
Netfuzzlib: Adding First-Class Fuzzing Support
to Network Protocol Implementations

Jeroen Robben[0000−0001−7566−1194] and Mathy Vanhoef[0000−0002−8971−9470]

DistriNet, KU Leuven

Abstract. This paper introduces Netfuzzlib, a framework that em-
ulates network input and output in user space, allowing more efficient
fuzz testing and symbolic execution of Linux network programs. We first
systemize common requirements and caveats for efficient fuzzing and
symbolic execution of socket-based network software. Building on top
of the collected requirements, we design and implement a framework
that seamlessly integrates with state-of-the-art fuzzing tools, as well as
symbolic execution engines, and requires no knowledge of the program’s
source code. Moreover, Netfuzzlib enables a range of speed optimizations,
where in our evaluations it improved fuzzing speed by a factor ranging
from roughly 10 to 600. By using this framework it becomes significantly
easier to fuzz and symbolically analyze Linux network programs.

Keywords: Network security · Fuzzing · Dynamic testing.

1 Introduction

Fuzzing is a popular dynamic testing technique that has gained significant trac-
tion due to its effectiveness in uncovering software bugs and vulnerabilities. A
particularly interesting fuzzing target is network programs, since they process
input received over a remote connection, making them a common target for ad-
versaries. Recent research has introduced a plethora of approaches for generating
fuzz test cases for network software, and while doing so revealed various types
of errors, ranging from common issues like buffer overflows to logic bugs such as
illegal protocol state transitions [16,52,29].

Although past research has made strong progress on how to fuzz network
programs, we observed that fuzzing over network connections is still slow and
inefficient in practice. Using symbolic execution to test network programs is
an equally challenging task: even state-of-the-art symbolic execution engines
cannot, by default, handle network-related kernel interactions [10]. The current
ad hoc approach to circumvent these problems is to write custom test harnesses
that test specific components of the program in isolation. However, this has
several disadvantages: it requires access to the source code of the System Under
Test (SUT), might not cover certain code paths and thus miss bugs, and places
a substantial workload on the tester in terms of engineering effort.

In this paper, we design, implement, and evaluate a framework called Net-
fuzzlib that seamlessly integrates into state-of-the-art fuzzers and symbolic exe-
cution engines, with as goal to more easily and efficiently test network programs.



2 Jeroen Robben and Mathy Vanhoef

To accomplish this, we first systemize common requirements and caveats when
testing or fuzzing network software. Building on top of the collected require-
ments, we then design a framework for Linux network programs that emulates
all network-related kernel interactions in user space with as goal to simultane-
ously make fuzzing easier and more efficient.

We improve fuzzing speed through several optimizations. First, by synchro-
nizing network I/O with the fuzzer, we eliminate the need for delays, timeouts,
and circumvent rate-limiting and dropped packets. Second, our framework allows
one to easily replace socket I/O with a more efficient Inter-Process Communi-
cation (IPC) mechanism, such as shared memory. Third, Netfuzzlib allows the
System Under Test (SUT) to notify or transfer execution from the SUT to the
fuzzer on important network I/O-related events. Finally, we use the framework
to provide a liveness heuristic, allowing the fuzzed program to automatically self-
terminate when all fuzz input data has been processed, avoiding costly timeouts
or delays that are used by existing network-based fuzzers.

We evaluate our framework on a set of network applications. This demon-
strates an increased performance compared to other state-of-the-art fuzzers. Ad-
ditionally, our evaluations illustrate the ability to more seamlessly symbolically
analyse network services. All combined, this led to the discovery of three new
vulnerabilities, which were each assigned a CVE identifier.

To summarize, our main contributions are:

– We systemize the requirements that fuzzing and symbolic execution tools
must fulfill in order to seamlessly and efficiently support network software
(Section 3).

– We propose and implement a framework to facilitate the fuzzing of Linux
network programs (Section 4 and 5).

– We evaluate our framework with state-of-the-art fuzzing and symbolic execu-
tion tools, resulting in the discovery of three new vulnerabilities (Section 6).

– We publicly release our framework as well as documentation and examples.

Finally, Section 2 provides a background on fuzzing network software, and we
compare to related work in Section 7 and conclude in Section 8.

2 Background: fuzzing network software

2.1 Modern fuzzing approaches

Fuzzing renaissance Fuzzing is an umbrella term for dynamic testing methods
where invalid or unexpected inputs are repeatedly evaluated on the System Un-
der Test (SUT) to find an input that triggers a bug. In the last decade, we
have seen a revival in fuzzing interest and effectiveness, initiated by the ad-
vent of feedback driven grey-box fuzzing [50,46] and advancements in white-box
fuzzing with constraint solvers [13,22]. There is an increasing trend to integrate
fuzzing into the continuous development process of software systems, which has
proven to be effective in finding bugs and improving programs’ robustness. For



Netfuzzlib 3

instance, Google found over 6,000 security-related bugs in its Chrome browser
using coverage-guided fuzzing [2] and Microsoft announced that during the de-
velopment of Windows 7, roughly 33% of all bugs identified were uncovered
through the use of symbolic execution [22].

Applying fuzzing Unit-level, harness-based fuzzing is often regarded as the most
effective and generic way to apply fuzzing [17]. The tester manually writes one
or more test harness(es), which set-up the testing environment, invoke some
target function with fuzz input and reset the program’s state for every fuzz test.
This approach allows the tester to pinpoint the entrypoint of the code to be
fuzzed, allowing to test parts of the program in isolation which can otherwise be
challenging to cover thoroughly.

Another advantage is that unit-level test harnesses can often be implemented
to support in-process or persistent mode fuzzing [3]. Here, the same process
is reused for various fuzz inputs, enabling a lightweight reset of the program
state for processing subsequent inputs without the requirement of starting a
new process, significantly enhancing fuzzing-throughput.

Network protocols often require an exchange of multiple messages in order to
fulfill the intended operation, usually leading to implementations which main-
tain state over some session. While unit-level fuzzing is also effective to find bugs
in network protocol implementations, this approach generally focuses on testing
the handling of a single message within a particular state of the program. This
forces the tester to identify and make assumptions on which states are glob-
ally reachable, and the requirements that will be met when executing certain
parts of the code. Moreover, harness-based fuzzing typically requires an under-
standing of (and access to) the program’s source code. It demands additional
engineering effort and can be complex to implement correctly, especially due to
the intertwining of I/O handling logic within other code. There is also a risk of
missing bugs if the implemented fuzzing harnesses do not adequately cover all
the program’s code and states. Finally, some types of vulnerabilities for stateful
systems, such as illegal state transitions, can not be detected by fuzzing each
state individually.

2.2 Fuzzing of stateful systems

Recent research in stateful fuzzing has shown that fuzz testing stateful systems as
a whole allows to uncover new bugs and vulnerabilities, by integrating awareness
of the interactions/transitions between several program states into the design of
the fuzzer. A categorization on stateful fuzzing techniques is available in the
surveys by Daniele et al. and Zhang et al. [16,52].

