s input grammar. Semantic con-
straints are removed to align with AFL++’s CFG-based mu-
tation capabilities. The generated inputs are passed directly
to hostapd, bypassing socket-level system calls for im-
proved performance. Crashes and memory corruption bugs
are recorded, and coverage is compared with SAECRED.
SAECRED with AFL’s Byte-Level Mutations. SAECRED
integrates AFL’s havoc mutator to perform byte-level mu-
tations on the input data. These mutations are applied to
inputs generated by SAECRED’s context-aware grammar.
The resulting test cases are then passed to hostapd in a
black-box testing setup. We analyze the deviant traces and
coverage metrics to assess the impact of combining AFL’s

byte-level mutation strategy with SAECRED’s grammar-
based approach, comparing the results against the original
SAECRED implementation.
SAECRED with AFL++ grammar-mutation operations.
We configure SAECRED to use AFL++’s grammar mutator
on a CFG representation of the input grammar. Semantic
constraints are removed to ensure a fair comparison. Deviant
traces and coverage metrics are analyzed to evaluate the
significance of SAECRED’s context-sensitive approach.

6.3. Ablation Study

To further evaluate SAECRED’s design choices, we con-
duct two ablation experiments on hostapd, each consisting
of 5 24-hour trials.

1) Single population queue. We configure SAECRED
to use a single population queue instead of state-
specific queues. Candidates are sampled from this uni-
fied queue, and the resulting deviant traces and cover-
age metrics are analyzed.

2) Temporal scoring for feedback. We replace SAE-
CRED’s state-inference-based scoring with a temporal
scoring function, which prioritizes test cases based on
execution time. This approach, inspired by prior works
[21], is evaluated to determine the utility of state-
transition-based feedback. Deviant traces and coverage
metrics are collected for analysis.

These experiments will answer RQ3 by providing a com-
prehensive understanding of SAECRED’s capabilities and its
advantages over existing methods.

7. Findings

We will now answer the RQs in light of the findings
from the evaluation. We will discuss the parsing bugs found,
the efficacy of the holistic SAECRED approach (RQ1), the
need for each of SAECRED’s functionalities (RQ2-RQ3),
the coverage achieved (RQ4), and the runtime performance.
Overall, SAECRED uncovered bugs belonging to 4 distinct
classes. The classes are as follows, namely: (1) Downgrade
bugs, (2) State-poisoning bugs, (3) Unexpected successful
association bugs, and (4) General parsing bugs.

7.1. Semantic constraint violation (RQ2)

SAECRED’s mutations lead to semantic constraint viola-
tions in the APs under test. The most notable and high im-
pact violation was the downgrade bug, where a malformed
rejected groups container leads to a successful downgrade
on the ECC group, despite the client and AP supporting
a strong ECC group. The bug is a result of SAECRED’s
arithmetic modification operator described in Section 5 that
reduces the length of the rejected groups container by 1,
bypassing a critical check. The APs under test are expected
to reject the commit frame and terminate the handshake, but
SAECRED found that all APs supporting H2E and at least
two ECC groups responded with COMMIT_SUCCESS frames.

One would assume that the cryptographic primitives would
be able to detect this violation, but Section 9 shows that the
parsing bug leads to the same key generation steps on both
the client and AP sides, resulting in an undetectable and
complete downgrade of the authentication handshake with
both parties using weaker ECC groups. This is a violation of
the standard and breaks the downgrade protection guaran-
tees. We will discuss the security implications and concrete
attack vector in Section 9.

To answer RQ2, SAECRED’s semantic constraint mu-
tation triggers a security-critical parsing bug resulting in
a guarantee-breaking downgrade attack. Context-sensitive
grammars and modifications to the constraints are necessary
to identify this bug.

7.2. Structural violation (RQ2)

SAECRED’s structural mutations uncover a number of
parsing bugs that either have direct security implications or
lead to unintended system state transitions. The most notable
structural violation was the state-poisoning bug that results
in a long-term client DoS attack. The structural violations
come in three flavors of bugs, namely (1) the state-poisoning
bug resulting in password-identifier-based DoS attacks, (2)
unexpected successful association bugs, and (3) general
parsing bugs.

While these bugs underscore the significance of SAE-
CRED’s mutation operations (RQ2), they also show the
significance of SAECRED’s state awareness (RQ1). The test
packet leads to two unexpected behaviors: (1) A commit
frame with a password identifier container is accepted by
some APs despite not being configured for password iden-
tifiers, and (2) any valid commit frame sent after the test
packet, but lacking the password identifier, times out. Both
of these behaviors are captured by the state-inference engine
as it reports that both of these behaviors are unexpected.
This is another high-impact bug: the password identifier
DoS discovered by SAECRED represents the state-of-the-art
WPA3-SAE DoS attack, in which an attacker can trigger
a long-term denial of service on the client by injecting a
single frame without expending significant resources. We
will describe the concrete attack vector and the underlying
root cause in Section 9.

The impact of the unexpected successful association and
general parsing bugs is unknown to us, and figuring this out
is an ongoing effort. SAECRED observed these unexpected
behaviors, however, at first glance, the security implications
are not clear. We will discuss these bugs in detail below and
delve into the high-impact vulnerabilities in Section 9.
Unexpected successful association. This class of parsing
bugs results in the APs under test accepting malformed
commit frames and entering the Accepted state. This is a
violation of the standard, as the APs under test are expected
to reject the commit frame and terminate the handshake.
However, SAECRED found that certain APs under test tran-
sitioned to the Accepted state despite receiving malformed
commit frames. This behavior violates the standard and in-
dicates a parsing bug that could potentially lead to undefined

SAECRED AP

COMMIT
+ [bad containers]

COMMIT ERROR

ASSOCIATION
REQUEST

ASSOCIATION
RESPONSE
(SUCCESS)

Figure 5: Protocol flow violation leading to an invalid state
transition to the accepted state.

protocol behavior or security vulnerabilities, such as buffer
overflow vulnerabilities. Further investigation is required to
determine the full impact of this issue.

