
Time Will Tell: Exploiting Timing Leaks

Using HTTP Response Headers

Vik Vanderlinden[0000−0002−6142−8057], Tom Van Goethem[0000−0001−6846−9081],
and Mathy Vanhoef[0000−0002−8971−9470]

imec-DistriNet, KU Leuven
{first.last}@kuleuven.be

Abstract. To execute timing attacks, an attacker has to collect a large
number of samples to overcome network jitter. Methods to reduce such
jitter, which is a source of noise, increase the signal-to-noise ratio and
thereby improve the attack performance. In this paper, we propose an at-
tack technique that uses timing information exposed in HTTP responses
by backend servers or services to reduce the jitter included in an at-
tacker's samples. By �rst synchronizing the attacker clock to the target,
sources of low-accuracy timing data can still be used to exploit timing
leaks. We collect real-world data on network latencies and use this data
in millions of simulations of the synchronizations and attacks. Our simu-
lations indicate that the synchronization can happen with less than 300
samples for accuracies of 1 ms and works down to an accuracy of under
13 µs. When comparing the performance of our novel synchronization-
based timing attack to a classical timing attack which is simulated using
the same dataset, our attack is able to reduce the exploitable di�erence
in runtime by an order of magnitude to 1 µs. For equal di�erence in
runtime our attack reduces the required samples up to a factor of 20.

Keywords: Timing Leaks · Side-channels · Network Security

1 Introduction

Timing leaks arise when the execution time of a program depends on private
information. By measuring the execution time for a speci�c private input or
state of the program, this input or state can be inferred solely based on the mea-
sured duration. Remote timing attacks do exactly the same, with the one di�er-
ence that they exploit timing leaks over a network such as the Internet. It has
been shown over the past twenty years that (remote) timing attacks are possible
using a multitude of techniques, initially extracting cryptographic information
(keys or coe�cients) and later also personally identi�able information (PII) from
web applications [15,6,5,4,10,31]. Due to browser mechanisms such as the Same-
Origin Policy (SOP), multiple works have explored alternative mechanisms to
time the round-trip as accurately as possible using JavaScript callbacks when
triggering an error, or by constructing a highly accurate counter in the browser
[18,29,34,13]. The �rst timing attacks simply used the round-trip timings of re-
quests, but more recently other sources of information and more complex attack



2 V. Vanderlinden et al.

scenarios are being used [35,12]. Defenses have been subsequently designed as a
response to, or (in an attempt) to prevent these types of attacks [19,1,3,2].

In this paper, we introduce a novel technique that abuses timestamps in
network responses to improve the performance of timing attacks. The abused
timestamp can be coarse-grained and, for instance, might only increment (�tick�)
every second. We �rst synchronize the attacker and victim machines' clocks based
on this timestamp by assuring that network requests arrive right before the
timestamp is about to increment. After this synchronization process, the attack
is executed by measuring how many responses are generated before or after the
increment of the (coarse-grained) timestamp. We show that, for various timing
di�erences, our attack technique improves the performance of timing attacks,
requiring less samples than a classical timing attack that uses round-trip timings.

All combined, we make the following contributions:

� We introduce a novel timing attack that improves attack performance by
utilizing timing information in a target's HTTP responses. We show that
such timing information can leak the runtime of a server-side program, even
if the accuracy of the exposed timestamp is low.

� We evaluate our clock synchronization method and analyze the performance
of this synchronization process between two machines over a network, both
in terms of the required number of network requests and the accuracy of the
acquired synchronization. We also list the main di�culties of this process.

� We collect real-world network data to perform millions of attack simulations
and compare our novel attack against a classical timing attack.

Responsible Disclosure: We have disclosed our �ndings to the developers of
a number of web servers that are mentioned in this paper to warn them about
the generation of the date-header after handling a request.

2 Background and Related Work

2.1 Timing Attacks

When timing attacks were introduced two and a half decades ago by Kocher in
1996, most of these attacks were aimed at exploiting cryptographic implementa-
tions to extract exponents or keys of speci�c operations [15]. By measuring the
execution time of the cryptographic operations it was shown that these attacks
were feasible. Not much later, in 2000, the �rst timing attack in a web browser
was shown by Felten et al., who found a method to determine which pages were
visited by a user, thus leaking their browsing history, steering more towards a
privacy-related attack [10]. The attacks that are executed in these works always
measure local runtimes in a browser or of smartcard-like devices and it was be-
lieved that timing attacks against general purpose web servers were infeasible
due to the large amount of network noise that packets encounter when traveling
over the network to the server [6].



Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 3

To show that attacks over a network are in fact practical, Brumley and
Boneh exploited cryptographic operations in OpenSSL running on a web server
in a local network [6]. Two years later Bortz et al. de�ned the di�erences between
direct timing attacks and cross-site timing attacks, and at the same time also
showed that they could expose private information from a web application over
a network [4]. These publications led to a multitude of attack vectors, such as
the cross-site search attacks by Gelernter et al., which allow an attacker to test
for the existence of search results on another site [11]. Other works explored
di�erent ways to more accurately time round-trip times or how to time cross-
site requests while the necessary information is blocked by the browser [29,34].
Additionally, it was shown that arbitrary memory could be read over the network
using a timing attack in a remote Spectre attack [30]. Over the last few years,
other attack scenarios have been used to exploit timing leaks, by misusing the
features of networking protocols to the advantage of the attacker [12]. Besides
practical attacks, Crosby et al. tested multiple statistical methods to compare
distributions of measurements and de�ned the box test to distinguish between
roundtrip time distributions, which is now commonly used in timing attacks [8].

2.2 Clock Synchronizations

Every machine with an internal time source su�ers from a concept known as clock
drift [37]. Clock drift refers to the observation that a clock does not advance at
the same rate as a reference clock, i.e., the speed at which a clock ticks di�ers
from the reference clock. Some of the factors that make the clock tick at a
di�erent rate are: temperature, current CPU load, etc. Over time, the clock drift
may shift the internal representation of time signi�cantly, leading to confusion
for the user or problems with the software running on the machine.

