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ABSTRACT
We use model-based testing techniques to detect logical vul-
nerabilities in implementations of the Wi-Fi handshake. This
reveals new fingerprinting techniques, multiple downgrade
attacks, and Denial of Service (DoS) vulnerabilities.

Stations use the Wi-Fi handshake to securely connect with
wireless networks. In this handshake, mutually supported
capabilities are determined, and fresh pairwise keys are ne-
gotiated. As a result, a proper implementation of the Wi-Fi
handshake is essential in protecting all subsequent traffic.
To detect the presence of erroneous behaviour, we propose a
model-based technique that generates a set of representative
test cases. These tests cover all states of the Wi-Fi hand-
shake, and explore various edge cases in each state. We then
treat the implementation under test as a black box, and ex-
ecute all generated tests. Determining whether a failed test
introduces a security weakness is done manually. We tested
12 implementations using this approach, and discovered ir-
regularities in all of them. Our findings include fingerprint-
ing mechanisms, DoS attacks, and downgrade attacks where
an adversary can force usage of the insecure WPA-TKIP ci-
pher. Finally, we explain how one of our downgrade attacks
highlights incorrect claims made in the 802.11 standard.
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1. INTRODUCTION
Nowadays most Wi-Fi networks are secured using Wi-Fi

Protected Access 2 (WPA2) [1]. Indeed, even public hotspots
can now use WPA2 encryption thanks to the Hotspot 2.0
program [32]. Moreover, once vendors implement Oppor-
tunistic Wireless Encryption [15], open Wi-Fi networks can
also use encryption (though without authentication). This
follows the advice of RFC 7435, which states that encryp-
tion should be used even when authentication is not avail-
able [12]. All such encrypted networks rely on the Wi-Fi
handshake to securely negotiate fresh pairwise keys. These
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keys are used to encrypt normal traffic. Therefore, a correct
and secure implementation of the Wi-Fi handshake is essen-
tial to assure all transmitted data is properly protected.

The Wi-Fi handshake, which relies on a shared master
key to negotiate fresh pairwise keys, has previously been for-
mally analyzed [16, 17, 23, 30]. However, we are not aware
of any works that test implementations of the (4-way) hand-
shake. While implementations of certain enterprise authen-
tication mechanisms have been inspected [24, 5], these mech-
anisms negotiate master keys, and hence do not include the
4-way handshake. In other works merely the first stage of the
Wi-Fi handshake is tested, which consists only of network
discovery using unprotected management frames (i.e. bea-
cons and probe responses). Additionally, these works only
try to detect common programming mistakes such as buffer
overflows, NULL pointer dereferences, and so on. In other
words, the 4-way handshake stage, which negotiates fresh
pairwise keys, has not yet been tested. In contrast, net-
work protocols such as TLS have undergone rigorous testing
for both logical vulnerabilities and common programming
mistakes during various stages of the handshake [3, 11, 25].
Inspired by these works, we show how to rigorously and effi-
ciently detect logical implementation vulnerabilities during
various stages of the Wi-Fi handshake.

To systematically test implementations of the Wi-Fi hand-
shake, we propose a model-based technique. First, we model
the Wi-Fi handshake by defining the sequence of messages
exchanged in a normal handshake. In this model, only the
type of a message is taken into account, and dynamic pa-
rameters such as nonces and keys are abstracted. We then
define a set of test generation rules that take this model
(i.e., sequence of abstract messages) and generate a set of
invalid or unexpected handshake executions. For example,
a rule may generate an execution where a required message
is skipped, or a message has an invalid integrity check. If
an implementation does not reject such faulty executions, an
irregularity has been detected. We then manually inspect ir-
regularities to determine whether they pose a security risk.
By defining appropriate test generation rules, we can gener-
ate a representative set of test cases, which explore various
edge cases in each stage of the Wi-Fi handshake.

We apply our testing technique against 12 authenticator-
side implementations of the Wi-Fi handshake. This un-
covered irregularities in all implementations, and revealed
multiple vulnerabilities. Irregularities can be abused to fin-
gerprint devices. Notable vulnerabilities are downgrade at-
tacks against Broadcom and MediaTek-based routers. Here,
an adversary can force usage of WPA-TKIP instead of the
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more secure AES-CCMP. Intriguingly, our downgrade at-
tack against Broadcom also highlights incorrect claims made
in the 802.11 standard. Also notable are DoS attacks against
Windows 7 and OpenBSD. Additionally, we found imple-
mentation bugs that, although they do not directly lead to
practical attacks, are concerning. We consider these results
surprising since, compared to handshakes used in protocols
like TLS, the Wi-Fi handshake is not that complex (see Sec-
tion 2). Put differently, even though the Wi-Fi handshake
is relatively simple, our testing technique still managed to
detect a substantial number of bugs and vulnerabilities.

To summarize, our main contributions are:

• We model the Wi-Fi handshake, and define test gener-
ation rules that operate on this model, with as goal to
generate a representative set of test cases. These tests
explore edge cases at each stage of the handshake.

• We create a tool that can execute the generated tests
against authenticator-side implementations of the hand-
shake, and use it to test 12 concrete implementations.

• We report several vulnerabilities, as well as new finger-
printing techniques, that were found during our tests.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces (a model of) the Wi-Fi handshake. We
describe our testing technique in Section 3, and present the
results of applying it to several implementations in Section 4.
Finally, we summarize related work in Section 5 and con-
clude in Section 6.

2. THE Wi-Fi HANDSHAKE
In this section we introduce relevant aspects of the 802.11

standard [20], and present a model of the Wi-Fi handshake.

2.1 Technical and Historical Background
The original 802.11 standard supported a rudimentary se-

curity protocol called Wired Equivalent Privacy (WEP). Un-
fortunately, WEP contains major design flaws and is consid-
ered completely broken [13, 26, 4]. To address these security
issues, the IEEE designed both a short-term and long-term
solution. Their long-term solution is called (AES-)CCMP.
It uses AES in counter mode for confidentiality, and CBC-
MAC for authenticity. However, because many vendors im-
plemented the cryptographic primitives of WEP in hard-
ware, older WEP-compatible devices would not be able to
support CCMP. To address this issue, the (WPA-)TKIP pro-
tocol was designed as a short-term solution. Similar to WEP,
it is based on the RC4 cipher, meaning WEP-capable hard-
ware can support TKIP using only firmware upgrades.

Due to the slow standardization process of the IEEE, the
Wi-Fi Alliance already began certifying devices based on
a draft version of the 802.11i amendment. This certifica-
tion program was called Wi-Fi Protected Access (WPA),
and required support for TKIP, but did not mandate sup-
port for CCMP. For clarity, we refer to it as WPA1. Un-
fortunately, this led to the common misunderstanding that
WPA1 is synonymous with TKIP. Once 802.11i was stan-
dardized, the Wi-Fi Alliance started the WPA2 certifica-
tion program. This certification requires that a device sup-
ports CCMP, but does not mandate support for TKIP. This
led to another common misconception, namely that WPA2
means (AES-)CCMP is used, while in reality a WPA2 net-
work might still use (or support) TKIP.

Since WPA1 and WPA2 are both based on the 802.11i
standard, they are nearly identical to each other. Neverthe-
less, because WPA1 was based on a draft of the standard,
and WPA2 on the final version, there are some minor techni-
cal differences between them. Briefly summarized, the most
important differences for us are:

• The RSNE is encoded somewhat differently in WPA1
than in WPA2 (see Section 2.2).

• In WPA1, the group key handshake is part of the Wi-Fi
handshake, and transports the group key. In WPA2,
this key is transported in the 4-way handshake, and no
group key handshake is required (see Section 2.5.4).