This behavior is evident in Figure 5, where SAECRED
is able to associate with the AP without ever entering
the confirm phase of the handshake. This flow shows that
given a commit frame with bad containers, it is possible
to jump directly into the Accepted state without sending
a confirm frame indicating that both parties generated the
same PMK. Typically, the four-way handshake begins, but
due to the invalid flow, the AP does not initiate the four-way
handshake. We are unsure about the security implications of
this undefined protocol flow, as SAECRED is not configured
to fuzz the four-way handshake. However, we cannot rule
out the possibility of significantly worse behavior by some
APs. At the very least, parsing invalid containers opens
the possibility of buffer-overflow bugs, but it is difficult
to confirm in a black-box setting with no binary source to
instrument.
General bugs. The final class of parsing bugs SAECRED
found are general bugs that may or may not have security
implications. SAECRED reported test cases that were mal-
formed due to packet structure violations, which neverthe-
less led to successful state transitions. The state-inference
engine reported that these packets are invalid and should
not trigger state transitions, therefore making their success-
ful parsing unexpected. Empirical evaluation of these bugs
showed no direct security impact; however, we cannot rule
out the absence of bugs or buffer-overflow vulnerabilities
that result as a consequence of parsing malformed packets.

This class of parsing bugs is distinct from the unex-
pected association bugs, as in the former, the APs under
test transition to the Accepted state, while in the latter,
the APs under test simply accept malformed SAE frames.
In the context of SAE, the unexpected association bugs are
more severe as they signal successful association with the
AP, while the general parsing bugs may not lead to any
significant impact. However, both classes of bugs highlight
the need for robust parsing and validation mechanisms in the
SAE protocol to prevent unexpected behavior and potential
security vulnerabilities.

To answer RQ2, SAECRED’s structural mutation opera-
tions trigger a number of stateful parsing bugs that lead to

unexpected system behavior. All of these bugs are a result
of the structural mutations on the input grammar and the
state-inference engine’s ability to identify the unexpected
behavior. Without the composition of the context-sensitive
grammar and the state-inference engine, these bugs would
not have been identified.

Capability Downgrade DoS Associate General

Intercept ✓ ✓ ✓ ✓
Modify ✓ ✓ ✓ ✓
Impersonate ✓ ✓ ✓ ✓
Drop ✗ ✓ ✗ N/A
Inject Malformed ✓ ✗ ✓ ✓
Key Compromise ✗ ✗ ✗ ✗

TABLE 2: Adversary capabilities required for each attack.

8. SAECRED’s multifaceted approach

We now ascertain the efficacy of the SAECRED architec-
ture down to the significance of each individual component.
To answer RQ3, we will show that each component adds to
the required functionality needed to find deviant behavior in
the SAE handshake, and that the combination of all com-
ponents is necessary for the high-coverage and high-quality
test cases that SAECRED produces. To answer RQ4, we will
show that despite running in black-box mode, SAECRED is
able to cover more lines and functions than the baselines and
ablations. The detailed answers with empirical evidence to
RQ2-RQ4 help answer RQ1 regarding the holistic effective-
ness of SAECRED in finding parsing bugs.

8.1. Baseline and ablation comparison (RQ3)

Fuzzer Downgrade DoS Associate General

SAECRED 16 8652 119 1114
SAECRED SQ 30 6053 – 438
SAECRED SQ + T – 6771 – 530
SAECRED AFL – – N/A –
SAECRED AFL++ – – N/A –

TABLE 3: Identified bug instances of each category in abla-
tion study. SQ: Single-queue, T: Temporal scoring function.

Table 3 shows the number of instances of each bug found
across the ablation experiments. We analyze the results to
understand the significance of each SAECRED component.
SAECRED uncovers all bug types with higher instances.
SAECRED consistently identifies numerous instances of all
discussed bug types. The only exception is the downgrade
bug, where it finds fewer instances due to its multi-queue
design. SAECRED aims to explore the state space compre-
hensively, ensuring fair traversal and bug discovery across
all protocol states. This approach prioritizes parsing bugs in
the Nothing state equally with those in subsequent states.
Consequently, SAECRED is uniquely equipped to uncover
the association bug, which requires fuzzing later states in
the protocol flow.

Single-queue exhibits an initial state bias. The single-
queue ablation fuzzer finds more instances of downgrade
bugs but identifies fewer instances of other bugs, with no
association bug instances. This behavior indicates that a
single-queue SAECRED prioritizes bug hunting in the initial
state, as both the DoS and downgrade bugs are reachable in
the Nothing state. This is evident from the fuzzer’s inability
to find any instances of the association bug.
Temporal scoring is insufficient. Out of various SAECRED
configurations with the same mutations as vanilla SAECRED,
the temporal scoring configuration performs the worst. It
is unable to reason about the possible state transitions as
feedback, and as a result, it converges to prioritizing test
cases that cause timeouts, indicating test case wastage. To
better guide the fuzzer towards possible parsing bugs, the
fuzzer must rely on the state-inference engine’s feedback.
Grammar-aware mutations surpass byte-level mutations.
SAECRED AFL was equipped with a valid WPA3-SAE
grammar, which the SyGuS solver and driver translated
into valid SAE byte sequences. These sequences were then
mutated using AFL’s bitwise havoc mutator. However, the
havoc mutator operates in a non-deterministic manner, dis-
regarding the cryptographic and inter-field dependencies
inherent to the protocol. As a result, the generated test cases
were malformed, leading to frequent timeouts or rejections
by the APs. This lack of adherence to protocol constraints
results in zero instances of bugs, highlighting the importance
of context-sensitive grammars in effective fuzzing.
Context-sensitive grammar surpasses context-free gram-
mar. SAECRED AFL++ utilized the context-free variant of
the WPA3-SAE grammar; it applied mutations similar to
AFL++’s grammar mutator. However, the absence of context
meant the fuzzer could not preserve the cryptographic and
inter-field dependencies. This results in malformed packets
that are either dropped or rejected by the APs, resulting
in minimal coverage and no bug discovery. Conversely, the
context-sensitive grammar ensured that generated packets
conformed to protocol constraints, allowing the fuzzer to
explore deeper protocol states for parsing bugs.