A solution is to regularly resynchronize the internal clock with a reference
clock. The network time protocol (NTP) implements such a synchronization and
is designed to sync the time of two machines over a network. It works with a
hierarchy of devices where devices with a higher accuracy timestamp are located
higher up in the hierarchy, as indicated by the lower so-called stratum number
that is associated to them. A stratum number of zero is reserved for the refer-
ence clocks that hold the highest accuracy of time (atomic clocks and the like)
[20]. This type of synchronization can be accurate down to the sub-millisecond
level, but is very dependent on the network connection and conditions [22]. The
threshold for a �synchronized� server is indicated by MAXDIST (distance thresh-
old) with a value of 1 s [20]. Another protocol designed for the synchronization
of clocks is the Precision Time Protocol (PTP). PTP is much more accurate
than NTP but is usually only used on local area networks, and its accuracy is
dependent on the latency and jitter of the network connections [23].

Additionally, the signals of a Global Navigation Satellite System (GNSS)
such as GPS or Galileo could be used to synchronize multiple clocks over a large
area. The signals received from a GNSS satellite can be used to triangulate a
position, but also to derive the current time with high accuracy. A disadvantage
is that all machines attempting to synchronize their clocks should have access



4 V. Vanderlinden et al.

to a physical receiver, which is usually not the case for on-premise servers or
virtual instances in a (public) cloud [33,9].

These processes synchronize clocks from devices on a certain sized network
to a speci�c accuracy depending on the network conditions, but the implemen-
tation or accuracy of the synchronization is not good enough for the purpose of
using our technique to exploit timing leaks. NTP's accuracy is too low and PTP
only works for small networks, both conditions that make our attack impossible.
In addition, for NTP and PTP, client and server work together to synchronize
their clocks, which would not be a feasible requirement for our attack. GNSSs on
the other hand require no collaboration between multiple devices and are able
to provide receivers with highly accurate timing information. Despite the advan-
tages, synchronizations using these systems are not generally feasible due to the
lack of hardware-support on most victim machines. As in every synchronization
algorithm, clock drift may invalidate the correct synchronization requiring the
process to be repeated regularly.

3 Threat Model and Attack Mechanism

In this section, we �rst discuss the threat model and outline the attack mecha-
nism in detail, after which we introduce a formal model for timing attacks and
use this model to illustrate the expected bene�t of our synchronization-based
timing attacks.

3.1 Threat Model

We assume the attacker is remote and will position themselves to have the most
reliable upstream path possible. This is in contrast with typical timing attacks
where the adversary locates themselves near the target to have both reliable
upstream and downstream network characteristics. Since our attack eliminates
downstream jitter, the goal is not necessarily to be as close to the target as
possible, but to have the best possible network characteristics on the upstream
path. Although being located near a target may help in achieving this goal,
this may not necessarily be the closest position to the target because network
characteristics can be di�erent for up- and downstream paths [26,7]. Since only
the upstream network characteristics matter, our threat model is more relaxed
compared to typical classical attacks. An attacker can easily monitor multiple
network connections and select the most advantageous one to use in the attack.

We assume the attacker can read responses that contain timing values and
thus do not consider cross-origin attacks (which would require the SOP to be
relaxed by the CORS header) [18,36].

In comparison with other attacks such as the Timeless Timing Attacks, this
attack does not require the use of HTTP/2 [12]. In contrast, our attack is not
limited to a speci�c HTTP version. We assume an attacker that can exploit
timing leaks on endpoints that will leak data about the website state or about
website users. In order to leak information, the timing values that are being



Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 5

Fig. 1. Overview of the attack mechanism where Ts and Ta represent the server and
attacker local time, respectively. The vertical bars in the server's timeline indicate a
rollover of the observed timing value on the server.

returned have to be generated after a security-sensitive operation, otherwise pri-
vate information can never be exposed by means of those timings. The attacker
does this from a machine under their control in a direct attack.

3.2 Attack Mechanism

Our attack uses timing values in HTTP responses to gain knowledge about the
relative runtimes of two endpoints on a server. By looking at the HTTP response
and counting the number of times that the response has been sent by the server
before or after a timing value rolls over to the next value, we can derive whether
the execution time on the server took longer compared to another (default) page
which will be referred to as the baseline page or request (see Figure 1). The
attack starts with a synchronization step in which we attempt to �nd an o�set
for the attacker to send baseline requests such that out of all respective responses
50% are sent before, and 50% after the server's clock rollover. By �nding such
an o�set we are able to compare the baseline and a target endpoints. If the
number of responses that were generated after the clock rollover for a speci�c
target endpoint is signi�cantly higher (say 90%) than in the baseline case (ideally
50%), it is clear that the request took longer to process.

We emphasize again that in order for this (and any) attack to work, the
timing information used has to be generated after a security-sensitive operation
has been executed. Otherwise there is no possibility that it leaks private data
about that operation. This is inherently also depicted in Figure 1. If in this �gure
a request's arrival time is re�ected in the respective response, the value in both
responses will be identical.

Also important is that this method of exploiting timing leaks does not facil-
itate the direct observation of the absolute di�erence in runtime between base-
line and target endpoints, which will eliminate some attack variants that depend
on the absolute runtime to estimate for instance sizes of server-side items [4].
Whether the di�erence in number of requests before and after the target clock
rollover can be used to estimate an approximate di�erence in runtime is left for
future work.



6 V. Vanderlinden et al.

3.3 Formal Model

We �rst create a theoretical model of timing attacks to illustrate how our novel
technique can improve the e�ectiveness of attacks. To ease comparison with re-
lated work, we follow the model of Crosby et al. [8], and split the response time R
into the processing time T and propagation time B, leading to R = T +B. Both
the processing and propagation time can be further split up into sub-operations,
e.g., to account separately for decoding network packets, generating a response,
the routing operations for every hop in the network path, etc. We can model this
as the sum of all sub-operation k ∈ {1..K} before the timestamp is generated,
and the sum of all sub-operations ` ∈ {1..L} after the timestamp is generated.
Without loss of generality, we assume the processing and propagation time can
be split into the same number of sub-operations. Letting Tt denote the operation
that generates the timestamp, we get:

R =

K∑
k=1

(Tk +Bk) + Tt +

L∑
`=1

(T` +B`) (1)

In a typical timing attack, the jitter of all sub-operations before and after some
security-sensitive operation Ts, where 1 ≤ s ≤ K, reduce the performance of a
timing attack.