• In WPA2, message 4 of the 4-way handshake must
have the Secure flag set in the key info flags, while for
WPA1 this bit must not be set (see Section 2.5.4).

• In WPA2, the descriptor type field in EAPOL-Key
frames equals 2, while it should equal 254 when us-
ing WPA1 (see Section 2.5).

In all other aspects, WPA1 is technically identical to WPA2.
Therefore, unless mentioned otherwise, we will treat WPA1
as identical to WPA2. Finally, we use the term Robust Secu-
rity Network (RSN) to refer to 802.11i security mechanisms
in general (i.e. it can refer to both TKIP and CCMP).

We remark that usage of TKIP is being discouraged by
the Wi-Fi Alliance [33]. However, WPA2-certified devices
are still allowed to support TKIP and CCMP simultane-
ously [33]. In practice this means more than half of all en-
crypted networks still support TKIP [29]. Depending on the
software these networks use, it means they could be vulner-
able to one of our downgrade attacks (see Section 4).

2.2 Stage 1: Network Discovery
Wireless stations can discover networks by passively lis-

tening for beacons, or by actively sending probe requests.
When an AP receives a probe request, it will respond with a
probe response. This process is shown in stage 1 of Figure 1.
Both beacons and probe responses contain the name and
capabilities of the wireless network. Among other things,
this includes the Robust Security Network information Ele-
ment (RSNE). This element contains the supported pairwise
cipher suites of the network, the group cipher suite being
used, and the security capabilities of the AP. In our model,
the cipher suite can be either TKIP or CCMP. The bit-wise
encoding of the RSNE differs between WPA1 and WPA2.
Nevertheless, in both WPA versions, exactly the same infor-
mation is being represented.

Once the client has found a network to connect to, the
actual handshake can start. During the handshake the client
is generally called the supplicant, and the access point is
called the authenticator. In this paper we treat the terms
authenticator and AP as synonyms.

2.3 Stage 2: Authentication and Association
In the second stage, the supplicant starts by (mutually)

authenticating with the authenticator. Once authenticated,
the supplicant continues by associating with the network.
This processes is illustrated in stage 2 of Figure 1.

The 802.11 standard defines four authentication methods:
Open System authentication, Shared Key authentication,
Fast BSS Transition (FT), and Simultaneous Authentication
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Figure 1: Frames sent in the 802.11 handshake, in-
cluding their most important parameters. Optional
stages or parameters are shown in (dashed) gray.

of Equals (SAE) [20, §4.5.4.2]. SAE offers password-based
authentication, and claims to be resistant against passive at-
tacks, active attacks, and dictionary attacks [14]. However,
few of the devices we tested support SAE, and hence we ex-
clude it from our model of the Wi-Fi handshake. Fast BSS
Transition relies on keys derived during a previous connec-
tion with the network. Additionally, it embeds other stages
of the handshake in the authentication and reassociation
frames. This reduces the roaming time when a supplicant
moves from one AP to another. However, because it is rarely
supported on commodity routers, we also exclude it from our
model. Shared Key authentication is based on WEP, and
deprecated due to inherent security weaknesses [20, §11.2.1].
Therefore, it is commonly disabled, and we can also ex-
clude it from our model. In other words, during the first
authentication stage, we only have to consider Open Sys-
tem authentication. It allows any supplicant to successfully
authenticate. On a network using RSN security, the actual

authentication will be performed at stage 4 during the 4-way
handshake.

Once authenticated, the supplicant continues by associat-
ing to the network. This is done by sending an association
request to the AP (see Figure 1). It informs the AP of the
features that the supplicant supports (e.g. the supported bit
rates). More importantly, at this stage the supplicant also
chooses the pairwise and group cipher suites it wants to use.
This choice is encoded in an RSNE element. If the suppli-
cant encodes the RSNE using the conventions of WPA1, the
WPA1 variant of the handshake will be executed. Other-
wise, the WPA2 variant will be executed. Because the AP
also uses an RSNE element to advertise its supported list of
cipher suites, we will use the term RSNE-Chosen when the
RSNE encodes the chosen cipher suites. The AP replies with
an association response, informing the supplicant whether
the association was successful or not.

2.4 Stage 3: 802.1x Authentication
The third stage is optional, and consist of 802.1x authenti-

cation to a back-end Authentication Server (e.g. a RADIUS
server). During this stage the authenticator acts as a re-
lay between the supplicant and the Authentication Server.
In practice 802.1x is commonly used in enterprise networks,
where users can login using a username and password. The
end result of this stage is that the supplicant and authenti-
cator share a secret Pairwise Master Key (PMK). Because
(parts of) this stage have already been investigated in other
works [2, 18, 8, 24, 5], or are based on TLS [6, 3, 11, 25], we
do not include this stage of the handshake in our model. In-
stead, we assume the supplicant and authenticator already
share a secret PMK. It can be a cached PMK from an earlier
802.1x session, or one derived from a pre-shared key.

2.5 Stage 4: The 4-way Handshake
The fourth stage consists of a 4-way handshake. It pro-

vides mutual authentication based on the PMK, detects pos-
sible downgrade attacks, and negotiates a fresh session key
called the Pairwise Transient Key (PTK). Downgrade at-
tacks are detected by cryptographically verifying the RSNEs
received during the network discovery and association stage.
The PTK is derived from the Authenticator Nonce (ANonce),
Supplicant Nonce (SNonce), and the MAC addresses of both
the supplicant and authenticator. The 4-way handshake
may also transport the current Group Temporal Key (GTK)
to the supplicant.

The 4-way handshake is defined using EAPOL-Key frames.
Figure 2 illustrates the structure of these frames. We will
briefly discuss the most important fields. First, the descrip-
tor type determines the remaining structure of an EAPOL-
Key frame. Although WPA1 uses the value 254 for this
field, and WPA2 uses the value 2, both define an identical
remainder structure of the EPAOL-Key frame.

Following this 5-byte header, is the key information field.
It consists of a 3-bits key descriptor version subfield, and
eight (one-bit) flags called the key info flags. The key de-
scriptor field defines the cipher suite that is used to protect
the frame. This is either AES with HMAC-SHA1, or RC4
with HMAC-MD5. The choice between these cipher suites,
and hence the value of the key descriptor field, depends on
the pairwise RSN cipher being negotiated. More precisely, if
CCMP is chosen, then AES with SHA1 is used. Otherwise
RC4 with MD5 is used. The replay counter field is used
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Figure 2: Layout of EAPOL-Key frames [9, §11.6.2].

to detect replayed frames. When the supplicant replies to
an EAPOL-Key frame of the authenticator, it must use the
same replay counter as the one in the previously received
EAPOL-Key frame. The authenticator always increments
the replay counter after transmitting a frame.

Finally, the integrity of the frame is protected using a
Message Integrity Check (MIC), and the key data field is
encrypted if it contains sensitive data. Recall that the used
encryption algorithm is specified in the key descriptor field.

When using WPA2, the receiver of an EAPOL-Key frame
can distinguish among the different messages of the hand-
shake by inspecting the key info flags. To refer to the n-th
message of the 4-way handshake, we simply use the term
message n. Additionally, we say that the 4-way handshake
negotiates TKIP or CCMP encryption, when the chosen
pairwise cipher is TKIP or CCMP, respectively.

In Figure 1, which illustrates our model of the Wi-Fi hand-
shake, we use the following notation:

EAPOL-Key(MsgType, Nonce, MIC; Key Data)

It represents a frame with key info flags that identify a mes-
sage of type MsgType, and with the given nonce (if present).
When the MIC parameter is present, the frame is protected
using a message integrity check. Finally, all parameters after
the semicolon are stored in the key data field (see Figure 2).
The notation Encrypted{GTK} is used to stress that, if the
GTK is included, it must be encrypted using the PTK.