Answering RQ3, each individual SAECRED feature plays
a critical role in its bug-finding capability. The removal of
any feature, whether related to mutation strategies or system
architecture, significantly diminishes SAECRED’s ability to
find bugs, underscoring the necessity of its holistic design.

8.2. Coverage analysis (RQ4)

For coverage analysis, we delve into the lines and func-
tions uncovered by SAECRED and compare them with the
baseline and ablation experiments. This analysis provides
insights into the effectiveness of SAECRED in exploring the
SAE parser handler code.

We begin by examining Table 4, which presents the cov-
erage results for two critical SAE parser handler source files:
sae.c and ieee802_11.c. These files are pivotal as they
handle SAE packet parsing. The table distinguishes between
overall coverage and restricted coverage within these files.
This distinction is necessary because the hostapd harness

0 5 10 15 20
Hour

20

21

22

23

24

25

26

27

28
ho

st
ap

d
fu

nc
tio

n
co

ve
ra

ge
 %

Temporal Score Ablation
SAECRED
SAECRED + AFL++
SAECRED + AFL
Single Queue Ablation

Figure 6: Average coverage for SAECRED, baselines and
ablation studies.

lacks access to the complete network stack, particularly code
referencing socket calls. To ensure a fair comparison with
the custom test harness, we focus on the specific portions
of the code responsible for SAE packet parsing.
Gray-box AFL++ achieves the lowest coverage. AFL++
with the grammar mutator running in gray-box mode ex-
hibits the least coverage of the SAE parser handler code.
Despite being initialized with a seed representative of valid
SAE interactions, the context-free nature of the grammar
mutator results in the loss of SAE-specific context. This lim-
itation prevents the fuzzer from making significant progress
compared to the black-box SAECRED configuration.
SAECRED with AFL++ mutations achieves limited black-
box coverage. When SAECRED is configured with a
context-free grammar, it performs better than AFL++ due
to the inclusion of cryptographic placeholders. However, it
still falls short compared to configurations utilizing context-
sensitive grammars. AFL, equipped with context-sensitive
grammars, mutates the generated byte sequences more ef-
fectively, uncovering additional code. This highlights the
critical role of capturing inter-field dependencies and cryp-
tographic context in achieving higher coverage.
SAECRED achieves the highest coverage. SAECRED, lever-
aging its multi-state queue architecture and oracle-guided
feedback functions, achieves the most extensive function
coverage across the SAE parser handler files. The combi-
nation of intelligent population selection, fine-tuned muta-
tion operations, state awareness, and feedback mechanisms
enables SAECRED to explore deeper program states and
uncover more code.
SAECRED demonstrates the fastest coverage growth. As
illustrated in Figure 6, SAECRED exhibits rapid growth
in function coverage compared to other configurations. It
quickly reaches peak coverage, while other configurations
progress at a slower pace. Notably, even after running for 24
hours, all baselines and ablations fail to converge to the peak
coverage SAECRED achieves in just 1 hour. This underscores
the effectiveness of SAECRED in exploring the SAE parser
handler code comprehensively.

Addressing RQ4, SAECRED consistently achieves the
highest SLOC coverage at the fastest rate compared to both
baselines and ablation campaigns. This demonstrates that

Line(%) Function(%)
sae.c sae.c

ieee802_11.c ieee802_11.c

SAECRED
55.0 75.9
41.5 63.3

AFL++ gray-box 10.7 20.4
12.1 15.2

SAECRED AFL 53.6 75.9
28.7 46.8

SAECRED SQ 54.5 75.9
40.3 63.3

SAECRED SQ + T 54.7 75.9
37.3 60.8

SAECRED AFL++ 42.0 68.5
23.4 39.2

TABLE 4: Maximum line and function coverage for all
baseline, ablation, and gray-box mode experiments. The
top value in each fuzzer row corresponds to sae.c, and
the bottom one corresponds to ieee802_11.c. SQ: Single
queue, T: Temporal scoring function.

even in black-box mode, context-sensitive input generation
combined with state-inference-guided feedback effectively
reaches SLOC that would otherwise remain unexplored.

8.3. Performance

We now discuss SAECRED’s network and test case gen-
eration performance in terms of temporal measures. Table 5
presents the average time SAECRED takes across all APs
under test to execute a test case, complete a fuzzing iteration,
populate each queue fully, and handle malformed grammar-
to-packet responses. On average, executing a trace takes
≥ 12.1s. While the latency is high, the coverage achieved
by SAECRED justifies this cost. Although testing a trace
requires more time, the results demonstrate the high quality
of the generated test cases.

Additionally, SAECRED completes an iteration in ≥
742.7s on average and requires ≥ 7 iterations to populate
all queues. Initially, SAECRED exhibits a bias toward the
Nothing state, but this bias diminishes as it continues to
run, enabling effective exploration of the state space. This
behavior highlights the capability of SAECRED’s architec-
ture to address initial state bias effectively.

Lastly, SAECRED fails ≤ 14.7 times on average and
spends ≤ 3.3 seconds waiting for malformed grammar-to-
packet responses. Over a 24-hour run, this cost is negligible
given the high coverage and the discovery of issues across
all H2E-supported COTS APs.

9. Attacks

This section presents two of the representative attacks
(i.e., downgrade and DoS) SAECRED uncovered. The ad-
versarial assumptions needed for these attacks are discussed
in Section 3 and shown in Table 2.

hostapd ASUS-TUF ASUS RT TP-Link AX3000 TP-Link AX21 eero Verizon

Avg. single test execution time 14.6 16.3 16.1 13.8 28.24 12.6 12.1
Avg. time to run a single fuzzing iteration 953.3 1438.6 1419.9 1230.2 2441.6 741.7 1096.0
Number of iterations for filling all queues 8.8 8.2 8.4 7.0 7.4 6.7 9.2
Number of total times SyGuS failed 11.4 13.4 14.2 13.6 5.0 14.7 14.6

TABLE 5: Average performance breakdown over 5 24-hour trials.