The first end-to-end fuzzers for stateful systems used a generative black-box
approach [5,21]. That is, these fuzzers did not use any form of feedback, but
only used a model of the implemented protocol, e.g., in the form of a gram-
mar or sample traces of valid messages, in order to generate meaningful test
cases. In contrast, more modern feedback-guided state-aware fuzzers make use



4 Jeroen Robben and Mathy Vanhoef

of heuristics to track state transitions, for example, by extracting the seman-
tics of received network messages [37] or by inspecting the internal memory at
certain I/O related events, such as when sending or receiving data [34,31,9,8].
More concretely, three notable types of state-guided network-based fuzzers are:

– In stateful coverage-guided fuzzing (SCGF), the combination of AFL-style
edge coverage and state feedback is used in order to guide the mutation of
a test corpus [37,9,34,49,25].

– Protocol state fuzzing uses active automata learning to fuzz the order of pro-
tocol messages to detect deviations from the protocol specification [42,15,20].

– PISE and MACE use symbolic execution and automata learning to infer
the state machine and message formats of a network protocol, and to find
possible security vulnerabilities such as memory corruption errors [30,14].

2.3 Fuzzing over network I/O

Fuzzing programs over network I/O poses some unique requirements and caveats
compared to testing programs which process input over some other channel, such
as reading a file or via command-line arguments. In addition, grey-box feedback
methods for tracking state changes require new kinds of interactions with the
SUT during the processing of a test case, as was explained in Section 2.2. To
provide a better understanding of these challenges, we first review the most
common API used for a program to perform network I/O.

Sockets On most general purpose operating systems such as Linux and Mi-
crosoft Windows, the kernel requires user space programs to do network I/O
using an interface based on the Berkeley sockets API [40,27,33]. Sockets are an
abstraction provided by the kernel meant to depict a communication endpoint.
Apart from Internet connections, sockets are also used for other types of inter-
process communication, e.g, UNIX or Netlink sockets. All socket state is held in
the kernel and programs only make use of a handle to refer to a socket. Follow-
ing common Unix-philosophy, on Linux, socket instances are referred to in user
space using file descriptors. The Linux IP sockets implementation closely follows
the POSIX specification [24]. Common C standard library implementations for
Linux, such as glibc, aim to implement the C POSIX specification and provide a
set of wrapper functions which invoke the correct syscall(s) for interacting with
sockets.

3 Requirements for end-to-end network fuzzing

In this section, we identify, systemize, and discuss specific requirements for ap-
plying recent fuzzing techniques to network programs and how existing fuzzers
try to meet these requirements. As we will explain, some of the following re-
quirements only apply to certain fuzzing techniques, such as symbolic execution.



Netfuzzlib 5

3.1 Requirement 1: Determinism

Feedback-guided fuzzing systems require some sense of determinism on the feed-
back received from the SUT on the fuzzing input to ensure that each test is
consistent and not influenced by earlier inputs. For example, active automata
learning algorithms such as L* and TTT, expect the same message type to be
returned for the same trace of message types that were sent as input [7]. If this
requirement is not met, e.g., due to the influence from a previous fuzzing cycle
or an occasionally dropped packet, the learned state model could be erroneous.

Existing approaches The required degree of determinism in stateful fuzzing varies
widely and can refer to both external observations as well as internal processes of
the target depending on the used feedback method(s). Some fuzzing techniques
only require a new protocol session to be started, e.g, by closing the underlying
TCP tunnel and initiating a new connection [42]. Fuzzers that require a more
profound state reset, e.g., coverage-guided fuzzers, usually restart the SUT from
its main entrypoint for every test case. Recent research proposes to use snapshots
to revert the target state. [43,6,28,25,4,48]. Section 3.5 further elaborates on
existing optimizations for resetting state and their impact on fuzzing speed.

3.2 Requirement 2: Data readiness detection

Classic network fuzzers are agnostic on the exact moment when the program is
ready to receive network data. For TCP, the fuzzer typically uses a busy loop to
try to connect to the SUT [36,37,34]. If the target is fuzzed over a connectionless
network layer, such as when using UDP or raw IP packets, existing fuzzers
cannot distinguish between the kernel dropping a packet because no socket was
yet configured to receive the message, or because the tested program has received
the packet but not (yet) transmitted a reply.

Existing approaches Most network fuzzers ensure that the SUT has passed the
initialization step and is ready to receive messages by introducing a fixed delay
before sending the first packet. Fine-tuning the duration of this delay is hard and
often done in an ad-hoc fashion. If the delay is set too long, time is lost for the
duration between the SUT being ready to receive input and the fuzzer sending
a message. If the delay is too short, packets might be dropped [36,37,34,15]. Re-
cent work has proposed methods to make network I/O synchronous for effective
fuzzing, i.e., by notifying the fuzzer when the SUT is ready to receive or send
network data [43,6,28,39].

3.3 Requirement 3: Liveness detection

When fuzzing a specific function in isolation, control of execution typically re-
turns to the caller once the function has finished processing the test case. On
the contrary, network services usually do not terminate after processing input,
but wait indefinitely for new incoming requests. After transmitting a test case,



6 Jeroen Robben and Mathy Vanhoef

the fuzzer cannot differentiate between the SUT still processing the submitted
message(s), being stuck in an infinite loop due to a bug, or having processed the
submitted data without sending a reply. For state-aware fuzzing, a premature
reset can cause the failure to detect new states, for example, due to the tested
program not having enough time to send a reply [20,15].

Existing approaches In some protocols, the SUT explicitly terminates the ses-
sion by sending a protocol-specific response message or by closing the underlying
communication channel, e.g., a TCP tunnel. Most fuzzers consider the target to
have completed a test case after a fixed delay has elapsed following the transmis-
sion of the final network message [36,37,20]. The processing time required by the
SUT can vary widely depending on the specific fuzz input. Messages covering
more code take longer to process and are likelier to exhibit interesting behavior.
Therefore, the delay should be set sufficiently high to allow the target to fully
process these test cases. Conversely, malformed data is often rejected early in
the handling process, as is likely the case with most fuzzed messages. Therefore,
a long delay can result in considerable idle time for the majority of fuzz inputs.

3.4 Requirement 4: Transfer of execution on I/O events

Some network-based grey-box fuzzers interact with the SUT upon certain I/O-
related events, such as when receiving or sending a network message. For in-
stance, StateAFL tracks the iterations of request/reply exchanges by hooking
into send() and receive() calls. It utilizes the moment the SUT attempts to re-
ceive a packet to take snapshots of memory associated with a protocol session
in order to track state changes [34]. As another example, NSFuzz adds compile-
time instrumentation to raise a SIGSTOP signal upon entry into the network
event loop, thereby pausing the target’s process. This pause is used to notify the
fuzzer that the SUT is ready to receive a new message and to process possible
changes of tracked state variables [39]. Lastly, snapshot-based fuzzers typically
use the moment when the SUT attempts to receive a message to create a snap-
shot [43,6,28].