2.5.1 Message 1
The first message of the 4-way handshake stage is sent

by the authenticator, and contains the randomly generated
ANonce of the authenticator. The key info flags that must
be set in this message are Pairwise and Ack, which are rep-
resented by the label Msg1. Note that this message is not
protected by a MIC, and hence can be forged by an attacker.

When the supplicant receives this message and learns the
ANonce, it posses all information to calculate the PTK.

2.5.2 Message 2
This message contains the random SNonce of the suppli-

cant, and is protected using a MIC. The key info flags that
must be set are Pairwise and MIC, which are represented by

the label Msg2. The Key Data field contains the authenti-
cated RSNE-Chosen element, containing the chosen cipher
suites by the supplicant that were previously sent in the
(re)association request.

When the authenticator receives this message, it can cal-
culate the PTK, verify the MIC, and compare the (authen-
ticated) RSNE-Chosen in this message with the one that
was previously received in the association request. If these
RSNEs differ, the handshake is aborted.

2.5.3 Message 3
Message 3 is send by the authenticator. It again contains

the ANonce [16, §5.3], and is secured by a MIC. The required
key info flags are represented by Msg3, and are Pairwise,
MIC, and Secure. The Key Data field includes the RSNE,
which contains the supported cipher suites of the AP. Ad-
ditionally, if WPA2 is used, it also includes the encrypted
GTK. If WPA1 is used, the GTK is transferred to the sup-
plicant using a group key handshake (see Section 2.6).

When the supplicant receives this message, it determines
whether the (authenticated) RSNE in this message is iden-
tical to the one previously received in beacons and probe
requests. If they differ, a downgrade attack has been de-
tected, and the handshake is aborted.

2.5.4 Message 4
The supplicant sends message 4 to the authenticator, to

confirm that the handshake has been successfully completed.
This last message is also protected by a MIC. When WPA2
is used, the required key info flags are Pairwise, MIC, and
Secure. However, for WPA1, the required key flags does not
include Secure. We use Msg4 to represent the required key
info flags for both WPA versions. Note that message 2 and
message 4 have the same required key info flags if WPA1
is used. The only way to differentiate message 2 and 4 in
this situation is to see whether there is data present in the
key data field. Once the authenticator received message 4,
normal (encrypted) data frames can be transmitted.

Although the 802.11 standard claims that this message
serves no cryptographic purpose [20, §11.6.6.8], we will show
in Section 4.3 that this message is essential in preventing
downgrade attacks.

2.6 Stage 5: Group Key Handshake
The last stage is required when WPA1 is used to transport

the group key to the supplicant. This key protects broad-
cast and multicast traffic. In both WPA1 and WPA2, this
procedure is also used to periodically renew the group key.

In Figure 1 we use the notation Encapsulated{·} to denote
that the complete EAPOL-Key frame may also be protected
using link-layer encryption (e.g., using TKIP or CCMP).

3. TESTING TECHNIQUE
In this section we introduce our testing technique. First

we describe our general approach, and then we present vari-
ous test generation rules which are designed to trigger erro-
neous behaviour in the implementation under test. Finally,
we explain how the generated tests are executed in practice.

3.1 General Approach
Our testing technique is designed to test all stages of the

Wi-Fi handshake in a black-box manner. This is achieved by
taking our model of the Wi-Fi handshake, and applying test



generation rules on it to generate a set of test cases. A test
case is essentially a sequence of messages to be transmitted
to the authenticator, the expected replies, and a method
to determine whether this exchange resulted in a successful
connection or not. Ideally, the set of generated test cases
covers all (possible erroneously handled) edge cases at each
stage of the handshake. However, in practice we can only
execute a finite number of test cases, meaning we must define
representative and well-chosen test generation rules.

To construct a concrete test case, we start from our hand-
shake model defined in Section 2. Recall that our model of
the handshake is essentially a sequence of abstract messages
exchanged in a normal handshake. In particular, this can be
a successful handshake using WPA1 or WPA2, negotiating
either TKIP or CCMP as the pairwise cipher suite. Hence,
we have four fundamental instantiations of a normal hand-
shake execution. These normal executions of the handshake
can already be treated as (trivial) tests which must always
be accepted by the Implementation Under Test (IUT). More
interesting tests are created by modifying these four funda-
mental executions. To do this, we take a fundamental ex-
ecution, and modify it according to a given test generation
rule. These rules modify the execution of the handshake,
with as goal to determine how the IUT reacts to various
(correct and incorrect) modifications of the handshake.

Our test generation rules are inspired by an analysis of the
specification, rudimentary code inspections of some imple-
mentations, and already known (and patched) implementa-
tion vulnerabilities. This step, namely defining an appropri-
ate set of test generation rules, is arguably the most impor-
tant step in our technique. After all, these rules determine
the types of flaws and vulnerabilities that can be discovered.

When a generated test case has failed, manual inspection
is required to determine the precise type of bug present in
the implementation. If the implementation is open source,
this can be done by inspecting the source code. Otherwise,
additional black-box tests are performed to study the flaw
in more detail. Once the bug is properly understood, we can
investigate whether it can be abused by an adversary. Any
possible attacks are then separately implemented and tested
to confirm their validity.

3.2 Test Generation Rules
We define two categories of test generation rules. Rules

in the first category manipulate messages as a whole, while
rules in second category only change parameters (i.e., fields)
of messages. The test generation rules also define whether
a specific modification should result in a failed or successful
handshake. For example, skipping a message should result in
a failed connection, whereas retransmitting a message should
still result in a successful connection.

Our fist category of rules can be regarded as generaliza-
tions of the Skip and Repeat heuristic rules that Beurdouche
et al. used to generate so-called deviant traces [3]. We define
two test generation rules in this category:

1. Dropped messages: Generate test cases where each
message, together with its expected responses (if any),
is removed.

2. Injected messages: Generate test cases where each
message allowed in a handshake, together with its ex-
pected responses (if any), is inserted before every mes-
sage that is normally transmitted. Note that this rule

also tests whether an implementation properly handles
retransmitted messages.

The second category of rules changes (implicit) parame-
ters of messages. These can be regarded as generalizations
of the Hop rule that Beurdouche et al. used [3]. We use the
following set of rules:

3. Invalid RSNE (cipher suite): Generate test cases
where the association request and message 2 have a
modified RSNE. In particular, we generate test cases
such that all possible cipher suite combinations are
tested. Recall from Section 2 that valid values for the
pairwise cipher are TKIP, CCMP, or TKIP/CCMP.
The group cipher suite is either TKIP or CCMP.

4. Invalid EAPOL-Key descriptor type: Generate
test cases where the descriptor type in each EAPOL-
Key frame is switched to an unexpected value. In
particular, we switch value 2 (used by WPA2) with
value 254 (used by WPA1), and visa versa. We also
generate test cases where a random value other than 2
and 254 is being used.

5. Invalid EAPOL-Key key info flags: Generate test
cases that together try all possible combinations of key
info flags. We test all combinations of the eight key
flags: Pairwise, Install, Ack, MIC, Secure, Error,
Requested and Encrypted. This results in a total of
28 possible combinations for every EAPOL-Key frame
in the handshake.

6. Switched EAPOL-Key cipher suite: Generate test
cases where each EAPOL-Key message is protected us-
ing a different cipher suite. This implies changing the
value of the key descriptor version subfield (see Sec-
tion 2.5). That is, AES with SHA1 is replaced by RC4
with MD5, and visa versa.

7. Invalid EAPOL-Key replay counter: Generate
test cases where the replay counters in EAPOL-Key
frames are adjusted to be either lower or higher than
the correct replay counter.