AP Chipset Firmware H2E Downgrade DoS Associate General bugs

ASUS-TUF AX6000 MediaTek MT7986AV 3.0.0.4.388_33405 ✓ ✓ ✗ ✓ ✓
ASUS RT-AX1800S MediaTek MT7621AT 3.0.0.4.386_69041 ✓ ✓ ✗ ✓ ✓
TP-Link Archer AX3000 Intel GRX350A3 1.1.2 ✓ ✗ ✓ ✓ ✓
TP-Link Archer AX21 Broadcom BCM6755 1.1.0 ✗ NA NA ✗ ✗
Amazon eero 6 Qualcomm IPQ8174 7.6.2-130 ✗ NA NA ✗ ✗
Verizon Fios CR1000A Qualcomm IPQ8072A 3.2.0.14 ✗ NA NA ✗ ✗
hostapd NA 2.10 ✓ ✓ ✓ ✓ ✓

TABLE 6: APs tested and their susceptibility to different attacks. NA refers to an AP not supporting the H2E algorithm.

Client APMiTM

COMMIT(ECC=20) BLOCK

UNSUPPORTED

 COMMIT(ECC=19,
 rg_length=3,
 rg=20)

 COMMIT(ECC=19,
 rg_length=2,
 rg=20)

Verify RG
 Parse logic error

COMMIT(ECC=19)Downgrade
Successful

Confirm
Phase

Figure 7: The H2E rejected groups downgrade attack.

9.1. Downgrade attack

In this attack, the adversary’s goal is to downgrade the
ECC group used in the SAE handshake. The downgrade
attack is realizable due to implementations improperly val-
idating the rejected groups’ container length in the SAE
commit frame. SAECRED generated a test case in which the
commit frame contained a single rejected groups container
with the rejected group 20 and the length set to 1. Two
COTS APs and hostapd successfully parsed this malformed
rejected groups container and continued with the handshake.
This parsing bug allows an adversary to launch a machine-
in-the-middle (MiTM) attack and force the AP to downgrade
to a weaker security group without the client’s knowledge.
Downgrade defenses. The standard defines the following
defenses to detect the downgrade and make the attack
infeasible: (1) checking the ECC groups in the rejected
groups container; (2) using the values in that container in
the PMK KDF. This makes trivial packet manipulation attacks
infeasible as an MiTM adversary cannot simply remove the
container and hope for the handshake to succeed. While
both parties will successfully move on to the confirm phase,

1267 static int check_sae_rejected_groups(struct
hostapd_data *hapd,

1268 struct sae_data *sae)
1269 {
1270 const struct wpabuf *groups;
1271 size_t i, count;
1272 const u8 *pos;
1273 if (!sae->tmp)
1274 return 0;
1275 groups = sae->tmp->peer_rejected_groups;
1276 if (!groups)
1277 return 0;
1278 pos = wpabuf_head(groups);
1279 count = wpabuf_len(groups) / 2; //PARSE ERROR
1280 for (i = 0; i < count; i++) { //PARSE ERROR
1281 int enabled;
1282 u16 group;
1283 group = WPA_GET_LE16(pos);
1284 pos += 2;
1285 enabled = sae_is_group_enabled(hapd,

group);
1286 wpa_printf(MSG_DEBUG, "SAE: Rejected

group %u is %s",
1287 group, enabled ? "enabled" : "

disabled");
1288 if (enabled)
1289 return 1;
1290 }
1291 return 0;
1292 }

Listing 1: hostapd SAE rejected groups validation source
code in ieee802_11.c. Purple text shows the parsing bug.

the confirm phase fails due to the different keyseeds used
in the respective KDFs. To launch the downgrade attack, the
adversary must ensure that both parties use the same keyseed
for their respective KDFs.
Downgrade attack flow. Figure 7 shows the downgrade
attack. The adversary intercepts the commit frame from
the client, drops the frame, and impersonates the AP by
responding with an UNSUPPORTED_CYCLIC_GROUP error.
The client downgrades to a weaker ECC group (e.g., group
19), uses the stronger ECC group (e.g., group 20) as the

salt for the KDF, and appends the stronger ECC group to
the rejected groups container. The adversary intercepts this
commit frame and reduces the length of the container by
1. The AP accepts this frame, uses the strong ECC group
that it supports as the salt for the KDF and proceeds with
the handshake. Both parties now use the same salt for the
KDF, and therefore both sides derive the same PMK.
Root-cause analysis. We investigate this abnormality by
analyzing the hostapd source code. Listing 1 shows the
rejected groups validation code, in which line 1279 extracts
the length of the rejected groups container and integer
divides by 2. This is problematic as valid rejected group
lengths are always even, but in the event that the length is
odd, the loop on line 1280 terminates without iterating. This
means that the code on line 1284 is never reached and the
rejected groups container is never validated.

Interestingly, we note that this attack is possible not
only because of preemptive loop termination, but also due
to the HMAC function used in the KDF. Suppose the client
appends the rejected group 20 to the commit frame. The
hexadecimal representation of this is 14 00. When the
adversary modifies the length to 1, the AP processes the
rejected groups container value as 14, missing the 00 byte
that the client is using as the salt for the KDF. We note that
despite this difference, the handshake still succeeds as the
HMAC function used in the KDF pads a zero byte in the event
that the input is less than 2 bytes.