In our attack, instead of using the round-trip response time, we use the
timestamp in the response. Let T denote the received timestamp in a response,
normalized to 0 or 1 to represent either before or after the clock tick. We use d·e
to represent this normalization. This implies T is a random value depending on
the propagation and processing time preceding the generation of the timestamp:

T (d) =

⌈
d+

K∑
k=1

(Tk +Bk) + Tt

⌉
(2)

Parameter d represents when the attacker sends the request, i.e., the o�set rela-
tive to the attacker's clock tick. The above formula highlights that the timestamp
must be generated after the security-sensitive operation Ts, otherwise the value
of T would not depend on Ts, meaning T would not leak sensitive info. Addition-
ally, we can see that the result is independent of any latency that occurs after
the generation of the timestamp. In the synchronization phase of our attack, we
search for an o�set d such that E[T (d)] = 0.5. In other words, we search for an
o�set d such that half of the requests arrive before the clock tick and the other
half afterward. The value of d will be between zero and the precision (granular-
ity) of the timestamp, e.g., if the timestamp is rounded down to seconds, then d
lies between zero and one second. In practice, achieving exactly 0.5 is infeasible.
Instead, in an attack, we determine whether a target request is processed faster
or slower than a reference requests. That is, we are trying to answer whether:

E[Tbaseline(d)]
?
= E[Tattack(d)] (3)

Here Tbaseline is the (benign) request that we synchronize with, and the attacker's
goal is to determine whether request Tattack takes a di�erent amount of time to



Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 7

process. In practice, the adversary performs two requests baseline1 and baseline2

that have the same generation time Ts, and a target request with a di�erent
generation time T ′s. The attack succeeds when a classi�cation method can be
found that distinguishes baseline1 from target while not distinguishing baseline1

from baseline2. The remainder of the paper explores how to determine d in
practice and how to distinguish requests with di�erent processing times.

4 Clock Sync

In order to execute our attack, a vital step is to synchronize the attacker and
victim clocks as accurately as possible. In this section, we introduce a novel
method to perform such a synchronization by only relying on coarse-grained
timestamps provided by the server.

4.1 Synchronization Mechanism

To synchronize the clock of the attacker to the victim clock, the same source
of timing information as in the attack can be used. We will use the timestamp
returned by a server, which is based on the server's internal clock and is usually
truncated to a prede�ned accuracy (called the timestamp's granularity).

The goal of the clock synchronization is to �nd a local o�set d for the attacker
such that the server's responses are sent 50% of the time before and 50% of the
time after the server's clock rollover. The method we use to �nd d is illustrated
in Figure 2. Initially, we know that d ∈ [S1, E1], for instance, if the timestamp
has a granularity of one second, then we start with d ∈ [S1 = 0, E1 = 1]. In each
sync iteration we recursively decrease the size of this interval while assuring the
resulting server's clock rollover remains inside the interval. To reduce the size of
an interval, the attacker sends multiple requests at di�erent o�sets in this interval
(see below for details). For instance, given the interval [0, 1], multiple requests
will be sent at o�sets 0.0, 0.1, and so on up until 0.9. The requests that are sent
at these di�erent o�sets are called probes and the number of probes sent at every
o�set is a parameter of our synchronization method. The adversary might then
observe that the server's clock rolls over between, e.g., o�set 0.3 and 0.4, and
updates the interval to [0.3, 0.4]. In Figure 2 this is illustrated by updating the
interval [Si, Ei] to [Si+1, Ei+1]. This process continues until a given number of
sync iterations have been performed. In practice, each sync iteration reduces the
interval by at most an order of magnitude and the attacker must at all times be
able to send requests accurately at the o�set d.

By repeatedly performing this process we can synchronize clocks as accu-
rately as desired. Within an interval, the estimated location of the clock rollover
can be found as follows: At each selected o�set within the interval, a number of
probes, i.e., network requests, are sent to the server. The number of probes to
send is a parameter of the algorithm. Care must be taken when sending these
probes: sending too many at once may congest the attacker's network, mean-
ing a small waiting time must be enforced between sending consecutive probes.



8 V. Vanderlinden et al.

Fig. 2. Clock synchronization where the
goal is to �nd an o�set such that the
server's response is sent right when its
timestamp rolls over to the next value.
This implies that 50% of responses will be
sent before the server's rollover and 50%
after.

Fig. 3. An example of the analyses of an
interval using an inverse tanh �t on inter-
vals with a width of 100 µs. The transition
can now be de�ned as the point at which
the tanh has a value of 0.5.

When all responses are received we can calculate, for each sampled o�set, the
percentage of responses with a timestamp before its rollover. When the size of
the interval is large, meaning the sampled o�sets are relatively far away from
each other, there will be a clear instant transition from 100% to 0% and we can
reduce the interval's size based on this. For higher accuracy synchronizations,
e.g., when the interval is in the microsecond range, there will no longer be a
clear transition. In that case, to determine the new smaller interval, we plot
the percentage of responses containing a timestamp before the clock tick as a
function of the sampled o�set. An example of this is shown in Figure 3. To now
determine the new smaller interval, an inverse tanh function is �tted onto to
the data due to the observed shape of the curve that approximates an inverse
tanh and the computational ease of �tting this function. The estimated value of
the clock tick is then the point where the �tted tanh function reaches 50%, and
the new interval is where the tanh function is, for example, in the 40% to 60%
range. Overall, the synchronization quickly reaches an accuracy of a millisecond
and can go on into the microsecond range.

4.2 In�uence of Clock Drift

The major di�culty when synchronizing two clocks is the clock drift. Any ma-
chine inherently has a speci�c amount of clock drift. This drift is often deter-
mined by external factors such as the temperature, processing load on the server
(particularly important for a shared VM in the cloud) and other factors [21].
When two machines are used in the attack (one attacker, one victim), they ex-
perience a relative clock drift between the two machines. This has the implication
that when their clocks are synchronized, the synchronization is not valid for an
inde�nite time, meaning clocks have to be resynchronized periodically. Moreover,



Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 9

Fig. 4. Clock drift between a machine in our university network and an instance in a
public cloud depicted over time.

clock drift may impact the synchronization process itself, especially when per-
forming many sync iterations. That is, when doing many sync iterations, more
probes must be sent, and this signi�cantly increases the duration of the syn-
chronization process. Recall that we cannot send many requests simultaneously,
as this would have complicated side-e�ects such as being blocked by �rewalls
or with very high amounts of tra�c, self-induced network congestion, which de-
creases the synchronization and attack performances and should of course be
avoided. Due to the long duration, the relative clock drift may in principle be so
high that the synchronization is invalidated before it is found.