8. Invalid EAPOL-Key nonce: Generate test cases
where a nonce is added to EAPOL-Key frames that
should not be containing a nonce. Its value can be
copied from either the supplicant or authenticator, or
it can be randomly generated.

9. Invalid EAPOL-Key MIC: Create test cases where
each EAPOL-Key frame has an invalid MIC, with the
MIC flag either set or not set in the key info flags.

We assume that these rules test independent code in an
implementation. This means combining several rules should
not increase the number of discovered bugs. In other words,
we will not combine rules when generating test cases. How-
ever, inspired by a DoS attack that poisons the supplicant
with a forged ANonce [16], we found one useful exception to
this assumption. A combination of rule 2 with rule 8 gives:

10. Injected Nonce: This rule injects a forged message 1
or message 2 after, and before, a valid message 1 or
message 2, respectively. The injected message contains
a random nonce and an invalid MIC, with the MIC flag
either set or not set in the key info flags.



Applying all the above test generation rules on the four
fundamental instantiations of the handshake, always results
in a finite number of test cases. Moreover, most of the gen-
eration rules are deterministic. Only rule 8 contains nonde-
terminism, but it is unlikely to influence the outcome of a
test case. This means that if we rerun all the test cases, we
will obtain the same results. Hence our testing technique,
in contrast with random fuzzing, creates repeatable results.

3.3 Executing Test Cases
We implemented a test harness that executes the gener-

ated test cases. Because this is a large, complex, and time
consuming task, we only support testing authenticator-side
implementations of the handshake. The test harness trans-
lates each abstract message in the test case into a concrete
message that can be transmitted. For example, it fills in
the correct MAC addresses, nonce values, replay counters,
and so on. Optionally, it encrypts the appropriate fields
of the frame, calculates a valid MIC value, etc. In order
to do this, some state information needs to be maintained.
For example, upon receipt of message 1, the generated PTK
must be stored. In general, state information is updated
after receiving and processing every message. When a mes-
sage is transmitted by the test harness, the keys and replay
counters are taken from the stored state.

In all test cases, our test harness first waits for a beacon.
This is done to confirm that the authenticator is still up and
running. If during the execution of a test case a deauthenti-
cation message is received, we can conclude a connection has
failed. As a result, we can already stop executing the test
case, saving us from having to explicitly determine whether
a successful connection was established or not. Timeouts
are used to identify if an authenticator is no longer respond-
ing while executing a test case. The timeout interval can be
adjusted depending on the implementation being tested.

3.4 Validating and Resetting the Connection
After running a test case, we have to determine whether

the handshake resulted in a valid connection or not. This
can then be compared to the expected result. For example,
some generation rules should not negatively impact a hand-
shake execution (e.g. retransmitting messages), while other
rules should result in a failed connection (e.g. dropping mes-
sages). Merely listening for deauthentication frames, which
are transmitted when the authenticator aborts an ongoing
handshake, is not sufficient. This is because it may be that,
according to the authenticator, the handshake is not yet
completed, meaning it is still waiting for certain messages.

To verify if a connection was established or not, we try to
communicate with the AP using normal (encrypted) data
frames. We do this using the link-layer Address Resolution
Protocol (ARP), avoiding the need to request an IP address.
In particular we send an ARP request to the authenticator
(gateway), where we request the MAC address of the gate-
way. Note that the gateway’s IP address is known by the
test harness. If the connection was successful, the gateway
will reply to the sender MAC address of the ARP request.

Finally, we have to reset the connection after running a
test case. This must be done both if the connection was
successful or unsuccessful. Otherwise, the authenticator will
be in an unknown state, possibly affecting the execution of
any subsequent test cases. Fortunately, this can easily done
by sending a deauthentication frame to the authenticator.

Table 1: Implementations of the Wi-Fi handshake
that were tested for logical vulnerabilities.

Impl. Name Version Hardware
Broadcom 5.10.56.46 RT-N10
Broadcom 5.10.85.0 WAG320N
Hostapd 2.6 TL-WN722N
OpenBSD 6.0 generic 2148 WL-172
Telenet Ver 30.10.2016 Home gateway
MediaTek 3.0.0.9 RT-AC51U
Windows 7 build 7601 TL-WN722N
Windows 10 build 10240 TL-WN722N
Apple Airport 7.6.7 Time Capsule
Apple macOS 10.12 (Sierra) MacBook Pro
Aerohive Ver 1.11.2016 HiveAP 330
Aironet (Cisco) Ver 1.11.2016 Aironet 1130 AG

4. RESULTS
In this section we present the results of applying our test-

ing technique to 12 authenticator-side implementations of
the Wi-Fi handshake. Table 1 lists all the tested implemen-
tations. Note that we tested multiple versions of some.

First, our results show that all implementations exhibit
different behaviour, which can be abused to fingerprint an
implementation. Second, we discovered new types of vulner-
abilities that are present in several devices. Finally, we ana-
lyze implementation-specific vulnerabilities and deviations.

4.1 Fingerprinting Mechanisms
Any difference in how an implementation processes certain

messages, or uses certain fields, can be used to fingerprint
and identify the implementation. We discovered two fields
of EAPOL-Key frames that are particularly useful for this
purpose. They are the key info field, and the descriptor type
field. To fingerprint devices based on these fields, we must
be able to execute a (partial) Wi-Fi handshake with the de-
vice. This means that we must posses credentials allowing
access to the underlying network, or that unauthenticated
encryption must be supported. We do not consider these se-
rious limitations. For example, Hotspot 2.0 and opportunis-
tic wireless encryption both offer encryption to untrusted
devices [32, 15]. Similarly, in an enterprise network such as
eduroam, devices may have access to the network, but they
are not considered trusted. In other words, we can safely
assume that an adversary can execute a Wi-Fi handshake
with a targeted device. Hence she can determine how the
target processes certain EAPOL-Key frames. The resulting
behavioral fingerprint can then be used to identify the im-
plementation, enabling implementation-dependent attacks.

4.1.1 EAPOL-Key Info Flags Fingerprint
Our first observation is that most vendors require, or pro-

hibit, different key info flags in messages received during
the Wi-Fi handshake. Recall from Section 2.5 that the
key info field of an EAPOL-Key frame contains eight one-
bit flags. Normally these flags identify properties of the
message, which in turn can be used to distinguish between
the different messages in a handshake. The eight flags are:
Pairwise, Install, Ack, Mic, Secure, Error, Requested,
and enCrypted. We will use the capitalized letter of each
flag as a shorthand to represent the flag.

The key info fingerprint is defined as the required, al-



Table 2: Needed (i.e. required), allowed, and prohibited key info flags in EAPOL-Key frames sent by the
supplicant. The capital letter of each flag is used as a shorthand: Pairwise, Install, Ack, Mic, Secure, Error,
Requested, and enCrypted. An underlined Flag is WPA2-specific, while a crossed out�Flag is WPA1-specific.

Message 2 Message 4 Group message 2
Needed Allowed Prohibited Needed Allowed Prohibited Needed Allowed Prohibited

Broadcom PM ISERC A PMS I�SERC A MS IRC PAE
Hostapd PM ISEC A�SR PM ISEC AR MS IERC PA
OpenBSD PM ISEC AR PM ISEC AR M ISEC PAR
Telenet PM ISC AER PM ISC AER

message is ignored
MediaTek PM IC ASER PM ISC AER
Windows PM ISER AC PMS IER AC

Device only supports WPA2,
meaning the handshake never
includes group message 2.