9.2. DoS attack

The adversary’s goal with this attack is to poison the
AP’s internal state by sending a commit frame with a pass-
word identifier container with arbitrary password identifier
values (PassID), resulting in a long-term DoS attack on the
client. The root cause of the DoS is that subsequent commit
frames without the same PassID container are dropped by
the APs. This is an acceptable behavior because honest
clients using PassID will append the same container to
subsequent commit frames. However, in the context of an
adversary, this behavior is problematic, as the adversary can
simply append a PassID container with arbitrary values and
cause the AP to accept the container. Since the client is
unaware of the PassID container, the client will not append
the container to subsequent commit frames, causing a DoS.

SAECRED discovered this bug due to two reasons. First,
SAECRED appended PassID containers with arbitrary val-
ues and expected the AP to reject the commit frame. The
vulnerable APs, however, accepted the commit frame and
continued with the handshake. These frames were marked
by SAECRED as unexpected. Secondly, in subsequent com-
mit frames, SAECRED either did not append any PassID
container or appended a different PassID container. These
frames were dropped by the AP causing SAECRED’s state-
inference engine to report unexpected behavior.
DoS attack flow. Figure 8 shows the DoS attack. The
adversary intercepts the SAE commit frame from the client,
appends a PassID container with arbitrary values, and for-
wards the modified frame to the AP. The AP accepts this

Client APMiTM

 COMMIT(
 pi_container
)

DoS
Successful

 COMMIT

 COMMIT(
 pi_container
)

BLOCK

 COMMIT

 COMMIT

 COMMIT

Figure 8: Long-term DoS attack through a single commit
frame. Clients are indefinitely DoSed.

frame and continues with the handshake. Additionally, the
AP updates its internal state with the PassID values. It then
responds to the client by sending its own commit frame
with the PassID chosen by the adversary. The adversary
must intercept and block this frame, as the client must not
be made aware of the PassID values. Once the adversary
blocks the AP-sent commit frame, the attack is complete
and the adversary can drop off the network.
Root-cause analysis. The DoS attack is possible due to (1)
acceptance of arbitrary PassIDs even in the event that APs
are not configured for PassIDs and (2) APs’ management
of internal timers for new clients. Whenever APs receive
commit frames, they initialize a timer for the authentication
session. If the timer expires, the AP clears the client state.
This implies that whenever an authenticating client sends a
commit frame, the timer resets. An adversary exploits this
behavior by sending a commit frame with arbitrary PassIDs
and then dropping the AP-sent commit frame. Since clients
are (1) unaware of this modification to their commit frame
and (2) assume the commit frame was never received by the
AP, they begin sending new commit frames in an attempt
to authenticate. The APs expect the PassID appended by
the adversary to be present in these new commit frames,
and since they are not, they drop the commit frames and
reset the authentication session timer. As a result, if the
client attempts to repeatedly authenticate, the AP will never
clear the client state as the timer resets and the AP will
continue to maintain the poisoned PassID variable for the
authentication session.

To answer RQ1, SAECRED identified two high-impact
vulnerabilities due to its multi-state queue architecture,
oracle-guided feedback, and state-inference engine. These
high-impact vulnerabilities were not identified for several
years, which shows SAECRED’s ability to uncover previously
unknown vulnerabilities.

9.3. Responsible disclosure

All bugs and their exploitations were disclosed to all
relevant stakeholders. Several vendors have acknowledged

the vulnerabilities, launched patches, and sent security ad-
visories, and others are still working on remediation at the
time of this writing. hostapd has received a patch for the
downgrade attack on the stable branch and the PassID
DoS attack on the development branch [39], [40]. MediaTek
issued CVE-2025-20664 [41]. While the attacks are found
on hostapd, patches were issued both to hostapd and
wpa_supplicant, indicating that clients were also prone
to these attacks.

10. Related Work

We now categorize existing protocol implementation
testing efforts and show how they differ from SAECRED.
Protocol-specific and -agnostic Testing. A majority of
the testing approaches can be categorized either as general
protocol implementation testing approaches [16], [11], [15],
[42], [43], [44], [19], [45], [12], [46], [47], [48], [13] or
as approaches that are tailor-made for a specific protocol
[10], [49], [14], [22], [18], [23], [50], [27], [51]. SAECRED
is tailor-made for the WPA3 SAE handshake and includes
aspects that are not necessarily generalizable.
Additional Inputs to Testing Approaches. Various testing
approaches require access to the implementation under test
(IUT). Additionally, there are approaches that require the
abstract protocol state machine [14], [50], [45], [15], [17],
[46], a diverse set of implementations [17], [20], a set of
desired properties [24], [25], [16], and a packet format spec-
ification [13], [51], [21], [50], [23], [14], [10] as additional
inputs. SAECRED requires packet formats, the protocol state
machine, and a parser for the SAE handshake.
Levels of Access to the IUT. One of the clearest distinctions
between the various testing approaches is the level of access
they have to the IUT. The primary categories are: (1) black-
box access [18], [15], [45], [23], [20], [48], [47], [50],
[21], [17], [51], (2) gray-box access [10], [11], [49], [14],
[22], [12], [13], [46], [44], [19], [29], and (3) white-box
access [43]. Black-box access is the most restricted having
only access to the input and output interface. The other
extreme is the white-box access, which has full access
to the source code of the IUT. Finally, gray-box access
is a middle ground between the two extremes, where the
IUT can be instrumented to observe coverage information.
SAECRED adopts the black-box approach, which allows it
to be applicable to any commercial AP.
State Awareness. Stateful protocol testing is challenging as
fuzzers need to maintain state with the IUT. This is one of
the main distinguishing aspect of testing a stateful system
[10], [11], [49], [14], [22], [12], [46], [44], [15], [45], [23],
[48], [47], [50], [17], [51] compared to a stateless one [13],
[19], [29], [18], [20], [21]. Many of the existing approaches
do maintain some form of state awareness; however, their
state exploration is guided by additional information such
as the coverage information or the precise state of the IUT.
SAECRED explicitly maintains states but does not rely on
any additional information for its state exploration.
IUT Instrumentation. Many existing gray-box fuzzers rely
on instrumentation of the IUT to obtain coverage infor-