Fortunately, previous work, such as that of Zander and Murdoch [37], has
shown that clock skew can be found and thus it can also be compensated for.
To independently con�rm this, we measured the drift of one machine on our
university network and an instance in the public cloud, for over two months.
Their clocks were synchronized every hour using our synchronization algorithm
to an accuracy of a millisecond, with the resulting drift show in Figure 4. The
sudden jumps in the drift are either due to the data wrapping around to the
other side of the interval or due to the client machine rebooting. The long,
relatively straight tendencies in the drift con�rm that compensating the drift is
feasible. An attacker can monitor this drift and determine whether it is behaving
linearly between some machines and the target and select a machine with optimal
conditions to be able to compensate the drift as easily as possible for the attack.

Motivated by these observations, we will assume in the remainder of the
paper that an adversary can measure and correct the in�uence of clock skew
while performing our attack, meaning we do not explicitly have to model it in
our experiments.



10 V. Vanderlinden et al.

5 Data and Simulation

To fairly evaluate our new attack against classical timing attacks, we �rst col-
lected real-world roundtrip data from connections between our university net-
work and datacenters in the EU and US, as well as data between those datacen-
ters themselves. This section will outline exactly which data was collected, how
that was done, and how the simulations were performed.

5.1 Timing data prevalence

For all evaluations in this paper, we make use of the HTTP date header as the
source of timing values, which is present for most web pages. When looking at
the HTTP Archive dataset of May 2023, 99.76% of HTML pages are served
with a date header, and 99.18% of all 1.226 billion responses in the dataset
have a date header set, showing that the header might be a reliable choice for
an attacker to use as the source of timing information in the attack [14]. It is
important to mention that some date headers contain a �xed value, or a value
that is updated less than once every second. These values would not be useable
in our attack. Because the HTTP standard describes date formats to have a
granularity of one second, it is expected that most servers update their date
header about once a second [28]. Fixed values can never contain information
related to security-sensitive operations on a server, and if the returned values
have a too low granularity the attack becomes infeasible due to the amount of
time it would take to synchronize the clocks and execute the attack. We crawled
a number of pages of the Tranco top 10k domains1 and evaluated the dynamic
nature of the date headers [16]. To do so, each of the 24 928 pages was visited
twice with a wait of 30 s in between, after which the detected timing values were
matched between the two visits. If a timing value remains unchanged over the
30 s period, it was removed as an interesting value. We found that 92.36% of
the crawled response documents were served with a dynamic date header, which
makes it an ideal value to use in an attack. In some cases the date header is set to
a �xed value, such as the Unix epoch. The results obtained in these experiments
should be interpreted as absolute upper bounds on the number of pages that
could be vulnerable, because many pages will return timestamps that do not
include the duration of sensitive operations.

By using the date header, we also show that the used timestamp does not need
to be very accurate, since this header is usually only accurate down to a second.
It can be expected that more accurate timing information leads to even better
results when using our attack, especially with regards to the synchronization
process that becomes more obsolete with growing accuracy of timestamps, since
the o�set it attempts to �nd can be derived from the timestamp value up to a
certain point.

It remains the case that the timing information has to be generated after a
security-sensitive operation in order to be useful to leak private information. We

1 Available at https://tranco-list.eu/list/85NV.

https://tranco-list.eu/list/85NV


Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 11

tested multiple popular servers such as nginx, litespeed, Apache httpd and the
popular frameworks NodeJS Express and Python Flask [24,17,32,25,27]. Most
of these platforms generate their date header values when a response is con-
structed on the server and thus after the execution of any backend script(s),
hereby potentially allowing the leakage of private information depending on the
backend operation(s). In fact, Apache's httpd was the only of these platforms
that generated its date header values at the moment a request is received, and
therefore a di�erent timestamp would have to be used to attack a target that is
running the Apache httpd server engine [32]. Such timestamp could for instance
be set by the programming language or by a developer because the programming
language may still have access to high accuracy clocks. It will, however, mean
that the likelihood of �nding such timing values decreases.

5.2 Collecting roundtrip times

We �rst collected real-world roundtrip data so we can accurately simulate both
our new and classical timing attacks. For this, we set up servers in the west of
the EU and the east of the US with Amazon AWS and in addition used servers
from our university's internal network in Europe. Each of the 4 collection servers
were located in one of two datacenter locations in the west of the EU and all of
them collected information from two hosting servers, one of which was in another
(nearby) datacenter in the west of the EU, the second one that was in the east of
the US, gathering data over a transatlantic connection. There were no samples
collected originating from the US with hosting servers in the EU.

Each of the collection servers collected over 15 million samples for EU-EU
cases and over 5 million samples for EU-US cases. Obviously, the latency for
packets traveling to the US is much higher resulting in a slower data-gathering
process. In order to collect real-life data, we instruct the server to sleep for a
number of milliseconds using PHP's builtin sleep function in order to simulate
an actual time-consuming task on the server. For each request the roundtrip
time was collected with nanosecond accuracy, as would be done in a classical
timing attack.

The collected data shows that the roundtrip times at some times do not
follow a perfect normal, or log-normal distribution, as can be expected when
taking measurements on the Internet. In some cases, the actual distribution of
the collected samples seems to be a collection of multiple (log-)normal distribu-
tions superimposed. The imperfections in the data are still used in the attack
simulations in order to get the most accurate results possible rather than using
some form of idealized, generated data. The main characteristic that is impor-
tant and would be di�cult to accurately generate or simulate is the network
jitter. By using these real-world samples, the jitter is exactly the same as when
an attacker would be performing the attack over these connections. Because the
samples will be used in a sequential manner, possible short-term deviations or
variations in the latency and jitter will also be mimicked in our simulations.

In our evaluation, we want to control the di�erence in the upstream and
downstream network conditions, so we can evaluate the impact of asymmetric



12 V. Vanderlinden et al.

network paths on the performance of our attack. This di�erence is hard and
arguably even impossible to fully control in real-world networks. Although an
attacker would ideally like to be able to, they too cannot control the way the
up- and downstream path behave, and will have to resort to monitoring multiple
paths and selecting the best one. To nevertheless separately control the down-
stream and upstream parameters, while at the same time simulating real-world
network jitter, we will simulate the server's date header based on the measured
round-trip time. This allows us to easily simulate di�erent conditions of the up-
stream network path, by using a varying fraction of the roundtrip time values.