Apple OSes PM ISEC AR PMS IEC AR
Aerohive PM ISEC AR PM ISEC AR
Aironet PM ISEC AR PM ISEC AR

lowed, and prohibited key info flags for each message in the
Wi-Fi handshake. Table 2 contains the resulting fingerprint
of all implementations. Note that MediaTek and Telenet
to do require reception of group message 2 (which is only
present in a WPA1 handshake). Since this message is effec-
tively ignored, we cannot construct a fingerprint of it. For
Broadcom and hostapd, there is a small difference in the
treatment of flags depending on whether WPA1 or WPA2
is used. Broadcom rightly requires the Secure flag in mes-
sage 4 when WPA2 is used, while this flag is optional for
WPA1. In contrast, hostapd prohibits usage of the Secure

flag for message 2 if WPA1 is used, while it allows this flag
for WPA2. Interestingly, hostapd instantly deauthenticates
the supplicant if WPA1 is used and message 2 has the Se-

cure bit set, instead of simply ignoring the message. For
other prohibited flags, hostapd simply ignores the EAPOL-
Key message. Also note that Aerohive and Aironet are the
only two implementations that have an identical key info
flags fingerprint. Nevertheless, we can still distinguish them
using our next fingerprinting mechanism.

For all implementations the Pairwise flag must be set if,
and only if, the message is part of the 4-way handshake.
Similarly, during the group key handshake, the Pairwise

flag is always prohibited. We also remark that message 2
and 4 have the same set of required and prohibited flags in
certain implementations. This means the key flags are not
being checked to determine whether it is message 2 or 4.
Instead, these implementations likely differentiate between
message 2 and 4 by checking if the message contains an
RSNE element or not. In a normal handshake, message 4
never contains an RSNE (see Figure 1).

Finally, different versions of Broadcom, Windows, and
Apple implementations, all have the same key info finger-
print. Hence the key info fingerprint can generally be used
to distinguish different implementations, but it cannot be
used to identify specific versions of an implementation.

4.1.2 EAPOL-Key Descriptor Type Fingerprint
Our second observation concerns the descriptor type field

of an EAPOL-Key frame. It should contain the value 2 if
WPA2 is used, and 254 if WPA1 is used. In principle this
field defines the remaining layout of the EAPOL-Key frame.
However, this layout is identical for both WPA1 and WPA2.
Hence the values 2 and 254 are equivalent in practice. Nev-
ertheless, not all implementations treat these values as being
identical. Some require that the value matches the type of

Table 3: Allowed values for the descriptor type field.
Any means all byte values are allowed, valid means
it must be either 2 or 254, and match means it must
match the type of handshake being executed.

Impl. Message 2 Message 4 Group Msg. 2
Broadcom valid valid valid
Hostapd valida valida valida

OpenBSD match match match
Telenet valid valid

ignoredb

MediaTek valid valid
Windows 7 match match

not applicablec
Windows 10 match match
Apple OSes any any
Aerohive valid valid
Aironet match match
a This is for WPA2 handshakes. For WPA1 handshakes,

hostapd only allows descriptor type value 254.
b For these implementations, group message 2 is not re-

quired to complete the handshake.
c These devices only support WPA2, meaning the hand-

shake never includes group message 2.

handshake being executed, some allow both values, and even
others allow any byte value. Table 3 gives an overview of
the behaviour of each implementation. The difference in how
this field is treated by each implementation can be used to
fingerprint an implementation.

4.2 TKIP Countermeasures DoS
Surprisingly, several implementations incorrectly imple-

ment the TKIP countermeasure procedure. This procedure
is a defense mechanism designed to protect the weak Mes-
sage Integrity Check (MIC) algorithm used by TKIP. Al-
though better message integrity algorithms were available
when TKIP was designed, they were too computationally
expensive for old WEP-compatible hardware. Therefore a
custom but weak algorithm called Michael is used. To mit-
igate active attacks against Michael, a countermeasure pro-
cedure is activated by the AP, when two frames with a wrong
MIC are received within one minute. This procedure kicks
all clients using TKIP off the network, clears all keys used
by TKIP, and disables any associations that request TKIP
as the pairwise or group cipher suite. When a supplicant re-
ceives a frame with a wrong MIC, it informs the AP of this



by sending a MIC failure report. This report is an EAPOL-
Key frame with the MIC, Error, and Request key info flags
set. Note that these reports are automatically generated
using test generation rule 5 of our testing technique (see
Section 3.2). The AP treats a MIC failure report similar to
receiving a TKIP frame with a wrong MIC. Hence, if the
AP receives two MIC failure reports within a minute, the
TKIP countermeasures are activated.

We discovered several flaws in how MIC failure reports
are handled by implementations. Note that an attacker can
cause a client to send a failure report by capturing a TKIP
packet, modifying it, and then injecting the packet [28]. In-
jecting a failure report in a CCMP-only network requires the
proper credentials. However, due to the rise of Hotspot 2.0
and opportunistic encryption, this is not a major limitation.

4.2.1 Impossible TKIP Countermeasures
When a network does not allow TKIP, supplicants should

never be sending MIC failure reports to the AP. After all,
in this situation it is impossible that the supplicant received
a frame with a wrong TKIP MIC. Nevertheless, Broadcom,
Windows 10, and Aerohive, accept MIC failure reports even
if the network is configured to only use CCMP. Their coun-
termeasure procedure kicks all stations of the network, in-
cluding those that are not using TKIP. Additionally, Win-
dows 10 and Aerohive refuse all connections during the coun-
termeasure procedure, even if the station only wishes to
use CCMP. This means a malicious supplicant can render a
CCMP network completely unusable for one minute, simply
by sending two MIC failure reports. While Broadcom’s im-
plementation does accept connections that only use CCMP
during the countermeasures, we found another vulnerability
that can still be abused to block all network access (see Sec-
tion 4.2.2). These findings are surprising since one expects
that if TKIP is disabled, the AP ignores MIC failure reports,
and hence would not initiate the countermeasure procedure.

We also found that three implementations already accept
MIC failure reports during the 4-way handshake. In par-
ticular, instead of sending message 4, a failure report can
already be sent to the AP (see Table 4). Moreover, Win-
dows 10 and OpenBSD permanently block connections once
the countermeasure procedure is started. This results in an
efficient DoS attack, where a malicious supplicant can per-
manently take down the network. Only after restarting the
Windows 10 or OpenBSD AP are connections allowed again.

Interestingly, when inspecting the source code of hostapd,
we discovered that hostapd v0.7.2 and older also accepted
MIC failure reports in CCMP-only networks [21].

4.2.2 Broadcom: Repeated Countermeasure DoS
Our testing technique also uncovered a method to per-

manently take down a Broadcom network. The problem
is that Broadcom’s implementation accepts MIC failure re-
ports, and initiates a new TKIP countermeasure period,
even when an existing TKIP countermeasure period is in
progress. When abusing this to trigger multiple simulta-
neous countermeasure periods, the AP eventually dies and
becomes unresponsive.

Malicious clients can abuse this to take down a network.
First, clients that only use CCMP can still connect during
a TKIP countermeasure period (as they should be able to).
Once connected, the client sends two MIC failure reports to
trigger another TKIP countermeasure period. Sending these

Table 4: TKIP countermeasure behaviour of tested
devices. The second column indicates whether the
AP accepts failure reports when the network only
supports CCMP. The third column shows whether
a failure report can be sent during the 4-way hand-
shake, and in which message(s). The last column
shows the duration of the countermeasure period.

Implementation In CCMP In 4-way HS Downtime
Broadcom yes no Permanent
Hostapd no Msg4 1 minute
OpenBSD no Msg4 Permanent
Telenet yes no 1 minute
MediaTek no no 1 minute
Windows 7 no no nonea

Windows 10 yes no Permanent
Apple OSes no no nonea

Aerohive yes Msg4 1 minute
Aironet no no nonea

a We were unable to trigger the TKIP countermeasures on
these devices, because they only supported CCMP.

failure reports is possible even if the network only supports
CCMP (see Table 4). Repeatedly reconnecting and trig-
gering a new countermeasure period will eventually crash
the AP. In experiments, we were able to permanently take
down a CCMP-only network within 10 seconds. Connectiv-
ity could only be restored by rebooting the router.

