
HTTP!
Encrypted!
Information can be!
Stolen through!
TCP-windows

by!

Mathy Vanhoef & Tom Van Goethem

H E I S T

Agenda
• Technical background!

• Same-Origin Policy!

• Compression-based attacks!

• SSL/TLS & TCP!

• Nitty gritty HEIST details!

• Demo!

• Countermeasures

2

H E I S T

Same-Origin Policy

3

Mr. Sniffles
https://bunnehbank.com

GET /vault

H E I S T

Same-Origin Policy

3

Mr. Sniffles
https://bunnehbank.com

GET /vault

H E I S T 4

the World Wide Web

Mr. Sniffles https://bunnehbank.com

H E I S T 4

the World Wide Web

Mr. Sniffles https://bunnehbank.com

H E I S T 4

the World Wide Web

Mr. Sniffles https://bunnehbank.com

GET /vault

H E I S T 4

the World Wide Web

Mr. Sniffles https://bunnehbank.com

GET /vault

H E I S T 4

the World Wide Web

Mr. Sniffles https://bunnehbank.com

GET /vault

H E I S T 4

the World Wide Web

Mr. Sniffles https://bunnehbank.com

GET /vault

H E I S T

the World Wide Web

Mr. Sniffles https://bunnehbank.com

GET /vault

5

H E I S T 6

the World Wide Web

Mr. Sniffles https://bunnehbank.com

GET /vault

H E I S T

Agenda
• Technical background!

• Same-Origin Policy!

• Compression-based attacks!

• SSL/TLS & TCP!

• Nitty gritty HEIST details!

• Demo!

• Countermeasures

7

H E I S T

You requested:  
 /vault 

 _secret=carrots4life

8

/vault

Uncompressed Compressed

You requested:  
 /vault  

vault_secret=carrots4life

→ 51 bytes → 47 bytes

H E I S T

You requested:  
 /vault?secret=c 

 _ arrots4life

9

/vault?secret=a

→ 49 bytes

You requested:  
 /vault?secret=a 

 _ carrots4life

→ 50 bytes

/vault?secret=c

H E I S T

You requested:  
 /vault?secret=c 

 _ arrots4life

10

/vault?secret=a

→ 49 bytes

You requested:  
 /vault?secret=a 

 _ carrots4life

→ 50 bytes

/vault?secret=c

49 bytes < 50 bytes → 'c' is a correct guess

H E I S T

You requested:  
 /vault?secret=cb 

 _ arrots4life

11

/vault?secret=ca

→ 50 bytes

You requested:  
 /vault?secret=ca 

 _ rrots4life

→ 49 bytes

/vault?secret=cb

H E I S T

You requested:  
 /vault?secret=cb 

 _ arrots4life

12

/vault?secret=ca

→ 50 bytes

You requested:  
 /vault?secret=ca 

 _ rrots4life

→ 49 bytes

/vault?secret=cb

49 bytes < 50 bytes → 'ca' is a correct guess

H E I S T

Compression-based Attacks
• Compression and Information Leakage of Plaintext [FSE'02]!

• Chosen plaintext + compression = plaintext leakage!

• CRIME [ekoparty'12]!
• Exploits SSL compression!

• BREACH [Black Hat USA'13]!
• Exploits HTTP compression

13

H E I S T

Agenda
• Technical background!

• Same-Origin Policy!

• Compression-based attacks!

• SSL/TLS & TCP!

• Nitty gritty HEIST details!

• Demo!

• Countermeasures

14

H E I S T 15

GET /vault

SYN

SYN, ACK

ACK

Client Hello

Server Hello

Pre-Master Secret

TCP handshake

SSL handshake

H E I S T 16

GET /vault

encrypt( 
 GET /vault HTTP/1.1  
 Cookie: user=mr.sniffles!
 Host: bunnehbank.com!
  
)

1 TCP data packet

H E I S T 17

encrypt() = 29 TCP data packets

H E I S T 18

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

initcwnd
=
10

H E I S T 18

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

10 ACKs

initcwnd
=
10

H E I S T 18

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

10 ACKs

initcwnd
=
10

cwnd = 20

H E I S T 18

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

TCP packet 11
...

TCP packet 29

10 ACKs

initcwnd
=
10

cwnd = 20

H E I S T

HEIST

• A set of techniques that allow attacker to determine the
exact size of a network response!

• ... purely in the browser!