mation, crash status, or precise IUT state inference [10],
[11], [49], [14], [12], [13], [46], [44], [19], [29]. These
rich forms of feedback can effectively guide testing to find
interesting bugs. SAECRED does not rely on any information
that requires instrumenting the IUT.
State Inference. Many existing testing approaches rely on
inferring the underlying protocol states of the implemen-
tation. The primary approaches for state inference include
L*-style state machine inference [17], source code analysis
[52], [44], implementation instrumentation for precise state
tracking [12], [11], [44], status code analysis [15], [47],
heuristic extraction from memory snapshots [46], [11], and
oracle-based state inference [10], [11], [22], [12], [23], [51],
[23]. SAECRED relies on an oracle to infer the underlying
protocol state but is aware that the inferred state may not
be the precise implementation state.
Resetting States. Due to statefulness, it is paramount to
reset the protocol state after running each test case. The
predominant reset approaches are (i) restoring from a snap-
shot [46], [11], (ii) soft/hard device resetting (e.g., power cy-
cling), and (iii) applying a homing sequence [17]. SAECRED
relies on a combination of (ii) and (iii). Approaches that rely
on memory snapshots to restore/reset protocol states enjoy
a significant speed advantage over other approaches. As a
result, SAECRED is slower than snapshot-based fuzzers and
hence focuses on only executing effective test cases with a
higher likelihood of triggering bugs.
Packet Format Awareness. As discussed before, payload
formats add an extra dimension to the challenges of test-
ing protocol implementations. However, not all protocol
messages are equally complex. Some message formats are
simple enough to be captured with a context-free grammar
[28], [13], [21], [19], [29], whereas others require the power
of context sensitivity. In addition, some message fields may
have derived relationships that are sensitive to the protocol
flows (e.g., cryptographic constructs). Many existing fuzzers
can only handle packets that are context free whereas SAE-
CRED can handle packets that are context sensitive with
protocol flow dependencies.
Mutation Operations. Many existing fuzzers still rely on
bitwise mutation to generate new test cases [10], [11], [49],
[12], [46], [44], [18], [15], [45], [20], [48], [50], [47],
[51]. Those that explicitly consider the packet format often
use a grammar to generate well-formed inputs, and then
apply mutations to the generated inputs. Such approaches
often do not end up exercising critical parts of the protocol
implementation because the mutations are not format aware.
In contrast, approaches such as ATFuzz [21] directly mutate
the format (i.e., grammar production rule) to generate new
test cases. SAECRED follows the latter approach but also
maintains the state-awareness of the explicit protocol.
Crash and Logical Bugs. Finally, many existing fuzzers
mainly target crash bugs in implementations [13], [46],
[44], [19], [29], [18], [15], [47], [50]. These approaches
often cannot detect logical bugs, which are challenging to
discover. Existing approaches either use differential testing
of multiple implementations [17], [20], [14] or rely on an
oracle to detect logical bugs [10], [11], [22], [12], [23].

SAECRED relies on an oracle to detect logical bugs.

11. Discussion

Limitations. While SAECRED pushes the boundaries of Wi-
Fi fuzzing with an approach tailored to the SAE handshake,
it remains far from an ideal general-purpose Wi-Fi fuzzing
tool (e.g., testing the 4-way handshake).

To SAECRED, fuzzing is a means of generating inputs,
approximating internal state, and using symbolic values to
evaluate the quality of test cases. This approach assumes
the existence of a driver capable of mapping SAECRED’s
symbolic values to concrete, context-aware cryptographic
values, while also maintaining protocol state across the
entire test sequence and making subtle flow decisions —
often in ways that are opaque to SAECRED. This dependency
makes extending SAECRED to other Wi-Fi sub-protocols
difficult.

SAECRED relies on the driver to maintain a state with
the AP and to make reasonable approximations about the
expected protocol state. This requires manual interpretation
of often ambiguous specifications, leaving behavior open
to the implementers’ interpretation. Therefore, developing a
reliable oracle is challenging. Even if one is implemented,
some APs may behave differently due to vendor-specific
quirks.

Finally, traces flagged for further analysis still require
manual inspection to determine the root causes. While the
grammar aids in debugging, understanding the origin and
exploitability of a parsing bug remains a manual task.
Lack of AP specification. A major challenge in fuzzing
COTS APs is the lack of transparency. Vendors may ad-
vertise WPA3 support, but they rarely disclose the exact
SAE version, such as whether they support the updated H2E
variant. This ambiguity complicates AP selection, requiring
a balance between testing coverage across diverse devices
and avoiding redundant testing of APs that only implement
outdated or known-vulnerable versions. As a result, purchas-
ing APs for fuzzing becomes a gamble, and SAECRED ends
up meaningfully exercising only 3 out of the 6 COTS APs.
Lack of AP configuration controls. We report two COTS
APs vulnerable to the downgrade attack, but the third AP—
despite supporting H2E—only enables a single ECC group.
Since most APs do not expose configuration options for
selecting ECC groups, we cannot verify whether this AP is
immune to the downgrade parsing bug or simply untestable
due to its limited configuration. Consequently, SAECRED
presents a conservative lower bound on the number of
parsing bugs detected.

12. Conclusion

We presented SAECRED and exposed longstanding in-
adequacies in both Wi-Fi and fuzzing, leading to the dis-
covery of parsing bugs missed for over four years. SAE-
CRED demonstrates the need for context-sensitivity, state-
awareness, and parser testing in realistic settings. Despite

having only black-box access, SAECRED uncovers buggy
parser behavior and achieves broader code coverage due to
its holistic design. In future work, we plan to evaluate the
generalizability of SAECRED by applying it to other network
protocols with complex packet formats.

References

[1] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks:
Forcing nonce reuse in WPA2. In CCS, 2017.

[2] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyzing the drag-
onfly handshake of wpa3 and eap-pwd. In 2020 IEEE Symposium on
Security and Privacy (SP), 2020.