4.2.3 OpenBSD: Permanent DoS
OpenBSD is vulnerable to a permanent DoS attack. This

attack works against networks supporting TKIP. The prob-
lem is that the TKIP countermeasure procedure of OpenBSD
permanently blocks new connections, instead of only block-
ing them for 1 minute. Because networks that support TKIP
must also use it as their group cipher [29], all clients will use
TKIP as their group cipher. And since new connections us-
ing TKIP are not allowed, this effectively prevents any client
from connecting. Hence a malicious supplicant merely has to
send two MIC failure reports in order to bring down a net-
work supporting TKIP. Connectivity can only be restored
by restarting OpenBSD’s access point.

4.3 Downgrade Attack by Forging Message 4
In a WPA1 handshake, Broadcom cannot distinguish mes-

sage 2 and message 4 of the 4-way handshake. The differ-
ence between these messages, in both WPA1 and WPA2,
is that message 2 includes data in the key data field of
the EAPOL-Key frame, while message 4 does not (see Fig-
ure 1). More specifically, only message 2 includes an RSNE
element. However, when Broadcom is expecting message 4,
it does not verify that the data field of the received frame
is empty. This means that, when the supplicant retransmits
message 2, it may get treated as message 4 by Broadcom.
Note that if WPA2 is used, an additional difference between
both messages is that message 4 contains the Secure flag,
while message 2 does not. Broadcom does check for this
WPA2-specific difference (see Table 2), meaning the message
confusion vulnerability only occurs when WPA1 is used.

4.3.1 Vulnerability Analysis
We can abuse this flaw to forge message 4. In particu-



lar, we induce the supplicant into retransmitting message 2,
which will then be treated as a valid message 4 by Broad-
com. Surprisingly, based on the 802.11 standard, the ability
to forge message 4 should not introduce practical attacks.
More precisely, in an informative analysis of the 4-way hand-
shake, the 802.11 standard states that message 4 is only
required for reliability and not security [20, §11.6.6.8]:

“While Message 4 serves no cryptographic purpose, it
serves as an acknowledgment to Message 3. It is re-
quired to ensure reliability and to inform the authen-
ticator that the supplicant has installed the PTK [..]”

Several comments on a draft version of the standard also
indicate that the 802.11 working group underestimated the
importance of message 4 [19]. These comments ranged from
claiming that message 4 is only required in case ANonce is
predictable, to even suggesting the removal of message 4.

However, we discovered that message 4 is essential in pre-
venting downgrade attacks against the 4-way handshake.
That is, if an adversary can forge message 4, she can perform
a partial downgrade attack against the authenticator. This
not only shows that the 802.11 standard incorrectly claims
that message 4 serves no cryptographic purpose, it also re-
sults in a practical attack against Broadcom’s implementa-
tion. Moreover, this also demonstrates that the proposed
3-way handshake in [31] is not secure. We conclude that a
secure implementation of the handshake must verify mes-
sage 4 before the handshake can be considered successful.

4.3.2 Downgrade Attack
Our attack forces the authenticator into using TKIP, even

though the supplicant and authenticator support CCMP.
Normally, CCMP should be used in such a situation.

The adversary starts the attack by setting up a rogue AP
that will act as a man-in-the-middle between the suppli-
cant and authenticator. She modifies all beacons and probe
responses, so it appears that the authenticator (AP) only
supports TKIP (see Figure 3). As a result, the supplicant
will connect to the authenticator, and request TKIP as the
chosen pairwise cipher suite. At this point the adversary
will forward message 1 and 2 of the 4-way handshake with-
out modification. However, it will block message 3, assuring
that the supplicant never sees this message. Blocking this
message is essential since it contains the real RSNE of the
authenticator, which includes both TKIP and CCMP. This
RSNE differs from the one that the adversary advertised in
beacon and probe requests. The supplicant would abort the
handshake if this difference is detected.

The adversary now exploits the fact that Broadcom can-
not distinguish message 2 and 4 of the handshake. Note
that message 2 or 4 cannot be forged directly since they
are protected by a MIC. Instead, we induce the supplicant
into retransmitting a valid message 2 with an increased re-
play counter. This is accomplished by forging message 1,
which can be done since it is not protected by a MIC. When
the supplicants receives the forged message 1, it retransmits
message 2. The retransmitted message 2 is forwarded to
the authenticator, which will be wrongly treated as being a
(valid) message 4. The authenticator now thinks the 4-way
handshake has been successful, and installs the session keys
to enable transmission of normal (encrypted) traffic.

After the attack, the authenticator will encrypt frames
using TKIP. For example, the first message of the group key

Supplicant Adversary (MitM) Authenticator

Advertise TKIP
Advertise

TKIP/CCMP

802.11 Authentication/Association
with TKIP as chosen pairwise cipher

Message 1/4 Message 1/4

Message 2/4 Message 2/4
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Figure 3: Downgrading a Broadcom authenticator
to TKIP, when both TKIP and CCMP is enabled.
The attack only works against WPA1, since Broad-
com only confuses message 2 and 4 in WPA1.

handshake will be encrypted using TKIP. However, because
the supplicant never received message 3, it did not complete
the handshake. Hence the supplicant will not process these
encrypted frames. Nevertheless, it is clearly problematic
that we can force the authenticator into using TKIP, even
though CCMP was supported by both devices.

4.3.3 Discussion
In order to execute the attack in practice, the adversary

must obtain a MitM position between the supplicant and
authenticator. A naive approach would be to set up a rogue
AP with a MAC address different from the real AP. Un-
fortunately, using a different MAC address would interfere
with the 4-way handshake, because the negotiated session
keys depend on the MAC address of the authenticator and
supplicant. Using the same MAC address as the real AP is
also not an option, since the supplicant and authenticator
would simply start communicating directly with each other.

Our solution is to use a channel-based MitM attack, where
the adversary clones the AP on a different channel [29].
Cheap USB dongles can be used as jammers to force sup-
plicants into connecting with the cloned AP [29]. With this
approach we are sure supplicants will never directly commu-
nicate with the real authenticator, since they are on different
channels. This means we do not have to use different MAC
addresses when forwarding frames. As a result, the suppli-
cant and authenticator will negotiate the same session keys,
and will be able to successfully complete the handshake.

As mentioned, it is important that the supplicant does
not receive message 3 of the handshake. Otherwise it will
notice that the advertised RSNE only contains TKIP, while
the real RSNE contains both TKIP and CCMP. If this dif-
ference is detected, the supplicant will abort the handshake,



meaning we cannot trigger the retransmission of message 2.
Thankfully, in a channel-based MitM attack, frames can be
blocked by simply not forwarding them.

4.4 Insufficient RSNE Verification
We discovered several implementations that exhibited du-

bious behaviour when interpreting and authenticating RSNE
elements. This includes incorrectly parsing the RSNE in as-
sociation requests, as well as failing to compare this RSNE
with the one contained in message 2 of the 4-way handshake.

4.4.1 Authenticator Checks
Telenet and MediaTek do not compare the RSNE element

received in the association request with the one contained
in message 2. While this does not immediately lead to an
attack, it is an indication that the underlying code might be
poorly written, and therefore is concerning behaviour.

Windows 7 and 10 do not correctly interpret the RSNE el-
ement in association requests. Even though a network may
only support CCMP, a client can request TKIP as either
the pairwise or group cipher. Moreover, it is even allowed
to request two pairwise ciphers, something that is normally
impossible. In all cases Windows acts as if CCMP was re-
quested for both the pairwise and group cipher. When the
authenticated RSNE in message 2 is received, the pairwise
cipher(s) must match those requested in the association re-
quest, even though a different pairwise cipher is actually be-
ing used. However, the group cipher suite is not compared
to the one requested in the association request.