• Can be used to perform compression-based attacks, such
as CRIME and BREACH, in the browser

19

H E I S T

Browser Side-channels

• Returns a Promise, which resolves as soon as browser
receives the first byte of the response

20

• Returns time when response was completely downloaded

fetch('https://bunnehbank.com/vault',
 {mode: "no-cors", credentials:"include"})

performance.getEntries()[-1].responseEnd

• Send authenticated request to /vault resource!

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window

21

H E I S T 22

time

fetch('...')

TCP handshake  
complete

SSL handshake  
complete

GET /vault

initial TCP 
window sent

first byte  
received

Promise 
resolves

initial TCP 
window received

responseEnd

T1 T2

Fetching small resource: T2 - T1 is very small

H E I S T 23

time

fetch('...')

TCP handshake  
complete

SSL handshake  
complete

GET /vault

initial TCP 
window sent

first byte  
received

Promise 
resolves

initial TCP 
window received

ACK sent

second TCP 
window sent

second TCP 
window received

responseEnd

T1 T2

Fetching large resource: T2 - T1 is round-trip time

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window!

• Step 2: discover exact response size

24

H E I S T

Discover Exact Response Size

25

initcwnd second TCP window

Resource size: ?? bytes Reflected content: x bytes

H E I S T

Discover Exact Response Size

26

initcwnd second TCP window

Resource size: ?? bytes Reflected content: x/2 bytes

H E I S T

Discover Exact Response Size

27

initcwnd second TCP window

Resource size: ?? bytes Reflected content: x/2+x/4 bytes

H E I S T 28

initcwnd second TCP window

Resource size: ?? bytes Reflected content: y bytes

After log(n) checks, we find: 
! y bytes of reflected content = 1 TCP window!
! y+1 bytes of reflected content = 2 TCP windows  
 → resource size = initcwnd - y bytes

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window!

• Step 2: discover exact response size!

• Step 3: do the same for large responses (> initcwnd)

29

H E I S T

Determine size of large responses

• Large response = bigger than initial TCP window

• initcwnd is typically set to 10 TCP packets!
• ~14kB!

• TCP windows grow as packets are acknowledged!

• We can arbitrarily increase window size

30

H E I S T 31

CWND = 10
GET /foo

10 TCP packets

10 ACKs
CWND = 20GET /vault

= 19 TCP data packets

19 TCP packets

19 ACKs sent in single  
TCP window

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window!

• Step 2: discover exact response size!

• Step 3: do the same for large responses (> initcwnd)!

• Step 4: if available, leverage HTTP/2

32

H E I S T

Leveraging HTTP/2

• HTTP/2 is the new HTTP version!
• Preserves the semantics of HTTP!

• Main changes are on the network level!
• Only a single TCP connection is used for parallel requests

33

H E I S T

Leveraging HTTP/2

• Determine exact response size without reflected content
in the same response!

• Use (reflected) content in other responses on the same
server!
• Note that BREACH still requires (a few bytes of) reflective content

in the same resource

34

H E I S T 35

CWND = 10
GET /reflect?x=...

GET /vault

= 6 TCP packets

/reflect?x=... = 3 TCP packets

contains both 
/reflect  

and /vault

9 TCP packets

9 ACKsresponseEnd

Promise 
resolves

H E I S T 36

CWND = 10
GET /reflect?x=...

1 TCP packet

GET /vault

= 6 TCP packets

1 ACK

/reflect?x=... = 5 TCP packets

contains both 
/reflect and 

part of /vault

CWND = 20

10 TCP packets

10 ACKs

responseEnd

Promise 
resolves

H E I S T

DEMO

38

H E I S T

Other targets
• Compression-based attacks!

• gzip compression is used by virtually every website!

• Size-exposing attacks!
• Uncover victim's demographics from popular social networks!

• Reveal victim's health conditions from online health websites!

•!

• Hard to find sites that are not vulnerable

39

H E I S T

Countermeasures
• Browser layer!

• Prevent side-channel leak (infeasible)!

• Disable third-party cookies (complete)!

• HTTP layer!
• Block illicit requests (inadequate)!

• Disable compression (incomplete)!

• Network layer!
• Randomize TCP congestion window (inadequate)!

• Apply random padding (inadequate)

40

H E I S T

Conclusion
• Collection of techniques to discover network response size in

the browser, for all authenticated cross-origin resources!

• Side-channel originates from subtle interplay between
multiple layers!

• Allows for compression-based and size-exposing attacks!

• HTTP/2 makes exploitation easier!

• Many countermeasures, few that actually work

41

Questions?

Mathy Vanhoef!
@vanhoefm!

mathy.vanhoef@cs.kuleuven.be

Tom Van Goethem!
@tomvangoethem!

tom.vangoethem@cs.kuleuven.be

H E I S T