Existing approaches Programs typically perform network I/O using standard li-
brary functions, such as poll(), and recv(), which in turn invoke the corresponding
kernel syscall(s). Various methods are employed to execute fuzzer-controlled code
when calling network I/O-related methods. StateAFL and NSFuzz add instru-
mentation during compile-time [34,39]. Nyx-net uses LD_PRELOAD to have
calls to socket I/O-related functions linked to their runtime library instead of the
normal standard library implementation [43]. Additionally, some fuzzers insert
hooks at the system call level: SnapFuzz performs binary rewriting of syscall in-
vocations in the target and its dependencies during runtime, while FitM patches
QEMU’s syscall translation layer [6,28].



Netfuzzlib 7

3.5 Requirement 5: high fuzzing throughput

The input space that fuzzers sample test cases from is vast. A single network
packet with a size of 100 bytes already encompasses more than 10240 combi-
nations. In addition to finding smarter methods for generating fuzz inputs, an
obvious strategy to uncover more bugs is to conduct more fuzz cycles. Beyond
throwing more compute power at the problem, one can increase the number of
fuzzing cycles by reducing the amount of time spent on executing each test case.
By studying existing network-based fuzzers, we identified a set of key causes that
contribute to low fuzzing throughput in state-aware and network fuzzers:

Expensive state reset and work repetition As was explained in Section 3.1,
some form of state reset of the SUT needs to be perfomed for each fuzzing cycle.
In the case where the SUT is completely restarted, a new process must be created,
and the initialization step has to be repeated for every test case. Furthermore,
when targeting a deeper state repeatedly, the same set of prefix messages must
be exchanged to bring the SUT to the desired state. This work repetition means
that the portion of time spent on computations dependent on the fuzz input
might be limited compared to the total time used for each fuzzing cycle. Finally,
when doing a reset through a complete restart, termination is usually handled
by sending a termination signal such as a SIGTERM. Sending and handling such
termination signals is slow, which further delays the fuzzing cycle.

Existing approaches AFL introduced the use of a forkserver for fuzzing. In this
approach, instrumentation is added to suspend and create a clone of the target
process just before its main entry point for each fuzz case. This eliminates the
need to repeat the execve() call, linking, and libc initialization steps, but still
requires the creation of a new (child) process for each test input [50].

Recent work uses various snapshot mechanisms to revert the SUT’s state to a
prior execution point, either at the process level or at the system level. The goal
of this is to replace work repetition with a presumably less expensive checkpoint
and restore mechanism, such as by making a snapshot when having reached some
deeper state. SnapFuzz uses an AFL-style deferred forkserver placed at the “latest
safe point”, e.g., just before creating the first child thread or receiving a packet.
FitM and SNPSFuzzer use CRIU user space snapshots [28,25]. Xu et. al. propose
to add process-level snapshot support to the OS kernel for efficient fuzzing [48].
Nyx-net and Snapchange provide a lightweight KVM-based snapshot and restore
mechanism, both utilizing copy-on-write [43,4].

Delays Another source of time loss in each fuzz cycle is due to the use of delays,
either introduced by the fuzzer or by the application developer. Sections 3.2 and
3.3 explain the use of delays to wait for the SUT to become ready to receive
input, or to give the target enough time to process a test case before performing
a reset. As was already mentioned in Snapchange, for some targets, the fuzzing
throughput is also reduced due to developer-added delays [4], for example, by
adding sleep intervals while busy polling for new data.



8 Jeroen Robben and Mathy Vanhoef

Existing approaches Recent research proposed methods to make network I/O
synchronous by adding a mechanism to notify the fuzzer that the SUT is ready
to receive data, eliminating the need for most fuzzer-added delays [43,28,39]. In
addition, Snapchange uses binary rewriting during runtime to remove developer-
added delays [6]. Unfortunately, the implementation of these approaches is spe-
cific to each fuzzer, and currently requires substantial work to also incorporate
in other network-based fuzzers.

Slow I/O When transferring data using network sockets, the message payload
is copied from user space to kernel space and vice versa for every message sent.
Compared to other IPC methods, IP sockets are relatively slow [23]. Further-
more, to exchange multiple packets, various context switches are needed between
the processes of the fuzzer, the SUT, and the kernel, which slows down fuzzing.

Existing approaches A common approach to speedup network I/O is to add hooks
to replace IP with UNIX sockets [6,44,51]. Linux uses an efficient implementation
based on remapping memory pages for transferring data over UNIX sockets,
avoiding the need for byte-per-byte copying of messages. The semantics and
operations of UNIX sockets differ from those of IP sockets. For instance, the
auxiliary data returned by recvmsg() or the options that can be configured using
setsockopt(), requiring the inserted hooks to translate between UNIX and IP
sockets semantics in order to test most real-world network programs.

3.6 Requirement 6: handling kernel interaction

The last requirement we identified is specific to symbolic execution. Most sym-
bolic execution engines can only trace symbolic values in user space, which poses
some challenges since operations on network sockets invoke the kernel [10].

First, the symbolic execution engine cannot deduce the relationship between
the passed (possibly symbolic) input arguments and the returned data. For ex-
ample, on Linux, send() returns the amount of bytes that were transmitted or
-1 in case of an error. When attempting to send data with a (bounded) symbolic
length, an appropriate value must be returned. Some symbolic execution engines
handle external calls by executing the intractable code with concrete arguments,
and consequently limiting the concretized symbolic variables to a single value,
which might lead to unexplored branches or missed bugs.

Second, when handling exernal calls by concretizing symbolic values, the
symbolic execution engine will not be able to track side effects. Branching sym-
bolic executors, such as KLEE, do not restart the SUT when finishing a program
path, but continue the exploration process from a previous branch point [13].
For example, if path A closes a socket which is shared with path B, path B will
encounter an error when sending data on the (now closed) socket, making the
analysis unsound.

Finally, incoming network data must be marked as symbolic using the API
provided by the symbolic execution engine, ideally without having to modify the
SUT’s source code.



Netfuzzlib 9

Existing approaches The usual approach to apply symbolic execution to network
programs is to patch the program’s source code, remove socket-related calls and
manually declare the correct variables and buffers as symbolic. Some symbolic
execution engines such as KLEE and Angr ship with an environment model for
certain OS calls, but these do not support network I/O [13,45]. To the best of
our knowledge, no sound environment models for Linux networking exist.

4 Motivation

In this section, we elaborate on the shortcomings of current network-based
fuzzers from the perspective of both testers/developers and researchers. This
provides a direct motivation for the creation of our framework, namely, to better
facilitate the fuzzing and testing of network-based software.