Aerohive also accepts association requests where two pair-
wise ciphers are requested, though the second requested
pairwise cipher must be supported by the network. We con-
jecture that Aerohive ignores all requested pairwise ciphers,
except the last one. Finally, when a network supports both
TKIP and CCMP as the pairwise cipher, Broadcom also ac-
cepts either TKIP or CCMP as the requested group cipher
in an association request, independent of the group cipher
that is actually being used by the network.

4.4.2 Supplicant Checks: MediaTek Downgrade
Because Telenet and MediaTek do not verify the RSNE in

message 2, we conjectured they also did not check the RSNE
in message 3. Note that this is only applicable if the router
supports both client and AP functionality. Here we found
that only MediaTek supports client functionality, with as
goal to extend to coverage area of another AP.

To test whether the supplicant-side implementation of Me-
diaTek verifies the RSNE in message 3, we modified hostapd.
Our modified version always includes CCMP in the RSNE
of message 3, even if only TKIP is enabled. We then con-
figured hostapd to broadcast a TKIP-only network. As a
result, the RSNE in beacons and probe responses differs
from the RSNE in message 3. The supplicant should no-
tice this difference and abort the handshake. However, we
found that MediaTek does not detect this difference, and
instead successfully connects to our modified hostapd AP.
Hence an adversary can perform a downgrade attack against
MediaTek simply by cloning the network and only advertis-
ing support of TKIP. This is especially problematic because
MediaTek’s client functionality is used to extend the range
of another AP. That is, during an attack the traffic of all
devices connected to the MediaTek router will be forwarded
over a connection that has been downgraded to TKIP.

4.5 Implementation-Specific Findings
For each device we now present unique behaviour they

exhibit, summarize previously discussed issues, and report
the vulnerability disclosure steps we made so far.

4.5.1 Broadcom
One peculiar observation is that Broadcom’s implementa-

tion replies with a disassociation frame when the supplicant
sends EAPOL-Key frames before associating with the AP.
Other implementations reply with a deauthentication frame
in such situations. This unusual behaviour can be used to
fingerprint and identify a Broadcom implementation.

As presented in Section 4.3, Broadcom cannot distinguish
message 2 and 4 of the 4-way handshake. An adversary can
use this to downgrade the authenticator into using TKIP. It
is also affected by our impossible TKIP countermeasure at-
tack of Section 4.2.1. Moreover, it contains a DoS vulnerabil-
ity that permanently makes the network unusable (see Sec-
tion 4.2.2). We reported these issues to Broadcom roughly
four months ago. However, it is not yet clear when they will
be fixed. Finally, Broadcom incorrectly interprets parts of
the RSNE in association requests (see Section 4.4).

4.5.2 Hostapd
Hostapd v0.7.2 and older are vulnerable to our impossi-

ble TKIP countermeasure attack of Section 4.2.1. We also
found that hostapd instantly deauthenticates the supplicant
if WPA1 is used and message 2 has the Secure bit set, in-
stead of simply ignoring the message. This can be used to
fingerprint and identify a hostapd implementation.

4.5.3 OpenBSD
As discussed in Section 4.2.3, OpenBSD contains a DoS

vulnerability where sending two MIC failure reports will
make the network permanently unusable. Fortunately, this
attack is only possible against a network that supports TKIP.
This issue has been reported and fixed. Because it was a DoS
vulnerability, it was not assigned a Common Vulnerabilities
and Exposures (CVE) identifier.

4.5.4 Telenet
As discussed in Section 4.4, the implementation of the

handshake used in Telenet devices does not verify that the
RSNE received in the association request matches the one
contained in message 2. While this is not directly exploitable,
it is concerning behaviour. Finally, Telenet is affected by our
impossible TKIP countermeasure attack (see Section 4.2.1).

4.5.5 MediaTek
MediaTek does not verify the RSNE in both message 2

and 3 of the 4-way handshake. As shown in Section 4.4, this
can be abused in a downgrade attack when the supplicant is
using MediaTek’s implementation of the Wi-Fi handshake.

We also found that an adversary can launch a DoS at-
tack against MediaTek. Here the adversary injects a forged
message 2 with a random nonce and an invalid MIC, right
after the supplicant transmitted the real message 2. On re-
ception of message 2, MediaTek generates a new temporary
PTK due to the changed SNonce value. The problem is
that this temporary PTK is saved as the real PTK before
the MIC of message 2 is verified. Normally, if the MIC is
not valid, the temporary PTK should not be saved.



MediaTek only recently has a vulnerability disclosure pro-
cess. This delayed us from reporting these issues, and be-
cause of this it is not yet clear when patches will be available.

4.5.6 Windows
In Section 4.4 we showed that Windows 7 and Windows 10

do not correctly interpret the RSNE in an association re-
quest. Additionally, in message 2 the authenticator ignores
the group cipher suite. We also showed that Windows 10
is vulnerable to our impossible TKIP countermeasure at-
tack (see Section 4.2.1). Moreover, against Windows 10 this
attack results in a permanently unusable network, and con-
nectivity can only be restored by restarting the AP.

Against Windows 7 we also discovered an unauthenticated
targeted DoS attack that permanently prevents a specific
client from connecting to the network. The attack works by
sending two association requests after one another, with as
sending MAC address the targeted victim. After this, the
victim can no longer connect to the network. We conjec-
ture that by sending two association requests, the internal
state associated to the sender MAC address somehow gets
corrupted. As a result, it is no longer possible to continue
the handshake, or start a new one, when using this MAC
address. This allows an adversary to permanently block
specific MAC addresses from connecting to the network.

These issues have been reported and are being addressed.

4.5.7 Aerohive
We also tested an Aerohive HiveAP 330, which is a profes-

sional industrial-grade access point. For example, it is used
to host the wireless network of the BruCON security confer-
ence in Belgium. At these types of conferences, all attendees
are given the pre-shared key of the wireless network. This
means individuals posses credentials allowing access to the
network, but they are the opposite of trusted actors.

As mentioned in Section 4.4, Aerohive devices exhibit du-
bious behaviour when interpreting and verifying received
RSNE elements. Additionally, in Section 4.2.1 we found
that a supplicant can trigger the TKIP countermeasures
even though the network is only using CCMP. Hence a ma-
licious individual can bring down the complete network by
injecting two frames every minute. This vulnerability was
reported to Aerohive, and is fixed in HiveOS version 6.5r6.

4.5.8 Cisco Aironet
Aironet is the only implementation where inserted authen-

tication requests do not impact the remaining execution of
the handshake. For example, if the supplicant sends an au-
thentication request after associating, or during the 4-way
handshake, the AP does not restart the handshake. Put
differently, the supplicant can continue by sending the next
message of the handshake. Other implementations reset the
Wi-Fi handshake when receiving an authentication request
in the middle of an ongoing handshake. Although the be-
haviour of Aironet poses no security risks, it can be used to
fingerprint and identify an Aironet device.

4.6 Discussion and Future Work
While our testing technique discovered various issues, it

has some limitations. First, we do not combine test gener-
ation rules. Second, the structure of all generated messages
are valid. That is, only their content is invalid. As a result,
not all code of an implementation may be tested. An inter-

esting future research direction is to determine how much
code is covered, and use this to improve test generation rules.

5. RELATED WORK
Wi-Fi drivers have been tested for vulnerabilities, but only

with as goal to detect general errors such as buffer over-
flows and NULL pointer dereferences [22, 7]. Moreover, they
only tested how implementations handle unprotected man-
agement frames. In [28] the authors test implementations
of WPA-TKIP for various logical vulnerabilities, but do not
test the Wi-Fi handshake. In contrast, we tested implemen-
tations of the Wi-Fi handshake for logical flaws.