A second reason to simulate the server's data header based on the round-trip
time, is that it allows us to simulate or eliminate clock drift. In other words, real
timestamps returned by the server are in�uenced by the server's clock drift, and
this clock drift is practically impossible to afterwards eliminate or change.

During our simulations, we will also con�gure a random di�erence between
the clock of the server and client. This timing di�erence, combined with the av-
erage upstream network latency, will be learned by our synchronization method.
We will continue with a more detailed explanation of the simulations next.

5.3 Synchronization and attack simulations

The goal of the attack simulations is to be as similar to real-life attacks as
possible. The simulation software was built in such a way that only the inter-
action with the server is mimicked and as such, only this interaction should be
re-implemented to attack actual target servers.

For every simulation, a random o�set between the client and server clocks is
selected. It is the job of the synchronization process to �nd this o�set, just as it
would be required against an actual target server. Each simulation runs at a very
high speed, which is the advantage compared to the real-life attacks. Without
using simulations, new network requests would have to be made for every run of
an experiment, making it much slower than a simulation. Another advantage of
simulations is that each parameter can be evaluated independently if necessary.
In order to correctly evaluate our synchronization-based attack against the clas-
sical timing attacks, the classical attacks were also simulation using the same
data, to eliminate discrepancies between the used datasets. This also allows us
to verify that the simulation is correct because the performance of the classical
timing attack corresponds with the expected values of this type of attack.

After synchronization, to achieve a successful attack, the adversary should
be able to detect that two baseline requests baseline1 and baseline2 are similar
(baselines case), while being able to distinguish baseline1 from target (baseline
versus target case). Here target has a di�erent execution time than the baseline.
To perform classi�cation, we calculate the following variables, where attack can
equal either baseline2 (baselines case) or target (baseline versus target case):

Xattack = Pr[Tbaseline1(d) = 0 ∧ Tattack(d) = 1] (4)

Yattack = Pr[Tbaseline1(d) = 1 ∧ Tattack(d) = 0] (5)



Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 13

Fig. 5. Example simulation output, each dot is an attack.

Here X∗ represents the percentage of times that the baseline response was sent
before the clock tick and that the attack response was send after the clock tick
(variable Y∗ represent the opposite). The values for these variables are deter-
mined by sending a requests and calculating the percentage of times that the
conditions in the above formulas hold.

Figure 5 shows the resulting data from 1 000 simulated attacks for both the
baselines and baseline versus target cases, where the x-axis represents X∗ and
the y-axis represents Y∗. Each attack is plotted as a point and executing an
attack boils down to �nding a classi�cation between the baselines and baseline
versus target datasets that correctly classi�es 95% or more of the attacks. In
the baselines case, we see that Xbaseline2 ≈ Ybaseline2 (blue dots in Figure 5).
This con�rms that both baseline responses have the same probability of being
generated after or before the clock tick. In the baseline versus target case, we
see that Xtarget & Ytarget (orange dots in Figure 5). In other words, the attack
response is more often generated after the clock tick compared to the baseline
response, which is expected since the target response takes longer to generate.

To search for a classi�cation, the regression lines of the two datasets were
taken and 10 000 lines spanning the space in between these regressions were eval-
uated each time. If a line could be found that correctly distinguishes the datasets
with the previously mentioned accuracy, the attack was considered successful.

6 Results

6.1 Clock Synchronization

The performance of the clock synchronization is important information for an
attacker when they want to select the optimal synchronization parameters. De-



14 V. Vanderlinden et al.

Table 1. The median of the accuracy and number of samples required for synchronizing
for a speci�ed number of iterations, which in practice means decreasing the tested
o�sets to the accuracy speci�ed in this column. At the top, the number of requests sent
for each sync probe o�set in the synchronization phase are listed (recall Section 4.1).

Metric Sync Iterations
nb requests per sync probe o�set

10 20 50 100 200

Required nb samples

1 ms 300 600 1 500 3 000 6 000

100 µs 400 800 2 500 5 000 10 000

10 µs 800 2 000 5 500 12 000 24 000

1 µs 4 200 11 000 32 500 70 000 144 000

Deviation (µs)

1 ms 173.9 161.7 188.1 242.2 348.2

100 µs 27.5 26.5 24.1 22.5 21.2

10 µs 38.9 29.6 19.3 14.9 12.9

1 µs 40.3 29.3 19.9 16.2 14.7

ciding if they want to synchronize for a number of iterations (which in prac-
tice means reducing the �nal o�sets that are being tested to an accuracy of
a microsecond or a millisecond) has a signi�cant impact on the attack perfor-
mance (as will be discussed later) but has the disadvantage that it requires a
higher number of samples during the synchronization process, which will also
take a longer time, thereby possibly counteracting the attack performance im-
provements. On top of that, for each number of sync iterations, the number of
requests sent for each o�set can be selected as a separate parameter.

To evaluate the performance of the clock synchronization, each simulation
gathered metrics about its accompanying synchronization's performance. Specif-
ically, the number of total requests that had to be made, the deviation from the
correct clock rollover o�set to be found, and the number of tries that were neces-
sary to synchronize were gathered. From a total of over 2.5 million simulations,
the median values for these metrics are shown in Table 1 (top). As expected,
a synchronization with a lower number of iterations requires less samples. The
increase in the number of samples required is not inversely linear in relation to
the number of sync iterations. Due to the complexity of synchronizations with
more iterations, the number of samples rises more than linear. The o�sets used in
the synchronization are now smaller than network jitter, which makes it increas-
ingly di�cult to continue synchronizing and adds uncertainty to the process.
This means that instead of clearly �nding a clock transition, the exact location
is hidden by the network noise that cannot be removed. The implementation
of the clock synchronization will thus not be able to locate the clock transition



Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 15

Table 2. The number of samples required to attack a server in the US, provided that
clock synchronization has already been performed. In this table, the resulting samples
sizes follow from the synchronization to 10 µs. A dash (-) is shown if the attack was
unsuccessful or required more than 50 000 samples. Data showing the performance for
other synchronization iterations can be found in Appendix A.

Attack 1µs 2µs 5µs 10µs 20µs 50µs 100µs 200µs 500µs 1ms

Classical - - - 18 539 1 907 530 121 40 7 7

TWT (RTT/1.5) - 45 329 6 104 1 830 468 136 96 36 34 33

TWT (RTT/2.0) - 20 110 3 480 1 025 348 113 63 31 29 29

TWT (RTT/3.0) 48 126 9 204 1 741 519 202 104 46 43 40 40

between two adjacent o�sets and has to increase the search space for the next
iteration. This also has an impact on synchronization time.