4.1 Tester perspective

Fuzzing has proven to be an effective and useful bug detection method, and fuzz
testing a program for the first time is likely to reveal bugs, even with relatively
few computing resources [12]. In order to spread its adoption and integrate fuzz
testing into the day-to-day development process, ideally, application developers
should not require knowledge of fuzzer internals nor have to modify the source
code of the tested program. Although effective end-to-end fuzzers for certain
targets, such as command-line programs exist, automated fuzzing over other
input methods remains an open problem [11]. Additionally, fuzzer usability is
still not sufficient [11,38].

Setting up and configuring recent network fuzzers often requires the tester
to have in-depth knowledge of the used fuzzing system. Various methods for
speeding up fuzzing have been proposed, but they often lack direct portability
across different fuzzers or are complex to use, such as when requiring a cus-
tom hypervisor for snapshot fuzzing. Applying symbolic execution to network
software almost always requires patching source code. Consequently, in practice,
testers of network programs often default to using simpler, blind, black-box, or
grammar-based fuzzers due to their ease of use.

4.2 Fuzzing researcher perspective

Network protocol fuzzing is an active research topic, with numerous publications
and advancements in recent years [16,52]. To evaluate a new idea for improving
a fuzzer building block, such as a new mutation algorithm or state tracking
method, researchers typically implement a prototype, and then compare certain
metrics such as code coverage or bugs found over a given time frame with other
fuzzers [32,35]. To soundly compare new fuzzing techniques with existing fuzzers,
it is important that SUT-specific optimizations, such as (not) avoiding delays
when doing network I/O, are identical between the compared fuzzers [41,19].
Apart from this, the methods used to transfer execution control from the SUT



10 Jeroen Robben and Mathy Vanhoef

to the fuzzer on I/O events are technically complex and often reimplemented,
possibly in slightly different ways, which again can make it difficult to soundly
isolate and evaluate specific fuzzing improvements (see Section 3.4). These issues
create the need for a solution that can support/optimize the fuzzing of network
programs which can seamlessly integrate with different fuzzers, so that different
fuzzers can more easily be compared on equal footing.

All combined, to better support the use of, and research into, network-based
fuzzers, we provide a framework for fuzzing of Linux network software in user
space. The framework combines existing methods and adds new ones to increase
fuzzing throughput, allows symbolic execution without altering source code, and
provides an API for transferring control to the fuzzer on network I/O.

5 Overview of Netfuzzlib

In this section, we first present the approach of Netfuzzlib. We then elaborate
on its design, covering the fuzzing module interface, selection of kernel APIs and
how we ensured consistency with the host’s system configuration, and introduce
a new liveness heuristic. Finally, we describe the implementation and usage of
Netfuzzlib in practice.

5.1 Approach

The Netfuzzlib framework consists of a main library, which implements a set of
networking-related functions and syscall wrappers in the GNU C library entirely
in user space. The main library is accompanied with a fuzzer-specific fuzzing
module, which itself is another library that, just like the main library, runs in
the same process(es) as the SUT and defines the outcome of certain I/O events.
When a new IP packet is to be received or sent, or the target attempts to open
a new TCP connection, the corresponding handler in the module is called. The
fuzzing module then performs fuzzer specific tasks, such as returning the next
message in a test case or inspecting the SUT’s internal memory. To communicate
with the fuzzer, any IPC-mechanism of choice, e.g., shared memory, can be used.

5.2 Fuzzing module interface

The fuzzing module is a dynamic or static library that exports the handler
functions defined in <netfuzzlib/module_api.h>. The functions that are defined
herein, which the user must provide a (stub) implementation for, are:

– nfl_initialize() This function is automatically called during initialization
of the framework, just before the SUT’s main() entrypoint.

– nfl_tcp_connect(): Called when the SUT attempts to initiate a new out-
bound TCP connection, i.e., when invoking connect() on a TCP connect.

– nfl_tcp_accept(): Used when the framework requires knowledge of a pend-
ing inbound TCP connection, for example, when the SUT calls accept() or
poll() on a TCP socket in listening mode.



Netfuzzlib 11

– nfl_send(): Invoked when the SUT attempts to send data, e.g, using sendmsg().
– nfl_receive(): Called when the framework needs information about the

next packet to be received, e.g., when using poll() or recv(). Messages received
from the fuzzing module are added to a queue until consumed by the SUT.

– nfl_end(): Invoked when the liveness heuristic indicates that all received
packets have been processed, see section 5.5.

5.3 Included kernel APIs

Methodology To decide which kernel functionalities to include in the main
library, a list of Linux kernel APIs related to networking was made, using the
Linux man-pages project and the latest POSIX specification [24,27]. Then, the
usage of these APIs in real-world network programs was examined. Particular at-
tention was made to allow sound symbolic execution, as discussed in Section 3.6.

POSIX sockets The socket interface provided on Linux closely follows the
POSIX standard and contains well known functions operating on sockets, such
as bind() and recv() [24]. Common C standard library implementations for Linux,
aim to implement the C POSIX API. Other programming languages often pro-
vide runtime libraries which have strong similarities with this interface, e.g., the
Python socket module, the classes under java.net.* and the Rust std::net mod-
ule, which are often in their turn wrappers for the functions provided by the C
standard library. All functions defined in <sys/socket.h> were included.

Other operations on file descriptors Following common Unix-philosophy, on
Linux, socket instances are referred to in user space using file descriptors. Linux
provides a unified set of operations to interact with file descriptors, regardless
of the associated I/O resource, e.g, (e)poll(), fcntl() and close(). All operations
that apply to IP socket file descriptors were included in the model.

Rtnetlink Netlink is a socket-based API used for transferring information be-
tween various kernel interfaces and user space processes. Rtnetlink, is an interface
that is accessible through Netlink and is used to retrieve or change networking
related configurations [26]. Rtnetlink is used in the implementation of various
library functions, such as the getifaddrs() function. The same consideration as
with Internet sockets for symbolic execution apply, see section 3.6. All getters of
Rtnetlink were included in the framework.

5.4 Sound co-operation with non-emulated environment

The SUT’s behavior should remain unchanged regardless of Netfuzzlib’s use.
This section outlines approaches employed to ensure the framework’s soundness.
First, the handling of operations on file descriptors not owned by the framework
is discussed. Then, the approach to ensure consistent behavior with the host’s
network configuration is covered.



12 Jeroen Robben and Mathy Vanhoef

Forwarding non-modelled file descriptors Many operations used on IP
and Rtnetlink sockets are also applicable to other sorts of I/O resources (e.g., an
ordinary file) represented by a file descriptor. For example, close() terminates any
type of file descriptor and poll() can listen for events on multiple file descriptors
at once.