Beck and Tews were one of the first to attack TKIP in
practice [27]. Also notable is the DoS attack against TKIP
by Vanhoef and Piessens [28]. They discovered that captur-
ing a TKIP frame, and injecting it using a different quality-
of-service priority, causes the receiver to calculate a wrong
MIC value [28, §3]. When doing this twice, the TKIP coun-
termeasures are activated, and the network becomes unus-
able for one minute. In this work we found that some im-
plementations process MIC failure reports, and activate the
TKIP countermeasures, even though TKIP is not enabled.

The design of the 4-way handshake has been extensively
analyzed [16, 17, 23, 31, 30]. In [16, 23] DoS attacks were
discovered, improvements were proposed, and based on this
a correctness proof was given in [17]. Wang et al. proposed a
3-way handshake to mitigate similar DoS attacks [31], but we
have shown this proposal does not defend against downgrade
attacks. Finally, [30] presents a downgrade attack that forces
the group key to be encrypted using RC4 when transported
in the 4-way handshake. Issues in enterprise authentication
mechanisms have also been inspected [24, 5], though our
focus is on other stages of the Wi-Fi handshake.

Recently, implementations of the Transport Layer Secu-
rity (TLS) protocol have undergone rigorous tests for both
logical vulnerabilities [3, 11] and for cryptographic failures
and boundary violations [25]. Our work is inspired by [3]. In
this work Beurdouche et al. constructed a simplified model of
the TLS handshake. Based on this model they constructed
so-called deviant traces. These traces are sequences of mes-
sages that should not be accepted by a secure implementa-
tion of TLS. Deviant traces are generated using three heuris-
tic rules. In a sense our tests cases are similar to deviant
traces: they are both generated based on a model of the
protocol, and if such a trace or test case is accepted by an
implementation, an irregularity has been detected. Beur-
douche et al. also had to manually analyze irregularities to
determine whether they pose any security risks.

Techniques that reconstruct the state machine of a pro-
tocol implementation can also be used to manually discover
vulnerabilities. In [11], the format of valid protocol messages
must first be defined, after which the state machine is re-
constructed by querying the implementation as a black-box.
This was used to discover several vulnerabilities in TLS im-
plementations. Comparetti et al. proposed a technique that
does not require one to specify the format of valid network
messages in advance [10]. However, their method requires
access to the binary code implementing the protocol.

6. CONCLUSION
We developed a new model-based testing technique to an-

alyze implementations of the Wi-Fi handshake. Surprisingly,



not only did this uncover implementation-specific vulnera-
bilities, we also discovered more general types of vulnera-
bilities that are present in various devices. For example,
we found that several implementations accept MIC failure
reports, even though the network is not using WPA-TKIP.
This can be exploited as a DoS attack to take down a net-
work that is only allowing usage of AES-CCMP. Another
example is that several implementations do not properly
verify the advertised cipher suites in message 2 or 3 of the
handshake. For MediaTek implementations, we even demon-
strated that this allows an adversary to downgrade the con-
nection from AES-CCMP to WPA-TKIP.

We also discovered severe implementation-specific vulner-
abilities. For example, triggering the WPA-TKIP counter-
measures against OpenBSD or Windows 10 causes the net-
work to become unavailable indefinitely. Connectivity can
only be restored by rebooting the AP. Additionally, against
Windows 7, an adversary can block specific clients from con-
necting to the network. To recover from this targeted DoS
attack against Windows 7, the AP must be restarted.

Finally, our downgrade attack against Broadcom, which
forces the authenticator into using WPA-TKIP, highlights
incorrect claims made in the 802.11 standard. Though the
standard claims that message 4 of the 4-way handshake
serves no cryptographic purpose, we demonstrated that mes-
sage 4 is essential in preventing downgrade attacks.

7. ACKNOWLEDGMENTS
This research is partially funded by the Research Fund KU

Leuven and by the imec High Impact Initiative Distributed
Trust. Mathy Vanhoef was supported by a Ph. D. fellowship
of the Research Foundation - Flanders (FWO).

8. REFERENCES
[1] WiGLE: WiFi encryption over time. Retrieved 23

October 2016 from https://wigle.net/enc-large.html.

[2] N. Asokan, V. Niemi, and K. Nyberg.
Man-in-the-middle in tunnelled authentication
protocols. In SPW, 2003.

[3] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,
C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and
J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In
IEEE SP, 2015.

[4] A. Bittau, M. Handley, and J. Lackey. The final nail
in WEP’s coffin. In IEEE SP, 2006.

[5] S. Brenza, A. Pawlowski, and C. Pöpper. A practical
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[24] P. Robyns, B. Bonné, P. Quax, and W. Lamotte.
Short paper: exploiting WPA2-enterprise vendor
implementation weaknesses through challenge
response oracles. In WiSec, 2014.

[25] J. Somorovsky. Systematic fuzzing and testing of TLS
libraries. In CCS, 2016.

[26] A. Stubblefield, J. Ioannidis, and A. D. Rubin. A key
recovery attack on the 802.11b wired equivalent
privacy protocol (WEP). TISSEC, 2004.

[27] E. Tews and M. Beck. Practical attacks against WEP
and WPA. In WiSec, 2009.

[28] M. Vanhoef and F. Piessens. Practical verification of
WPA-TKIP vulnerabilities. In ASIA CCS, 2013.

[29] M. Vanhoef and F. Piessens. Advanced Wi-Fi attacks
using commodity hardware. In ACSAC, 2014.

[30] M. Vanhoef and F. Piessens. Predicting, decrypting,
and abusing WPA2/802.11 group keys. In USENIX
Security, 2016.

[31] L. Wang and B. Srinivasan. Analysis and
improvements over DoS attacks against IEEE 802.11i
standard. In NSWCTC, 2010.

[32] Wi-Fi Alliance. Hotspot 2.0 (Release 2) Technical
Specification v1.1.0, 2010.

[33] Wi-Fi Alliance. Technical note: Removal of TKIP
from Wi-Fi devices, Mar. 2015.

https://wigle.net/enc-large.html
http://www.ieee802.org/11/LetterBallots/preLB86/11-03-033r10-I-LB52-Comments.xls
http://www.ieee802.org/11/LetterBallots/preLB86/11-03-033r10-I-LB52-Comments.xls

	Introduction
	The Wi-Fi Handshake
	Technical and Historical Background
	Stage 1: Network Discovery
	Stage 2: Authentication and Association
	Stage 3: 802.1x Authentication
	Stage 4: The 4-way Handshake
	Message 1
	Message 2
	Message 3
	Message 4

	Stage 5: Group Key Handshake

	Testing Technique
	General Approach
	Test Generation Rules
	Executing Test Cases
	Validating and Resetting the Connection

	Results
	Fingerprinting Mechanisms
	EAPOL-Key Info Flags Fingerprint
	EAPOL-Key Descriptor Type Fingerprint

	TKIP Countermeasures DoS
	Impossible TKIP Countermeasures
	Broadcom: Repeated Countermeasure DoS
	OpenBSD: Permanent DoS

	Downgrade Attack by Forging Message 4
	Vulnerability Analysis
	Downgrade Attack
	Discussion

	Insufficient RSNE Verification
	Authenticator Checks
	Supplicant Checks: MediaTek Downgrade

	Implementation-Specific Findings
	Broadcom
	Hostapd
	OpenBSD
	Telenet
	MediaTek
	Windows
	Aerohive
	Cisco Aironet

	Discussion and Future Work

	Related Work
	Conclusion
	Acknowledgments
	References