For the deviation shown in Table 1 (bottom) the results show that the ac-
curacy indeed increases when a higher number of synchronization iterations are
performed. In the case of the 1 ms entry, the deviation increases with larger
samples sizes for each tested probe o�set, against intuition. This is because in
the 1 ms entry, each iteration recurses on the interval for which the fraction of
responses after the clock rollover is between 0% and 100%. For instance, if the
current interval is [0.02, 0.03], and only 10 requests per probe o�set are used, the
procedure may �nd that 100% of responses at o�set 0.022 are sent before the
clock rollover, and 0% at 0.023, meaning the new interval becomes [0.022, 0.023].
However, when using 200 requests per probe o�set, 99.5% of responses at o�set
0.022 may now arrive before the clock rollover, and 0.05% at o�set 0.023, so the
new interval, for instance, becomes [0.021, 0.024] instead. This drives the num-
ber of samples required up and decreases the accuracy of the synchronization.
In the sub-millisecond range, the tanh �t is used, which works better because
even if there are a small number of samples returning on the other side of the
clock rollover, this will not have a large impact on the �tted curve and thus the
interval for the next recursion remains as small as when using fewer samples per
probe.

6.2 Attack

Table 2 shows the attack performance after synchronization. That is, the number
of requests used for synchronization are not accounted for in this table. Because a
synchronization can be maintained against a speci�c server, an adversary can use
one synchronization to perform multiple subsequent attacks, and we therefore
evaluate the synchronization and attack separately. The clock synchronization
iteration down to 10. µs was used to arrive at each of the sample sizes. In
Appendix A, the full resulting data can be found, which shows the performance
for each clock synchronization iteration.



16 V. Vanderlinden et al.

The results show that the number of requests necessary to perform an attack
are in most cases much lower than in the classic timing attack. Table 2 also shows
the performance for three di�erent upstream network conditions. For instance,
the bottom row shows the attack performance when the jitter in the upstream
path is 1/3rd of the round-trip time jitter that we collected empirically (and
analogous for RTT/2.0 and RTT/1.5). We can observe that a better upstream
connection, i.e., when the collected round-trip times are divided by a higher con-
stant, less samples are needed to perform our novel attack. Results were similar
when using the round-trip times that we collected between di�erent servers and
locations. All combined, we can successfully exploit a timing di�erence of 10, 5
and with a good upstream network path even down to 1µs, which is not possible
using a classical timing attack.

6.3 Defenses

The main defense against this type of attack is to expose the time at which the
request came into the server instead of the time at which the timing value is
actually requested by the program. The compromise that is made is that the
time that is communicated to the client may be out of sync for a couple of
hundred milliseconds, but that can occur naturally due to high amounts of jitter
as well.

Another defense is to decrease the accuracy of the timing information and
instead of updating the header value for each second, round these values to �ve
or ten seconds. This does not eliminate the vulnerability, but makes it even more
di�cult to exploit, due to the high waiting period between each clock tick.

7 Conclusion

While the exposure of timing information such as the current time on a server
may be regarded as normal, we have shown that developers should be careful
when exposing seemingly harmless information. Timing information that is ex-
posed in HTTP responses can be used to exploit timing leaks by synchronizing
the clocks of the attacker and the victim. We gathered real-world data on laten-
cies between servers in the EU and the US, and used this data to run millions
of simulations of our complete attack process. Our novel attack was shown to
improve a classical timing attack by decreasing the necessary amount of requests
and we could successfully exploit a smaller timing di�erence compared to the
classical attack.

To �nish we proposed two easy defenses. One defense suggests to always use
the time at which a request arrives at the server in the responses. This defense
always eliminates the timing leak. Another defense is to decrease the accuracy
of the timing information. This is not as e�ective at the previously proposed
defense.

Acknowledgements This research is partially funded by the Research Fund
KU Leuven, and by the Flemish Research Programme Cybersecurity.



Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 17

References

1. Alex Christensen: Reduce resolution of performance.now. https://bugs.webkit.
org/show_bug.cgi?id=146531 (2015)

2. Boris Zbarsky: Chromium: window.performance.now does not support sub-
millisecond precision on windows. https://bugs.chromium.org/p/chromium/

issues/detail?id=158234#c110 (2015)

3. Boris Zbarsky: Clamp the resolution of performance.now() calls to 5us because oth-
erwise we allow various timing attacks that depend on high accuracy timers. https:
//hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab (2015)

4. Bortz, A., Boneh, D., Nandy, P.: Exposing private information by timing web
applications. In: 16th International World Wide Web Conference, WWW2007. pp.
621�628 (2007). https://doi.org/10.1145/1242572.1242656

5. Brumley, B.B., Tuveri, N.: Remote Timing Attacks Are Still Practical.
In: Lecture Notes in Computer Science, vol. 3523, pp. 355�371 (2011).
https://doi.org/10.1007/978-3-642-23822-2_20, http://link.springer.

com/10.1007/978-3-642-23822-2_20

6. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks
48(5), 701�716 (aug 2005). https://doi.org/10.1016/j.comnet.2005.01.010,
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125

7. Cox, B.: Splitting the ping. https://blog.benjojo.co.uk/post/ping-with-loss-
latency-split (2022)

8. Crosby, S.A., Wallach, D.S., Riedi, R.H.: Opportunities and Limits of Remote
Timing Attacks. ACM Transactions on Information and System Security 12(3),
1�29 (jan 2009). https://doi.org/10.1145/1455526.1455530, https://dl.acm.
org/doi/10.1145/1455526.1455530

9. EUSPA: European GNSS Service Centre. https://www.gsc-europa.eu/, accessed:
2023-05-28

10. Felten, E.W., Schneider, M.A.: Timing attacks on Web privacy. In: Proceedings of
the 7th ACM conference on Computer and communications security - CCS '00. pp.
25�32. ACM Press, New York, New York, USA (2000). https://doi.org/10.1145/
352600.352606, http://portal.acm.org/citation.cfm?doid=352600.352606

11. Gelernter, N., Herzberg, A.: Cross-Site Search Attacks. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Se-
curity. vol. 2015-Octob, pp. 1394�1405. ACM, New York, NY, USA (oct
2015). https://doi.org/10.1145/2810103.2813688, https://dl.acm.org/doi/