The framework maintains a separate file descriptor table which acts as a mask
over the one from the kernel. When the SUT performs an action on a file de-
scriptor that is not managed by the framework, the operation is forwarded to the
normal C standard library. For functions operating on multiple file descriptors,
such as select() and (e)poll(), the given set of file descriptors is split. The kernel
implementation is invoked in non-blocking mode for the file descriptors not man-
aged by the framework. Next, the outcome from the kernel is merged with that
from the framework and returned to the caller. To prevent the framework from
using the same (integer) file descriptor values as the kernel, we preemptively
reserve file descriptors used by the framework by creating a dummy file handle
which points to /dev/null.

Consistent network environment As explained in Section 5.3, the framework
implements certain functionality which requires knowledge of the underlying
network interfaces and environment. For example, the SIOCGIFHWADDR ioctl
returns the MAC address of a given network interface. To remain consistent with
the host system, the framework makes a copy of the host system’s configuration,
i.e., present network interfaces and routing table, during startup. Optionally, the
fuzzing module can alter this behaviour or add new network interfaces using an
API provided by the main library, defined in <netfuzzlib/api.h>.

5.5 Liveness heuristic

Netfuzzlib provides an optional liveness heuristic intended to end the fuzzing
cycle if the target is ready with processing a test case (recall Section 3.3). If the
incoming data buffer is empty, the fuzzing module provides no new messages and
the program performs a call that blocks on the availability of incoming network
data or checks a predetermined number of times for new network data (e.g.,
with poll() or recv()), then the SUT is considered to have completely consumed
a test case. The corresponding handler in the fuzzing module is invoked, which
can then perform a fuzzer-specific action to prepare the target for the next test
input or indicate that the SUT should terminate.

5.6 Netfuzzlib usage

The functions implemented in the framework can be used as a drop-in replace-
ment for the ones provided by the system’s C standard library, usually glibc. The
main library can either be statically linked to the target, or the dynamic loader
can be instructed to use the relevant functions in the main library instead of the
C standard library during the runtime linking process. For GNU/Linux-based



Netfuzzlib 13

systems, this can be done by setting the LD_PRELOAD environment variable
to the framework’s main library path. In theory, the framework could also be
activated by placing hooks at the syscall level, for example, to test malware that
directly invokes syscalls as an obfuscation technique.

5.7 Implementation

To obtain compatibility with common symbolic execution engines, Netfuzzlib
was implemented in C, with the standard library as its only dependency. The
main library was implemented in 15511 LoC, including 10949 LoC for unit tests.

6 Evaluation and Discussion

In this section, we first explain our approach to checking the soundness of Net-
fuzzlib. We then demonstrate and discuss the practicality and benefits of the
framework using three experiments. In the first one, we show the speed improve-
ments when fuzzing over native socket I/O versus Netfuzzlib for an existing
network fuzzer, AFLNet. In the second experiment, we explain how we used
the framework to add network fuzzing support to AFL++, without altering its
source code. In the third, we use KLEE to symbolically execute a set of network
servers without creating a test harness.

6.1 Checking soundness

General approach Netfuzzlib essentially re-implements a set of interfaces pro-
vided by the Linux kernel in user space. In order to do a sound analysis, a
network program should behave the same regardless the use of Netfuzzlib. The
standards implemented by the framework (recall Section 5.3) are only available
in lengthy prose specifications, and are spread or duplicated through multiple
documents and authorities, e.g., POSIX, Linux man-pages, and RFCs. No com-
plete test-suite for the implemented APIs exists. To assure the soundness of our
framework, we therefore took an engineering approach. We first developed a suite
of unit tests while investigating the specifications of the APIs to implement, and
used these to test the Linux kernel (v6.1) and the Netfuzzlib framework. When
a specification was ambiguous or the kernel’s implementation did not exactly
follow the specification, we chose to mimick the kernel’s behaviour.

Second, to ensure the correct behaviour of the network programs used in
the following experiments with the framework, we replayed a prerecorded list
of packets of a valid protocol exchange while using Netfuzzlib, and manually
compared the responses to the ones received without the framework.

6.2 Experiment 1: Speeding up fuzzing

In this experiment, the fuzzing throughput is compared of an existing network
fuzzer, AFLNet, when used with or without the framework. AFLNet is a state-
aware coverage-guided fuzzer with support for fuzzing over UDP or TCP [37].



14 Jeroen Robben and Mathy Vanhoef

Table 1: Average time to reach one million executions.
AFLNet AFLNet+Netfuzzlib Speedup

Bftpd 37h 15m 5h 45m 23.5x
Dcmtk 6hr 52m 4h 34m 1.5x
Dnmasq 41h 58m 3h 56m 10.66x
LightFTP 31h 15m 3h 15m 9.58x
OpenSSH 14h 50m 37m 23.5x
OpenSSL 45h 1min 3h 54m 11.5x
TinyDTLS 140h 53m 14m 593.7x

Porting AFLNet to Netfuzzlib AFLNet only has support for fuzzing over net-
work I/O, hence we had to slightly alter the fuzzer’s source code to work with
Netfuzzlib. We created a new fuzzing module and changed AFLNet’s net_recv()
function, to transfer test case message(s) and response(s) between the fuzzer and
the fuzzing module using a shared memory region. We configured the fuzzing
module to immediately terminate the SUT when the liveness heuristic indicates
that all messages received by the SUT were processed, by invoking exit().

Note that in this design, the fuzzer transfers all messages and responses to
and from the shared memory region at once, respectively before the SUT is
started and after it is terminated. This eliminates the need for context switches
between the fuzzer and the SUT when receiving/sending consequent messages.

Experimental setup For our tests, we selected seven real-world network programs
that implement a protocol supported by AFLNet. All experiments experiment
were run on a laptop with an 8-core AMD 5850U CPU and 16GiB RAM, using
Ubuntu 20.04. All stated measurements are an average of four fuzz runs.

Results Table 1 provides an overview of the average time required to reach
one million executions, with or without the framework. We find that usage of
Netfuzzlib increases fuzzing throughput for every tested program, with a typical
speed increase of an order of magnitude. To show the soundness of the fuzzing
process, we include coverage plots in Appendix A. All coverage measurements
were conducted without the use of Netfuzzlib.

6.3 Experiment 2: Adding network fuzzing support

AFL++ is a continuation of the original AFL fuzzer, and aims to combine new
insights and recent research in coverage-guided fuzzing in a single fuzzer imple-
mentation [18].

Fuzzing module The fuzzing module for AFL++ reads a test case using the
fuzzer’s shared memory API, and presents it to the SUT as a single UDP packet
or in a TCP stream. The module is configurable via environment variables, for
example, to select the destination port.



Netfuzzlib 15

Results For this experiment, the same test subjects and configuration as in ex-
periment 1 was used. It was possible to fuzz all seven network programs without
creating a test harness. Edge coverage plots were included in Appendix A.