[3] Mathy Vanhoef. Fragment and forge: breaking Wi-Fi through frame
aggregation and fragmentation. In 30th USENIX security symposium
(USENIX Security 21), 2021.

[4] Zilin Shen, Imtiaz Karim, and Elisa Bertino. Segment-based for-
mal verification of wifi fragmentation and power save mode. In
Proceedings of the 19th ACM Asia Conference on Computer and
Communications Security, ASIA CCS ’24, 2024.

[5] Omar Nakhila, Afraa Attiah, Yier Jin, and Cliff Changchun Zou. Par-
allel active dictionary attack on wpa2-psk wi-fi networks. MILCOM
2015 - 2015 IEEE Military Communications Conference, 2015.

[6] IEEE Std 802.11. Wireless LAN medium access control (MAC) and
physical layer (PHY) spec, 2016.

[7] IEEE Std 802.11. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Spec, 2020.

[8] Jouni Malinen. hostapd.

[9] Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt.
Dragonblood is still leaking: Practical cache-based side-channel in
the wild. In Proceedings of the 36th Annual Computer Security
Applications Conference, ACSAC ’20, 2020.

[10] Matheus E. Garbelini, Chundong Wang, and Sudipta Chattopadhyay.
Greyhound: Directed greybox wi-fi fuzzing. IEEE Transactions on
Dependable and Secure Computing, 2022.

[11] Roberto Natella. Stateafl: Greybox fuzzing for stateful network
servers. Empirical Software Engineering, 27, 2022.

[12] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roy-
choudhury. Stateful greybox fuzzing. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, August. USENIX
Association.

[13] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. Nautilus:
Fishing for deep bugs with grammars. Proceedings 2019 Network
and Distributed System Security Symposium, 2019.

[14] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang
Qin, and Shi-Min Hu. TCP-Fuzz: Detecting memory and semantic
bugs in TCP stacks with fuzzing. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, July 2021.

[15] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet:
A greybox fuzzer for network protocols. In ICST 2020.

[16] Syed Md Mukit Rashid, Tianwei Wu, Kai Tu, Abdullah Al Ish-
tiaq, Ridwanul Hasan Tanvir, Yilu Dong, Omar Chowdhury, and
Syed Rafiul Hussain. State machine mutation-based testing frame-
work for wireless communication protocols. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, CCS ’24.

[17] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar
Chowdhury, and Elisa Bertino. Noncompliance as deviant behavior:
An automated black-box noncompliance checker for 4g lte cellular
devices. In ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’21, 2021.

[18] Hongjian Cao, Lin Huang, Shuwei Hu, Shangcheng Shi, and Yujia
Liu. Owfuzz: Discovering wi-fi flaws in modern devices through
over-the-air fuzzing. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WiSec ’23. Association for Comput-
ing Machinery, 2023.

[19] Martin Eberlein, Yannic Noller, Thomas Vogel, and Lars Grunske.
Evolutionary grammar-based fuzzing. In Aldeida Aleti and Annibale
Panichella, editors, Search-Based Software Engineering. Springer In-
ternational Publishing, 2020.

[20] Gaganjeet Singh Reen and Christian Rossow. Dpifuzz: A differential
fuzzing framework to detect dpi elusion strategies for quic. In
Proceedings of the 36th Annual Computer Security Applications
Conference, ACSAC ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[21] Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowd-
hury, and Elisa Bertino. Opening pandora’s box through atfuzzer:
dynamic analysis of at interface for android smartphones. In Proceed-
ings of the 35th Annual Computer Security Applications Conference,
ACSAC ’19, 2019.

[22] Yuanliang Chen, Fuchen Ma, Yuanhang Zhou, Yu Jiang, Ting Chen,
and Jiaguang Sun. Tyr: Finding consensus failure bugs in blockchain
system with behaviour divergent model. 2023 IEEE Symposium on
Security and Privacy (SP), 2023.

[23] Kyungtae Kim, Sungwoo Kim, Kevin R. B. Butler, Antonio Bianchi,
Rick Kennell, and Dave (Jing) Tian. Fuzz the power: Dual-role state
guided black-box fuzzing for USB power delivery. In 32nd USENIX
Security Symposium (USENIX Security 23), Anaheim, CA, August
2023. USENIX Association.

[24] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. Lteinspector: A systematic approach for adversarial testing
of 4g lte. In NDSS, 2018.

[25] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5greasoner: A property-directed security
and privacy analysis framework for 5g cellular network protocol. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19.

[26] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. Touching the
untouchables: Dynamic security analysis of the lte control plane. In
2019 IEEE Symposium on Security and Privacy (SP), 2019.

[27] CheolJun Park, Sangwook Bae, BeomSeok Oh, Jiho Lee, Eunkyu
Lee, Insu Yun, and Yongdae Kim. DoLTEst: In-depth downlink
negative testing framework for LTE devices. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, 2022. USENIX
Association.

[28] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In 21st USENIX Security Symposium (USENIX Security
12), Bellevue, WA, August 2012. USENIX Association.

[29] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion:
Grammar-aware greybox fuzzing. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). IEEE, 2019.

[30] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In 2013 Formal Methods in Computer-Aided Design.

[31] Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett, and
Cesare Tinelli. cvc 4 sy: smart and fast term enumeration for syntax-
guided synthesis. In Computer Aided Verification: 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II 31. Springer, 2019.

[32] Saswat Padhi, Elizabeth Polgreen, Mukund Raghothaman, Andrew
Reynolds, and Abhishek Udupa. The sygus language standard version
2.1. arXiv preprint arXiv:2312.06001, 2023.

[33] IEEE Std 802.11s. Amendment 10: Mesh Networking, 2011.

[34] Dan Harkins. Dragonfly Key Exchange. RFC 7664, November 2015.

[35] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2), 1983.

[36] Jouni Malinen. SAE anti-clogging token. Retrieved 13 October 2024
from https://mentor.ieee.org/802.11/dcn/19/11-19-2154-02-000m-s
ae-anti-clogging-token.docx, 2020.