10.1145/2810103.2813688

12. van Goethem, T., Pöpper, C., Joosen, W., Vanhoef, M.: Timeless timing attacks:
Exploiting concurrency to leak secrets over remote connections. Proceedings of the
29th USENIX Security Symposium pp. 1985�2002 (2020)

13. van Goethem, T., Vanhoef, M., Piessens, F., Joosen, W.: Request and conquer: Ex-
posing cross-origin resource size. Proceedings of the 25th USENIX Security Sym-
posium pp. 447�462 (2016)

14. HTTP Archive Contributors: The HTTP Archive. https://httparchive.org/,
accessed: 2023-05-28

15. Kocher, P.C.: Timing Attacks on Implementations of Di�e-Hellman, RSA, DSS,
and Other Systems. In: CRYPTO - Annual International Cryptology Conference,
pp. 104�113 (1996). https://doi.org/10.1007/3-540-68697-5_9, http://link.
springer.com/10.1007/3-540-68697-5_9

https://bugs.webkit.org/show_bug.cgi?id=146531
https://bugs.webkit.org/show_bug.cgi?id=146531
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://doi.org/10.1145/1242572.1242656
https://doi.org/10.1145/1242572.1242656
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-23822-2_20
http://link.springer.com/10.1007/978-3-642-23822-2_20
http://link.springer.com/10.1007/978-3-642-23822-2_20
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125
https://doi.org/10.1145/1455526.1455530
https://doi.org/10.1145/1455526.1455530
https://dl.acm.org/doi/10.1145/1455526.1455530
https://dl.acm.org/doi/10.1145/1455526.1455530
https://www.gsc-europa.eu/
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
http://portal.acm.org/citation.cfm?doid=352600.352606
https://doi.org/10.1145/2810103.2813688
https://doi.org/10.1145/2810103.2813688
https://dl.acm.org/doi/10.1145/2810103.2813688
https://dl.acm.org/doi/10.1145/2810103.2813688
https://httparchive.org/
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
http://link.springer.com/10.1007/3-540-68697-5_9
http://link.springer.com/10.1007/3-540-68697-5_9


18 V. Vanderlinden et al.

16. Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczy«ski, M., Joosen,
W.: Tranco: A research-oriented top sites ranking hardened against manipulation.
In: Proceedings of the 26th Annual Network and Distributed System Security Sym-
posium. NDSS 2019 (Feb 2019). https://doi.org/10.14722/ndss.2019.23386

17. LiteSpeed Technologies Inc.: LiteSpeed Web Server. https://www.litespeedtech.
com/products/litespeed-web-server, accessed: 2023-06-04

18. MDN contributors: Same-origin policy. https://developer.mozilla.org/en-
US/docs/Web/Security/Same-origin_policy (2023)

19. Mehta, A., Alzayat, M., de Viti, R., Brandenburg, B.B., Druschel, P., Garg, D.:
Pacer: Network Side-Channel Mitigation in the Cloud (2019), http://arxiv.org/
abs/1908.11568

20. Mills, Delaware, Martin, Burbank and Kasch: A Border Gateway Protocol 4
(BGP-4). RFC 5905, RFC Editor (June 2010), https://www.rfc-editor.org/
rfc/rfc5905.txt

21. Murdoch, S.J.: Hot or not: Revealing hidden services by their clock skew. pp.
27�36. ACM Press (2006). https://doi.org/10.1145/1180405.1180410, http:
//dl.acm.org/citation.cfm?doid=1180405.1180410

22. Network Time Foundation: Clock discipline algorithm.
https://www.ntp.org/documentation/4.2.8-series/discipline/ (2022)

23. Network Time Foundation: Ieee 1588 precision time protocol (ptp).
https://www.ntp.org/re�ib/ptp/ (2022), accessed: 2023-05-28

24. Nginx Contributors: Nginx. https://nginx.org/en/, accessed: 2023-05-28
25. OpenJS Foundation: Express - Node.js web application framework. https://

expressjs.com/, accessed: 2023-06-04
26. Pucha, H., Zhang, Y., Mao, Z.M., Hu, Y.C.: Understanding network delay changes

caused by routing events. ACM SIGMETRICS Performance Evaluation Review
35(1), 73�84 (jun 2007). https://doi.org/10.1145/1269899.1254891, https://
dl.acm.org/doi/10.1145/1269899.1254891

27. Python Contributors: Welcome to Flask. https://flask.palletsprojects.com/
en/2.3.x/, accessed: 2023-06-04

28. R. Fielding, M. Nottingham and J. reschke: Rfc 9110: Http semantics - date/time
formats. https://www.rfc-editor.org/rfc/rfc9110#http.date (2022)

29. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic Timers and Where
to Find Them: High-Resolution Microarchitectural Attacks in JavaScript. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
ti�cial Intelligence and Lecture Notes in Bioinformatics), vol. 10322 LNCS,
pp. 247�267 (2017). https://doi.org/10.1007/978-3-319-70972-7_13, http:

//link.springer.com/10.1007/978-3-319-70972-7_13

30. Schwarz, M., Schwarzl, M., Lipp, M., Gruss, D.: NetSpectre: Read Arbitrary
Memory over Network. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinfor-
matics) 11735 LNCS(July), 279�299 (jul 2018). https://doi.org/10.1007/

978-3-030-29959-0_14, http://arxiv.org/abs/1807.10535
31. Smith, M., Disselkoen, C., Narayan, S., Brown, F., Stefan, D.: Browser history

re:visited. 12th USENIX Workshop on O�ensive Technologies, WOOT 2018, co-
located with USENIX Security 2018 (1) (2018)

32. The Apache Foundation: The Apache HTTP Server Project. https://httpd.

apache.org/, accessed: 2023-05-28
33. United States Space Force: GPS: The Global Positioning System. https://www.