6.4 Experiment 3: Symbolic execution

In the third experiment, we use KLEE, a state-of-the-art symbolic execution en-
gine that can be used to detect a wide range of bugs such as memory corruption
errors and assertion errors or to generate a set of test inputs for every explored
program path [13]. KLEE ships with a module to simulate (symbolic) interac-
tions with the filesystem and standard I/O, but cannot (symbolically) handle
networking operations. In the first test, we examine whether it is possible to
use Netfuzzlib to detect a known vulnerability in Dnsmasq with KLEE, without
creating a test harness. Finally, we use symbolic execution to discover three new
vulnerabilities across two publicly available network servers.

Test setup In order to introduce symbolic network packets, we created a Netfuz-
zlib module which marks memory regions containing incoming network data as
symbolic using KLEE’s API (klee_make_symbolic()). KLEE operates on the
intermediate representation used in the LLVM compiler framework, hence both
Netfuzzlib’s main library and corresponding module were compiled to LLVM IR
and added using KLEE’s -link-llvm-lib option.

Dnsmasq CVE 2017-14492 and 2017-14493 are respectively a heap and stack-
based buffer overflow that were present in Dnsmasq up to version 2.77, and can
be triggered by a malformed ICMPv6/DHCPv6 message. While symbolically
executing Dnsmasq 2.76, KLEE reported the second vulnerability when intro-
ducing a symbolic packet with a size of at least 120 bytes within 5 minutes. We
were not able to detect the first vulnerability using KLEE within 12 hours.

New vulnerabilities Finally, we use KLEE to detect three vulnerabilities across
two publicly available network programs, with assigned CVE’s 2023-50432, 2023-
50433 and 2023-50434, demonstrating the utility of the framework for symbolic
execution. Two vulnerabilities are in an open-source DHCP server [1] and can be
abused to perform a Denial-of-Service attack: a NULL-pointer dereference and
a type confusion bug causing a failed memory allocation and subsequent crash.
A third vulnerability was found in an open-source DNS server for embedded
systems [47], where a stack-based buffer over-read can lead to the potential
disclosure of sensitive information.

7 Related work

Nyx-net [43]. Nyx-Net uses hypervisor-based fuzzing with incremental snap-
shots, combined with selective emulation of IP sockets. To reduce work repe-
tition, it uses snapshots with an efficient copy-on-write mechanism in order to



16 Jeroen Robben and Mathy Vanhoef

revert the SUT to a prior state. The system first creates a normal IP socket,
and emulates socket I/O when the first data is received, which can not be used
when fuzzing over multiple connections. In contrast, we emulate network APIs
entirely in user-space to improve usability and performance, and do not require
a hypervisor. Netfuzzlib could be used in combination with Nyx-Net to further
improve performance and to handle more complex scenarios.

SnapFuzz [6]. The SnapFuzz framework proposes a set of methods and opti-
mizations for increasing the efficiency of network fuzzers. It replaces IP sockets
with faster UNIX sockets, uses a forkserver placed at a later point in execution
to reduce work repetition, and uses an in-memory filesystem to enable a faster
state reset and increase file I/O throughput. SnapFuzz also adds a mechanism
to eliminate fuzzer-added delays by notifying the fuzzer when the SUT is ready
to receive data. Finally, it uses binary-rewriting to add various other optimiza-
tion, for example, to remove developer-added delays. The concepts introduced in
SnapFuzz are mainly orthogonal to our work, and could be used in combination
with Netfuzzlib to further increase fuzzer performance.

LibAFL [19]. LibAFL is a modular framework for building fuzzers, which archi-
tecturally decouples the building blocks which make up a fuzzer. The authors
identify that in current research, new fuzzing technologies are often implemented
by forking and altering an existing fuzzer (often AFL), making it difficult to build
upon or assess the combination of separate advancements in fuzzing. Netfuzzlib
could be used to add (efficient) network fuzzing support to LibAFL by imple-
menting a LibAFL Executor and corresponding Netfuzzlib fuzzing module.

8 Conclusion

This paper identified a set of requirements and caveats for end-to-end fuzzing of
network software and presented Netfuzzlib, a novel framework that removes the
main obstacles for end-to-end fuzzing over network I/O in Linux. The framework
provides a simple API to seamlessly facilitate the fuzzing and testing of network-
based programs and typically results in a fuzzing throughput increase of at least
10x. This speedup is accomplished by eliminating the need for I/O delays, using a
faster IPC mechanism to transfer network data, reducing the number of required
context switches, automatically terminating the target when finishing a test case
and various other improvements.

To enable the reproduction of our results, and encourage research into fuzzing
network programs, we make Netfuzzlib open source under the Apache 2.0 and
MIT license. It is available online at:

https://netfuzzlib.com

Acknowledgements

This research is partially funded by the Research Fund KU Leuven, and by the
Cybersecurity Research Programme Flanders.

https://netfuzzlib.com


Netfuzzlib 17

References

1. simple-dhcp-server. https://code.google.com/archive/p/
simple-dhcp-server/

2. ClusterFuzz (2023), https://google.github.io/clusterfuzz/, accessed: 19-11-
23

3. libFuzzer – a library for coverage-guided fuzz testing (2023), https://llvm.org/
docs/LibFuzzer.html, accessed: 17-11-23

4. Snapchange – lightweight fuzzing of a memory snapshot using kvm. (2023), https:
//github.com/awslabs/snapchange

5. Sulley (2023), https://github.com/OpenRCE/sulley
6. Andronidis, A., Cadar, C.: SnapFuzz: high-throughput fuzzing of network applica-

tions. In: International Symposium on Software Testing and Analysis. p. 340–351.
ISSTA 2022, ACM (2022), https://doi.org/10.1145/3533767.3534376

7. Angluin, D.: Learning regular sets from queries and counterexamples. Infor-
mation and Computation 75(2), 87–106 (1987), https://doi.org/10.1016/
0890-5401(87)90052-6

8. Aschermann, C., Schumilo, S., Abbasi, A., Holz, T.: IJON: Exploring deep state
spaces via fuzzing. In: IEEE Symposium on Security and Privacy (S&P). pp. 1597–
1612 (2020). https://doi.org/10.1109/SP40000.2020.00117

9. Ba, J., Böhme, M., Mirzamomen, Z., Roychoudhury, A.: Stateful greybox fuzzing.
In: USENIX Security 22. pp. 3255–3272. USENIX Association (2022), https://
www.usenix.org/conference/usenixsecurity22/presentation/ba

10. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3) (2018), https://doi.
org/10.1145/3182657

11. Boehme, M., Cadar, C., Roychoudhury, A.: Fuzzing: Challenges and reflections.
IEEE Software 38(3), 79–86 (2021). https://doi.org/10.1109/MS.2020.3016773

12. Böhme, M., Falk, B.: Fuzzing: on the exponential cost of vulnerability discovery.
In: ACM SIGSOFT Symposium on the Founda- tions of Software Engineering. p.
713–724. FSE 2020, ACM (2020), https://doi.org/10.1145/3368089.3409729

13. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Conference on
Operating Systems Design and Implementation. p. 209–224. OSDI’08, USENIX
Association (2008), https://dl.acm.org/doi/10.5555/1855741.1855756

14. Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song,
D.: MACE: Model-inference-Assisted concolic exploration for protocol
and vulnerability discovery. In: USENIX Security 11. USENIX Associa-
tion (2011), https://www.usenix.org/conference/usenix-security-11/
mace-model-inference-assisted-concolic-exploration-protocol-and

15. Daniel, L.A., Poll, E., de Ruiter, J.: Inferring OpenVPN state machines using pro-
tocol state fuzzing. In: 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). pp. 11–19 (2018). https://doi.org/10.1109/EuroSPW.
2018.00009

16. Daniele, C., Andarzian, S.B., Poll, E.: Fuzzers for stateful systems: Survey and
research directions (feb 2024). https://doi.org/10.1145/3648468

17. Ding, Z.Y., Le Goues, C.: An empirical study of OSS-Fuzz bugs. In: IEEE/ACM
International Conference on Mining Software Repositories (MSR). pp. 131–142.
IEEE (2021), https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.
00026

https://code.google.com/archive/p/simple-dhcp-server/
https://code.google.com/archive/p/simple-dhcp-server/
https://google.github.io/clusterfuzz/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/awslabs/snapchange
https://github.com/awslabs/snapchange
https://github.com/OpenRCE/sulley
https://doi.org/10.1145/3533767.3534376
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/SP40000.2020.00117
https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/3368089.3409729
https://dl.acm.org/doi/10.5555/1855741.1855756
https://www.usenix.org/conference/usenix-security-11/mace-model-inference-assisted-concolic-exploration-protocol-and
https://www.usenix.org/conference/usenix-security-11/mace-model-inference-assisted-concolic-exploration-protocol-and
https://doi.org/10.1109/EuroSPW.2018.00009
https://doi.org/10.1109/EuroSPW.2018.00009
https://doi.org/10.1109/EuroSPW.2018.00009
https://doi.org/10.1109/EuroSPW.2018.00009
https://doi.org/10.1145/3648468
https://doi.org/10.1145/3648468
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00026
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00026


18 Jeroen Robben and Mathy Vanhoef

18. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: AFL++: combining incremental
steps of fuzzing research. In: Proceedings of the 14th USENIX Conference on Offen-
sive Technologies. WOOT’20, USENIX Association (2020), https://www.usenix.
org/system/files/woot20-paper-fioraldi.pdf

19. Fioraldi, A., Maier, D.C., Zhang, D., Balzarotti, D.: Libafl: A framework to build
modular and reusable fuzzers. In: Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security. p. 1051–1065. CCS ’22, ACM
(2022), https://doi.org/10.1145/3548606.3560602

20. Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K.,
Somorovsky, J.: Analysis of DTLS implementations using protocol state
fuzzing. In: USENIX Security 20. pp. 2523–2540. USENIX Association (Aug
2020), https://www.usenix.org/conference/usenixsecurity20/presentation/
fiterau-brostean

21. Gascon, H., Wressnegger, C., Yamaguchi, F., Arp, D., Rieck, K.: Pulsar: State-
ful black-box fuzzing of proprietary network protocols. In: Thuraisingham, B.,
Wang, X., Yegneswaran, V. (eds.) Security and Privacy in Communication Net-
works. pp. 330–347. Springer International Publishing (2015), https://doi.org/
10.1007/978-3-319-28865-9_18

22. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: Whitebox fuzzing for security test-
ing. Queue 10(1), 20–27 (jan 2012), https://doi.org/10.1145/2090147.2094081

23. Goldsborough, P.: ipc-bench (2023), https://github.com/goldsborough/
ipc-bench

24. IEEE and The Open Group: The Open Group Base Specifications Issue 7 (2018)
25. Li, J., Li, S., Sun, G., Chen, T., Yu, H.: SNPSFuzzer: A fast greybox fuzzer for

stateful network protocols using snapshots. IEEE Transactions on Information
Forensics and Security 17, 2673–2687 (2022). https://doi.org/10.1109/TIFS.
2022.3192991

26. Linux Programmer’s Manual: rtnetlink(7) - Linux man page, 6.04 edn. (2023),
https://man7.org/linux/man-pages/man7/rtnetlink.7.html

27. Linux Programmer’s Manual: socket(7) - Linux man page, 6.04 edn. (2023), https:
//man7.org/linux/man-pages/man7/socket.7.html

28. Maier, D., Bittner, O., Munier, M., Beier, J.: FitM: Binary-only coverage-guided
fuzzing for stateful network protocols. In: Workshop on Binary Analysis Research
(BAR), 2022 (2022), https://dx.doi.org/10.14722/bar.2022.23008

29. Manès, V.J., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.:
The art, science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering 47(11), 2312–2331 (2021). https://doi.org/10.1109/TSE.
2019.2946563

30. Marcovich, R., Grumberg, O., Nakibly, G.: PISE: Protocol inference using symbolic
execution and automata learning. In: Workshop on Binary Analysis Research. BAR
2023 (2023), http://dx.doi.org/10.14722/bar.2023.23002

31. McMahon Stone, C., Thomas, S.L., Vanhoef, M., Henderson, J., Bailluet, N.,
Chothia, T.: The closer you look, the more you learn: A grey-box approach to pro-
tocol state machine learning (2022), https://doi.org/10.1145/3548606.3559365

32. Metzman, J., Szekeres, L., Simon, L., Sprabery, R., Arya, A.: Fuzzbench: an open
fuzzer benchmarking platform and service. In: ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. p. 1393–1403. ESEC/FSE 2021, ACM (2021), https://doi.org/10.
1145/3468264.3473932

33. Microsoft: Windows Sockets 2 (01 2021), https://learn.microsoft.com/en-us/
windows/win32/WinSock/windows-sockets-start-page-2, accessed: 2023-11-26

https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf
https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf
https://doi.org/10.1145/3548606.3560602
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1007/978-3-319-28865-9_18
https://doi.org/10.1007/978-3-319-28865-9_18
https://doi.org/10.1145/2090147.2094081
https://github.com/goldsborough/ipc-bench
https://github.com/goldsborough/ipc-bench
https://doi.org/10.1109/TIFS.2022.3192991
https://doi.org/10.1109/TIFS.2022.3192991
https://doi.org/10.1109/TIFS.2022.3192991
https://doi.org/10.1109/TIFS.2022.3192991
https://man7.org/linux/man-pages/man7/rtnetlink.7.html
https://man7.org/linux/man-pages/man7/socket.7.html
https://man7.org/linux/man-pages/man7/socket.7.html
https://dx.doi.org/10.14722/bar.2022.23008
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
http://dx.doi.org/10.14722/bar.2023.23002
https://doi.org/10.1145/3548606.3559365
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3468264.3473932
https://learn.microsoft.com/en-us/windows/win32/WinSock/windows-sockets-start-page-2
https://learn.microsoft.com/en-us/windows/win32/WinSock/windows-sockets-start-page-2