[37] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib stan-
dard: Version 2.0. In Proceedings of the 8th international workshop
on satisfiability modulo theories (Edinburgh, UK), volume 13, 2010.

[38] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias
Scharnowski, Addison Crump, Arash Ale Ebrahim, Nicolai Bissantz,
Marius Muench, and Thorsten Holz. Sok: Prudent evaluation practices
for fuzzing. 2024 IEEE Symposium on Security and Privacy (SP),
2024.

[39] Jouni Malinen. Sae h2e and incomplete downgrade protection for
group negotiation. https://w1.fi/security/2024-2/sae-h2h-and-incom
plete-downgrade-protection-for-group-negotiation.txt.

[40] Jouni Malinen. hostapd commit log: Password identifier dos patch.
https://w1.fi/cgit/hostap/commit/?id=90a3b4a91a5dff29b8e8431983a
acfc7aad52381.

[41] MediaTek. Security acknowledgement cve-2025-20664. https://nvd.
nist.gov/vuln/detail/CVE-2025-20664.

[42] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++ : Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, August 2020.

[43] Michal Zalewski. Afl (american fuzzy lop).

[44] Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma, Ming Yuan,
Wenyu Zhu, Zhihong Tian, and Chao Zhang. StateFuzz: System Call-
Based State-Aware linux driver fuzzing. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, 2022.

[45] Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Daniel
Arp, and Konrad Rieck. Pulsar: Stateful black-box fuzzing of pro-
prietary network protocols. 2015.

[46] Junqiang Li, Senyi Li, Gang Sun, Ting Chen, and Hongfang Yu.
Snpsfuzzer: A fast greybox fuzzer for stateful network protocols using
snapshots. IEEE Transactions on Information Forensics and Security,
2022.

[47] Dongge Liu, Van-Thuan Pham, G. Ernst, Toby C. Murray, and
Benjamin I. P. Rubinstein. State selection algorithms and their
impact on the performance of stateful network protocol fuzzing. 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER).

[48] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang,
Ting Chen, Abhik Roychoudhury, and Jiaguang Sun. Bleem: packet
sequence oriented fuzzing for protocol implementations. In USENIX
Security ’23, SEC ’23.

[49] Matheus E. Garbelini, Vaibhav Bedi, Sudipta Chattopadhyay, Sumei
Sun, and Ernest Kurniawan. BrakTooth: Causing havoc on bluetooth
link manager via directed fuzzing. In 31st USENIX Security Sym-
posium (USENIX Security 22), Boston, MA, August 2022. USENIX
Association.

[50] Haram Park, Carlos Nkuba Kayembe, Seunghoon Woo, and Heejo
Lee. L2fuzz: Discovering bluetooth l2cap vulnerabilities using
stateful fuzz testing. 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2022.

[51] Fabian Bäumer, Marcus Brinkmann, Nurullah Erinola, Sven Hebrok,
Nico Heitmann, Felix Lange, Marcel Maehren, Robert Merget, Niklas
Niere, Maximilian Radoy, et al. Tls-attacker: A dynamic framework
for analyzing tls implementations. Proceedings of Cybersecurity
Artifacts Competition and Impact Award (ACSAC’24), 2024.

[52] Endadul Hoque, Omar Chowdhury, Sze Yiu Chau, Cristina Nita-
Rotaru, and Ninghui Li. Analyzing operational behavior of stateful
protocol implementations for detecting semantic bugs. In 2017
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN).

https://mentor.ieee.org/802.11/dcn/19/11-19-2154-02-000m-sae-anti-clogging-token.docx
https://mentor.ieee.org/802.11/dcn/19/11-19-2154-02-000m-sae-anti-clogging-token.docx
https://w1.fi/security/2024-2/sae-h2h-and-incomplete-downgrade-protection-for-group-negotiation.txt
https://w1.fi/security/2024-2/sae-h2h-and-incomplete-downgrade-protection-for-group-negotiation.txt
https://w1.fi/cgit/hostap/commit/?id=90a3b4a91a5dff29b8e8431983aacfc7aad52381
https://w1.fi/cgit/hostap/commit/?id=90a3b4a91a5dff29b8e8431983aacfc7aad52381
https://nvd.nist.gov/vuln/detail/CVE-2025-20664
https://nvd.nist.gov/vuln/detail/CVE-2025-20664

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents a new fuzzing approach, SAECRED,
to evaluate black-box implementations for flaws in Wi-
Fi packet parsing. SAECRED combines a state-exploration
approach with a packet grammar-based mutation approach.
The paper reports vulnerabilities from many products.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction
• Other

A.3. Reasons for Acceptance

1) SAECRED appears to be generalizable for testing sim-
ilar stateful wireless protocols with complex packet
structures, making it a significant contribution to pro-
tocol testing methodologies.

2) The paper presents a well-designed evaluation frame-
work, including ablation experiments, to demonstrate
the effectiveness of its mutations, inter-field depen-
dency representation, and state-aware methodology.

A.4. Noteworthy Concerns

1) The core methodologies (state-aware fuzzing, context-
sensitive grammars, Iterative Deepening Search) are not
new to the community. The novelty primarily lies in the
application rather than a foundational advancement in
security research.

	Introduction
	Background
	SAE Handshake
	SAE Hash-To-Element

	Problem, Threat Model, and Challenges
	Design Overview of Saecred
	Realization of Saecred
	Saecred's Fuzzing Algorithm
	Saecred's State-Aware Input Generator
	Saecred's Test Oracle
	Saecred's Driver

	Evaluation
	Research Questions
	Baselines
	Ablation Study

	Findings
	Semantic constraint violation (RQ2)
	Structural violation (RQ2)

	Saecred's multifaceted approach
	Baseline and ablation comparison (RQ3)
	Coverage analysis (RQ4)
	Performance

	Attacks
	Downgrade attack
	DoS attack
	Responsible disclosure

	Related Work
	Discussion
	Conclusion
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