gps.gov/, accessed: 2023-05-28

https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://www.litespeedtech.com/products/litespeed-web-server
https://www.litespeedtech.com/products/litespeed-web-server
http://arxiv.org/abs/1908.11568
http://arxiv.org/abs/1908.11568
https://www.rfc-editor.org/rfc/rfc5905.txt
https://www.rfc-editor.org/rfc/rfc5905.txt
https://doi.org/10.1145/1180405.1180410
https://doi.org/10.1145/1180405.1180410
http://dl.acm.org/citation.cfm?doid=1180405.1180410
http://dl.acm.org/citation.cfm?doid=1180405.1180410
https://nginx.org/en/
https://expressjs.com/
https://expressjs.com/
https://doi.org/10.1145/1269899.1254891
https://doi.org/10.1145/1269899.1254891
https://dl.acm.org/doi/10.1145/1269899.1254891
https://dl.acm.org/doi/10.1145/1269899.1254891
https://flask.palletsprojects.com/en/2.3.x/
https://flask.palletsprojects.com/en/2.3.x/
https://doi.org/10.1007/978-3-319-70972-7_13
https://doi.org/10.1007/978-3-319-70972-7_13
http://link.springer.com/10.1007/978-3-319-70972-7_13
http://link.springer.com/10.1007/978-3-319-70972-7_13
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1007/978-3-030-29959-0_14
http://arxiv.org/abs/1807.10535
https://httpd.apache.org/
https://httpd.apache.org/
https://www.gps.gov/
https://www.gps.gov/


Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers 19

34. Van Goethem, T., Joosen, W., Nikiforakis, N.: The clock is still ticking: Timing
attacks in the modern web. In: Proceedings of the ACM Conference on Computer
and Communications Security. vol. 2015-Octob, pp. 1382�1393 (2015). https://
doi.org/10.1145/2810103.2813632

35. Vanderlinden, V., Joosen, W., Vanhoef, M.: Can You Tell Me the
Time? Security Implications of the Server-Timing Header. In: Proceed-
ings 2023 Workshop on Measurements, Attacks, and Defenses for the
Web. No. March, Internet Society (2023). https://doi.org/10.14722/madweb.
2023.23087, https://www.ndss-symposium.org/wp-content/uploads/2023/02/

madweb2023-23087-paper.pdf

36. whatwg contributors: Fetch standard: Cors protocol.
https://fetch.spec.whatwg.org/#http-cors-protocol (2023)

37. Zander, S., Murdoch, S.: An improved clock-skew measurement technique for re-
vealing hidden services (2008)

Appendices

A Complete Attack Data

Tables 3 and 4 show the full results that have been tested for a victim in the
EU and US respectively. Each row lists the selected synchronization iteration
and thereafter the required number of samples to di�erentiate a speci�c timing
di�erence. Based on this data, an attacker could select their preferred number
of synchronization iterations based on the requirements of their desired attack.
In both cases the results from the classical attack are shown in the �rst row
and perform signi�cantly worse than the synchronization-based attack. From
these tables the importance of the synchronization is clear. When comparing
the performance of the 1ms synchronization to the others, the most coarse syn-
chronization clearly performs worse.

https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.14722/madweb.2023.23087
https://doi.org/10.14722/madweb.2023.23087
https://doi.org/10.14722/madweb.2023.23087
https://doi.org/10.14722/madweb.2023.23087
https://www.ndss-symposium.org/wp-content/uploads/2023/02/madweb2023-23087-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2023/02/madweb2023-23087-paper.pdf


20 V. Vanderlinden et al.

Table 3. The number of samples required to attack a server in the EU, provided that
clock synchronization has already been performed. Each row indicates what synchro-
nization iteration was used to obtain the results in that row. A dash (-) is shown if the
attack was unsuccessful or required more than 50 000 samples.

Attack Sync 1µs 2µs 5µs 10µs 20µs 50µs 100µs 200µs 500µs 1ms

Classical / - - - - 2 249 436 151 44 8 7

TWT (RTT/1.5) 1ms - - - - - 37 444 9 035 2 285 391 62

TWT (RTT/1.5) 100us - - 17 384 4 053 1 093 243 105 44 32 30

TWT (RTT/1.5) 10us - - 14 400 3 481 996 221 94 41 28 28

TWT (RTT/1.5) 1us - - 13 281 3 173 930 213 102 35 24 24

TWT (RTT/2.0) 1ms - - - - - 36 944 9 424 2 197 324 51

TWT (RTT/2.0) 100us - - 9 054 2 399 691 198 92 36 29 27

TWT (RTT/2.0) 10us - - 7 616 1 954 519 156 60 34 32 32

TWT (RTT/2.0) 1us - - 7 418 1 882 556 146 63 30 29 29

TWT (RTT/3.0) 1ms - - - - - 27 734 5 001 1 265 394 70

TWT (RTT/3.0) 100us - 28 701 4 027 1 117 359 119 48 34 31 31

TWT (RTT/3.0) 10us - 24 798 2 990 878 255 101 40 25 25 25

TWT (RTT/3.0) 1us - 22 867 2 922 882 262 93 33 27 27 27

Table 4. The number of samples required to attack a server in the US, provided that
clock synchronization has already been performed. Each row indicates what synchro-
nization iteration was used to obtain the results in that row. A dash (-) is shown if the
attack was unsuccessful or required more than 50 000 samples.

Attack Sync 1µs 2µs 5µs 10µs 20µs 50µs 100µs 200µs 500µs 1ms

Classical / - - - 18 539 1 907 530 121 40 7 7

TWT (RTT/1.5) 1ms - - - - - 18 835 3 244 584 103 71

TWT (RTT/1.5) 100us - 48 944 7 844 2 101 625 178 120 49 42 41

TWT (RTT/1.5) 10us - 45 329 6 104 1 830 468 136 96 36 34 33

TWT (RTT/1.5) 1us - 37 300 6 447 1 736 476 133 91 45 37 37

TWT (RTT/2.0) 1ms - - - - - 22 605 3 909 940 84 84

TWT (RTT/2.0) 100us - 25 782 4 998 1 330 415 143 72 43 36 36

TWT (RTT/2.0) 10us - 20 110 3 480 1 025 348 113 63 31 29 29

TWT (RTT/2.0) 1us - 21 092 3 916 1 083 317 125 61 27 27 27

TWT (RTT/3.0) 1ms - - - - - 37 500 7 141 1 541 175 164

TWT (RTT/3.0) 100us - 13 668 2 524 671 262 112 53 42 43 43

TWT (RTT/3.0) 10us 48 126 9 204 1 741 519 202 104 46 43 40 40

TWT (RTT/3.0) 1us 43 816 9 521 1 821 466 190 91 40 35 35 35


	Time Will Tell: Exploiting Timing Leaks Using HTTP Response Headers