Netfuzzlib 19

34. Natella, R.: StateAFL: Greybox fuzzing for stateful network servers. Empirical
Softw. Engg. 27(7) (dec 2022), https://doi.org/10.1007/s10664-022-10233-3

35. Natella, R., Pham, V.T.: ProFuzzBench: a benchmark for stateful protocol fuzzing.
p. 662–665. ISSTA 2021, ACM (2021), https://doi.org/10.1145/3460319.
3469077

36. Pham, T.: AFLnwe (2020), https://github.com/thuanpv/aflnwe/commits/
master

37. Pham, V.T., Böhme, M., Roychoudhury, A.: AFLNET: A greybox fuzzer for net-
work protocols. In: IEEE International Conference on Software Testing, Valida-
tion and Verification (ICST). pp. 460–465 (2020). https://doi.org/10.1109/
ICST46399.2020.00062

38. Plöger, S., Meier, M., Smith, M.: A usability evaluation of afl and libfuzzer with
cs students. CHI ’23, ACM (2023), https://doi.org/10.1145/3544548.3581178

39. Qin, S., Hu, F., Ma, Z., Zhao, B., Yin, T., Zhang, C.: NSFuzz: Towards efficient
and state-aware network service fuzzing. ACM Trans. Softw. Eng. Methodol. 32(6)
(sep 2023), https://doi.org/10.1145/3580598

40. Quarterman, J.S., Silberschatz, A., Peterson, J.L.: 4.2BSD and 4.3BSD as examples
of the UNIX system. ACM Comput. Surv. 17(4), 379–418 (dec 1985), https:
//doi.org/10.1145/6041.6043

41. Rizzi, E.F., Elbaum, S., Dwyer, M.B.: On the techniques we create, the tools we
build, and their misalignments: A study of KLEE. In: IEEE/ACM International
Conference on Software Engineering. pp. 132–143. ICSE ’16 (2016). https://doi.
org/10.1145/2884781.2884835

42. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
USENIX Security 15. pp. 193–206. USENIX Association (Aug 2015), https:
//www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/de-ruiter

43. Schumilo, S., Aschermann, C., Jemmett, A., Abbasi, A., Holz, T.: Nyx-net: network
fuzzing with incremental snapshots. p. 166–180. EuroSys ’22, ACM (2022), https:
//doi.org/10.1145/3492321.3519591

44. Shoshitaishvili, Y.: preeny (2021), https://github.com/zardus/preeny
45. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,

Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SOK: (state of) the art
of war: Offensive techniques in binary analysis. In: IEEE Symposium on Security
and Privacy (S&P). pp. 138–157 (2016). https://doi.org/10.1109/SP.2016.17

46. Swiecki, R.: Honggfuzz (2023), https://github.com/google/honggfuzz
47. Tsarev, M.: emdns (2020), https://github.com/mtsarev/emdns
48. Xu, W., Kashyap, S., Min, C., Kim, T.: Designing new operating primitives to

improve fuzzing performance. p. 2313–2328. CCS ’17, ACM (2017), https://doi.
org/10.1145/3133956.3134046

49. Yu, Y., Chen, Z., Gan, S., Wang, X.: SGPFuzzer: A state-driven smart gray-
box protocol fuzzer for network protocol implementations. IEEE Access 8 (2020).
https://doi.org/10.1109/ACCESS.2020.3025037

50. Zalewski, M.: AFL (2021), https://github.com/google/AFL
51. Zeng, Y., Lin, M., Guo, S., Shen, Y., Cui, T., Wu, T., Zheng, Q., Wang, Q.:

Multifuzz: A coverage-based multiparty-protocol fuzzer for iot publish/subscribe
protocols. Sensors 20(18) (2020). https://doi.org/10.3390/s20185194

52. Zhang, Z., Zhang, H., Zhao, J., Yin, Y.: A survey on the development of net-
work protocol fuzzing techniques. Electronics 12(13) (2023). https://doi.org/
10.3390/electronics12132904

https://doi.org/10.1007/s10664-022-10233-3
https://doi.org/10.1145/3460319.3469077
https://doi.org/10.1145/3460319.3469077
https://github.com/thuanpv/aflnwe/commits/master
https://github.com/thuanpv/aflnwe/commits/master
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1145/3544548.3581178
https://doi.org/10.1145/3580598
https://doi.org/10.1145/6041.6043
https://doi.org/10.1145/6041.6043
https://doi.org/10.1145/2884781.2884835
https://doi.org/10.1145/2884781.2884835
https://doi.org/10.1145/2884781.2884835
https://doi.org/10.1145/2884781.2884835
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1145/3492321.3519591
https://github.com/zardus/preeny
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://github.com/google/honggfuzz
https://github.com/mtsarev/emdns
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1109/ACCESS.2020.3025037
https://doi.org/10.1109/ACCESS.2020.3025037
https://github.com/google/AFL
https://doi.org/10.3390/s20185194
https://doi.org/10.3390/s20185194
https://doi.org/10.3390/electronics12132904
https://doi.org/10.3390/electronics12132904
https://doi.org/10.3390/electronics12132904
https://doi.org/10.3390/electronics12132904


20 Jeroen Robben and Mathy Vanhoef

A Coverage plots

200

250

300

350

400

450

500

0m 10m 20m 30m 40m 50m 60m

B
ra
n
ch
es

BFTPD

aflnet-nfl afl++-nfl aflnet

2250

2350

2450

2550

2650

2750

2850

2950

3050

0m 10m 20m 30m 40m 50m 60m

B
ra
n
ch
es

Dcmtk

aflnet-nfl afl++-nfl aflnet

100

150

200

250

300

350

0m 10m 20m 30m 40m 50m 60m

B
ra
n
ch
es

LightFTP

aflnet-nfl afl++-nfl aflnet

2400

2600

2800

3000

3200

3400

3600

0m 10m 20m 30m 40m 50m 60m

B
ra
n
ch
es

OpenSSH

aflnet-nfl afl++-netfuzzlib aflnet

8000

8500

9000

9500

10000

10500

11000

0m 10m 20m 30m 40m 50m 60m

B
ra
n
ch
es

OpenSSL

aflnet-nfl afl++-nfl aflnet

0

100

200

300

400

500

600

0m 10m 20m 30m 40m 50m 60m

B
ra
n
ch
es

TinyDTLS

aflnet-nfl afl++-nfl aflnet

600

700

800

900

1000

1100

1200

0m 10m 20m 30m 40m 50m 60m

B
ra
n
ch
es

Dnsmasq

aflnet-nfl afl++-nfl aflnet


	Netfuzzlib: Adding First-Class Fuzzing Support to Network Protocol Implementations

